There is a newer version of this record available.

Preprint Open Access

Archaeology and Machine Epistemology

Gavin Lucas


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Gavin Lucas</dc:creator>
  <dc:date>2022-10-31</dc:date>
  <dc:description>In this paper, I will explore some of the implications of machine learning for archaeological method and theory. Against a back-drop of the rise of Big Data and the Third Science Revolution, what lessons can be drawn from the use of new digital technologies and computational approaches as they are applied to archaeological typologies? How can we understand the construction of these typologies that take us beyond old and tired debates about ‘theory-ladeness’ and the myth of ´raw data´? Drawing on recent work in the philosophy of science, this contribution will try and situate current developments in archaeology within the wider, cross-disciplinary discourse on machine epistemology and big data.</dc:description>
  <dc:identifier>https://zenodo.org/record/7267834</dc:identifier>
  <dc:identifier>10.5281/zenodo.7267834</dc:identifier>
  <dc:identifier>oai:zenodo.org:7267834</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>doi:10.5281/zenodo.7267833</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/archaeo-typologies</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>typology, archaeology, theory, AI</dc:subject>
  <dc:title>Archaeology and Machine Epistemology</dc:title>
  <dc:type>info:eu-repo/semantics/preprint</dc:type>
  <dc:type>publication-preprint</dc:type>
</oai_dc:dc>
602
163
views
downloads
All versions This version
Views 602497
Downloads 16391
Data volume 15.0 MB4.0 MB
Unique views 523460
Unique downloads 14787

Share

Cite as