There is a newer version of this record available.

Preprint Open Access

Archaeology and Machine Epistemology

Gavin Lucas

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.7267834</identifier>
      <creatorName>Gavin Lucas</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="">0000-0003-1619-7955</nameIdentifier>
      <affiliation>University of Iceland</affiliation>
    <title>Archaeology and Machine Epistemology</title>
    <subject>typology, archaeology, theory, AI</subject>
    <date dateType="Issued">2022-10-31</date>
  <resourceType resourceTypeGeneral="Preprint"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.7267833</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf"></relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;In this paper, I will explore some of the implications of machine learning for archaeological method and theory. Against a back-drop of the rise of Big Data and the Third Science Revolution, what lessons can be drawn from the use of new digital technologies and computational approaches as they are applied to archaeological typologies? How can we understand the construction of these typologies that take us beyond old and tired debates about &amp;lsquo;theory-ladeness&amp;rsquo; and the myth of &amp;acute;raw data&amp;acute;? Drawing on recent work in the philosophy of science, this contribution will try and situate current developments in archaeology within the wider, cross-disciplinary discourse on machine epistemology and big data.&lt;/p&gt;</description>
All versions This version
Views 602497
Downloads 16391
Data volume 15.0 MB4.0 MB
Unique views 523460
Unique downloads 14787


Cite as