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Data integration is the dominant use case for RDF Knowledge Graphs. However, Web resources come in formats with weak semantics
(for example CSV and JSON), or formats speci�c to a given application (for example BibTex, HTML, and Markdown). To solve this
problem, Knowledge Graph Construction (KGC) is gaining momentum due to its focus on supporting users in transforming data
into RDF. However, using existing KGC frameworks result in complex data processing pipelines, which mix structural and semantic
mappings, whose development and maintenance constitute a signi�cant bottleneck for KG engineers. Such frameworks force users to
rely on di�erent tools, sometimes based on heterogeneous languages, for inspecting sources, designing mappings, and generating
triples, thus making the process unnecessarily complicated. We argue that it is possible and desirable to equip KG engineers with the
ability of interacting with Web data formats by relying on their expertise in RDF and the well-established SPARQL query language [2].

In this article, we study a uni�ed method for data access to heterogeneous data sources with Facade-X, a meta-model implemented
in a new data integration system called SPARQL Anything. We demonstrate that our approach is theoretically sound, since it allows a
single meta-model, based on RDF, to represent data from (a) any �le format expressible in BNF syntax, as well as (b) any relational
database. We compare our method to state-of-the-art approaches in terms of usability (cognitive complexity of the mappings) and
general performance. Finally, we discuss the bene�ts and challenges of this novel approach by engaging with the reference user
community.
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1 INTRODUCTION

Data integration is the dominant use case for RDF Knowledge Graphs, according to a recent report from the industry [5].
However, legacy systems cannot easily be changed to produce RDF. Instead other formats are already supported by such
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systems (e.g. CSV, JSON, and XML). Therefore, a plethora of Web resources come in formats with a weak semantics,
such as CSV and JSON1, or formats speci�c to a given application (for example, the BibTex2 for sharing bibliographic
references, or Markdown3 for generating well-formatted software documentation). How to support developers in
integrating non-RDF data into knowledge graphs?

To answer this question, Knowledge Graph Construction (KGC) is gaining momentum due to its ability of supporting
data managers in the transformation task. Typically, this is achieved by applying tools that behave as adaptors between
the data sources and the needed syntactic format and data model [35]. Alternatively, mappings between sources are
designed into ad-hoc software to transform the sources into a multiplicity of ontologies relevant to the domain [21]. In
both cases, the result is a complex data processing pipeline, which combines structural and semantic mappings, whose
development and maintenance constitute a signi�cant bottleneck for data managers.

Building and maintaining such complex pipelines is a critical component of knowledge-aware infrastructures in most
domains. For example, our work is placed in the context of two EU H2020-funded research projects that require the
construction of large knowledge graphs as the integration layer of distributed cultural heritage archives, for supporting
applications in digital humanities and cultural tourism [10, 19, 26, 48]. However, this problem is widely known by data
scientists, who, according to multiple surveys (e.g. as reported in a recent blog4), and despite the variety of percentages
reported, spend a lot of time to collect, extract, understand, transform, and load multiple data sources. These tasks
might be shortened if an easier, broad-coverage KGC ETL (Extract-Transform-Load) work�ow was available.

In this article, we propose a novel approach for indirect access to heterogeneous data sources to streamline KGC. The
approach is based on a uni�ed meta-model as a content bearer of di�erent representations. Such a meta-model behaves
as a façade, a design pattern borrowed from object-oriented software engineering [28]. The façade is designed through a
selection of structural design patterns [30] that enable mapping onto a set of RDF components. The resulting RDF graph
can then be transformed into other RDF structures, suitable to local requirements. This approach allows to decouple
the development of the structural mappings of source formats, from the development of the semantic mappings to the
domain ontology. In this way, transformations into RDF are streamlined by meta-model mappings - re-engineering, and
domain ontologies are populated through SPARQL5 construct queries - re-modelling.

The meta-model that drives our approach is called Facade-X, while the implementation of the approach, supporting
�les in a variety of formats, is a system named SPARQL Anything. Facade-X is inspired by one of the GoF patterns6,
and it is based on a set of basic data structures that are composed together: ����������� (inspired by the GoF
pattern Composite), �������� (an unbound list), ���������� (a map), and ������ (the unary predicate of description
logic). As such, it can be expressed by using a subset of the RDF speci�cation [18]: resources, types, properties, and
container membership properties. In this work, we consider such fundamental RDF shapes as structural ontology design
patterns [30].

Our approach is implemented in SPARQL (with no syntax extensions), by overriding the SERVICE operator with a
virtual endpoint, which serves data extracted from legacy formats, but structured according to Facade-X. The example
scenario depicted in Figure 1 shows how a user is supposed to interact with the SPARQL Anything endpoint in order to
retrieve the desired information (e.g. the Gordon Gekko’s address) or to construct a KG from a JSON �le available at the

1As an exemplary case, see the recommended data formats from the UK data service: https://ukdataservice.ac.uk/learning-hub/research-data-
management/format-your-data/recommended-formats/ (Accessed, June 2022).

2http://www.bibtex.org/
3https://commonmark.org/
4https://tinyurl.com/rcnubw8t
5https://www.w3.org/TR/sparql11-overview/
6See https://www.gofpatterns.com/design-patterns/module5/intro-structural-designPatterns.php
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URL http://example.org/file.json. Intuitively, the SPARQL Anything endpoint retrieves the JSON �le from the
source, then transforms it into RDF according to Facade-X, and, �nally, evaluates the query on the RDF translation of
the �le and returns the result of the query to the user. As for the SELECT queries, the result is a list of bindings of the
variables of the query; while an RDF KG is returned in case of CONSTRUCT queries.

Fig. 1. An example scenario showing how users interact with the SPARQL Anything endpoint in order to retrieve desired information
(solid lines) or to construct an knowledge graph (dashed lines) from a JSON file.

The approach of using a façade for integrating data into RDF pipelines has been originally proposed in [20]. The
contributions of this article di�er in the following ways: (i) we provide a theoretical proof that the Facade-X meta-model
is generic with respect to (a) serialised data formats and (b) relational data; (ii) we discuss the design principles of
Facade-X in the light of structural design patterns, and validate the approach with more data formats; (iii) we extend
the comparative evaluation (cognitive complexity and performance) to the ShEx mapping language (ShExML); (iv) we
add experiments with a new execution strategy, called triple-�ltering, which shows improvements in performance;
(v) we discuss challenges and opportunities of the approach by engaging with the reference user community.

The rest of the article is structured as follows. In the next section, we provide background information on KGC.
In Section 3 we discuss the motivations behind our problem and we make methodological considerations. Section 4
introduces the Facade-X meta-model and its mappings to RDF structures. We expand the formalisation introduced
in [20], including operators that re�ect possible design choices. Section 5 describes how the Facade-X meta-model can
be implemented by selecting a few relevant components from RDF and RDFS speci�cations. In Section 6, we apply the
methodology to a system for re-engineering non-RDF resources, in order to make them available through a SPARQL
processing engine. In Section 7, we focus on the evaluation of the approach. We demonstrate that our meta-model is
generic enough to cover structured data expressible in formal grammars (Section 7.1.1) and relational data (Section
7.1.2). We also compare our approach to state-of-the-art tools for Knowledge Graph construction, in terms of cognitive
complexity (Section 7.2) and performance of a naive implementation (Section 7.3). We describe experiments performed
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(a) Traditional view on KGC. (b) Revised view on KGC. (c) Facade-X approach.

Fig. 2. Alternative Knowledge Graph Construction (KGC) processes.

with a triple-�ltering strategy, showing improvements in performance (Section 7.4). We discuss the usability of the
system by reporting results from a survey questionnaire with the reference community in Section 7.5. Section 8 describes
the state of the art. Finally, Section 9 concludes the paper and discusses future research.

2 KNOWLEDGE GRAPH CONSTRUCTION

In this Section, we provide background information on Knowledge Graph Construction (KGC) methods, and discuss
how KGC can bene�t from a uni�ed, general approach.

KGC is the process of building a Knowledge Graph (KG) out of a data source [4]. We can conceptualise this process
as in Figure 2a. The process typically involves only one actor, i.e. the KG engineer. A KGC process usually consists
of three activities: (i) Observe (ii) Design (iii) Transform. Firstly, the KG engineer inspects the data source in order
to �gure out the format and the content of the input data (observe). This task can be supported by tools and query
languages designed for the input format (e.g. XPath if the input format is XML). Secondly, the KG engineer designs a set
of mappings aimed at identifying the data that ful�l information needs from the source, and devises their representation
into RDF, often according to a pre-existing ontology (design). Finally, the mappings are fed into a processor that is
responsible for generating the RDF triples according to the mappings (transform). This process proceeds by incremental
iterations, where the KG engineer designs potential mappings, and evaluates them against the input source. During this
activity, the KG engineer might identify nuances to take into account, troubleshoot possible issues, re�ne the mappings,
or design new ones.

Plenty of technologies have been developed for mapping heterogeneous �les to RDF (RML [27] and SPARQL
Generate [42] to name a few); ad-hoc tools are also developed [35]. KGC frameworks are typically designed in two ways:
(a) either connectors leverage con�gurations with an intermediate mapping language (e.g. RML [27], ShExML [31],
SPARQL Generate [42]), or (b) a direct-mapping strategy is hard-coded in the software (e.g. TARQL7, CSV2RDF8,
Any239). In the �rst case – a framework based on mapping languages – data engineers bene�t from a declarative
language that can express mappings towards di�erent data sources, allowing better transparency and maintainability of
the data transformation pipeline. However, they are required to inspect the data sources, and express these mappings
according to the speci�city of each source format (e.g. relying on format-speci�c languages such as XPath or JsonPath).
Crucially, these systems are limited to formats that come with their own declarative query language. This is true for

7http://tarql.github.io/
8https://github.com/AtomGraph/CSV2RDF
9https://any23.apache.org/
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some popular formats (JsonPath for JSON, XPath for XML, CSS selectors for HTML) but not for many other valuable
data sources (e.g. YAML, Markdown, Bibtex, to mention just a few). In the second case – systems implementing direct
mappings – data engineers bene�t from direct access to the data without the need to inspect the source format and
to con�gure the system. However, integrating data from di�erent formats needs integration of di�erent tools and
engaging with di�erent representations, according to format-speci�c ontologies. Crucially, they need to develop further
transformations to obtain an homogeneous view on the data. As a result, KG engineers are usually forced to rely
on di�erent tools (sometimes based on heterogeneous languages) for inspecting sources, designing mappings, and
generating triples, thus making the KGC process unnecessarily complicated. In what follows, we argue that it is possible
and desirable to equip KG engineers with the ability of interacting with Web data formats by relying on their expertise
in RDF and the SPARQL query language [2].

3 METHODOLOGY

In this Section, we argue how having a uni�ed method jointly with its related tools can streamline KGC. We have
observed that the intent of the mappings is usually twofold (see Figure 2b: they perform a syntactic transformation of
the terms included in the data source (i.e. re-engineering), and they project the transformed terms onto a conceptual
model (i.e. re-modelling). This revised view on KGC is depicted in Figure 2b. With respect to three activities of the KGC
process, SPARQL [2] can address them:

(i) SPARQL SELECT queries may be used for inspecting data sources (observe);
(ii) mappings may be speci�ed as SPARQL CONSTRUCT queries (remodel);
(iii) transformation would result from the execution of a SPARQL CONSTRUCT query (transform).

However, SPARQL can only be used if re-engineering into RDF has been previously performed. For this reason, our
approach includes a mechanism for accessing heterogeneous data as if it was RDF, before committing the data to any
ontology (cf. Figure 2c). Contrary to the many methods for transforming heterogeneous data into RDF (cf. Section 8),
we propose an open-ended, uni�ed model for accessing non-RDF data as if it was RDF. Since the lifting to RDF has to
be made before committing to an ontology, no assumptions can be made either on the content of the input, nor on the
ontology. As a result, a mapping at meta-model level (e.g. JSON to RDF) is the only viable strategy to accomplish the
objective, as proposed in [50], even if there is no standardised mapping strategy.

Our strategy builds on basic data structures6 (i.e. �����������, ��������, ����������, and ������) as recurrent
architectural solutions for shaping data. First, a minimal subset of basic data structures has been pragmatically identi�ed
from well known abstract data types (containers, sequences, associative arrays, etc., cf. [44]). Then, each of these
structures has been associated with an RDF construct for tripli�cation (e.g. lists are expressed in terms of RDF container
membership properties). As a result, RDF constructs act as uniform façades to heterogeneous data sources.

This vision implicitly involves a novel actor in the KGC process, i.e. the façade engineer. The façade engineer is in
charge of designing the façade, mapping it onto the legacy formats (we also refer this task by the name meta-model
interpretation), and devising a tripli�cation strategy. Ideally, the façade engineer acts once per façade, meaning that
once a format is ported to RDF according to a façade, no more activities are required.

This strategy makes the KGC: • easier the basic data structures emerge from the data; • domain-independent no
assumptions are made on the input schema; • re-usable once a format is mapped to RDF, all the data sources of that
format can be queried as RDF data; • open-ended the mapping is the result of a collection of basic data structures, hence
new structures can always be added. In addition: (i) The o�-the-shelf transformation of legacy data into RDF enables the
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KG engineer to explore heterogeneous data using SPARQL (e.g. using a set of standardised queries for approaching new
sources); (ii) Legacy formats are completely transparent to the KG engineer; (iii) A façade homogenises data, not only
from a syntactical perspective (all the data is in RDF), but also from a structural standpoint (there is a unique strategy
for triplifying knowledge representation primitives); (iv) Mapping and tripli�cation can be completely implemented in
SPARQL (no legacy languages, no mapping vocabularies, no tripli�cation tools).

4 FACADE-X

The Facade-X meta-model has been built in a bottom-up way. Firstly, we selected the most common (non-RDF) formats
adopted for exchanging or expressing information on the Web. The selection (that is being extended) includes: CSV,
JSON, YAML, XML, HTML, Text, Binary formats (e.g. JPG), Documents (DOCx or Markdown), Relational Databases,
and Spreadsheets (e.g. XLS and XLSx). Then, for each format, we selected the minimal set of basic data structures needed
for capturing the content speci�ed through a format. Facade-X is the result of the abstraction out of all the basic data
structures used for representing the source data formats. Such abstraction led to the selection of a set of structural
design patterns, each pattern corresponding to an RDF component used in the tripli�cation process.
Observed Basic Data Structures. We overview the main basic data structures needed for representing data extracted
from the selected formats. For the sake of clarity, we resort to computer science terminology for abstract data types. We
use container, list (considered as a specialisation of a container), map, and instance-of relation as abstract data types
corresponding respectively to the basic data structures: �����������, ��������, ����������, and ������.

Formalisation of Basic Data Structures. Containers, lists, maps and instance-of are formalised as follows. Let + be
the set of all possible primitive values, � the set of (the instances of) containers, lists, and maps, and ⇠ the set of
classes. A list ; 2 (+ [ � )⇤10 is a �nite sequence of elements from + or � . A map< is a set of pairs (:, E) such that
< = {(:, E) |: 2 + , E 2 (+ [ � )}. An instance-of relation is a set of pairs (8, 2) such that instance-of = {(8, 2) |8 2 � , 2 2 ⇠}.

Basic Data Structures for CSV. A comma-separated values (CSV) �le is a text �le that uses a comma to separate an
ordered sequence of values in a data record and a carriage return to separate the data records of a sequence. A CSV can
be represented as a list of lists in which the outer list captures the sequence of data records (representable as containers),
while the inner list captures the sequence of primitive values within a record.

Basic Data Structures for Spreadsheet. Spreadsheets are �les that organise data as a collection of named tables. Similarly
to CSV, each table of a spreadsheet can be seen as a container of data records. In addition, a map is needed for associating
each table of the spreadsheet (a list of lists) with its name.

Basic Data Structures for JSON. JSON is a text format which is built on two structures: collections of key/value pairs
(the key is a string and value is an element) and ordered lists of elements. Each element (representable as a container)
can in turn be a collection of key/element pairs, a list of elements or a primitive value. Therefore, capturing JSON �les
requires: (i) maps for expressing key/value pairs; (ii) and lists for specifying lists of elements.

Basic Data Structures for YAML. YAML is a lightweight, human-readable data-serialization language. YAML is a
“superset” of JSON (any JSON �le can be speci�ed in YAML) and, similarly to JSON, data can be organised in lists or
associative arrays. However, di�erently from JSON, comments and custom data types are allowed. Therefore, in addition
to the basic data structures required for capturing JSON �les, instance-of is needed for representing custom data types.

Basic Data Structures for XML and HTML. Although having crucial di�erences (e.g. case-sensitivity, optional closing
tags etc.), XML and HTML can be classi�ed as markup languages that organise data according to a hierarchical structure.

10(4C⇤ stands for (4C ⇥ (4C ⇥ ... ⇥ (4C
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XML and HTML documents must contain a root element. All the elements (representable as containers) can enclose sub
elements, text (primitive value) and attributes (key-value pairs). XML and HTML can be represented by combining:
(i) maps for associating attributes with the corresponding values; (ii) lists for specifying sequences of children of an
element; (iii) instance-of for associating an element with the name of the tag.

Basic Data Structures for BibTeX. BibTeX is a text format used (typically together with LaTeX) to specify a list of
references in a database �le with the aim of separating bibliographic information from its presentation. A BibTeX
database �le is formed by a list of bibliographic entries where each entry consists of the type (e.g. article, inproceedings
etc.), a citation key, and key-value pairs for the other characteristics of an entry. Each BibTeX entry can be represented
as a typed container that holds a set of key-value pairs.

Basic Data Structures for Word processing documents and Markdown. A word processing document is any text-based
document compiled using word processor software. Markdown is a lightweight markup language for writing formatted
documents inspired by web posting conventions. We can interpret a document (compiled with a Word processor or
speci�ed in Markdown syntax) as a sequence of blocks (e.g. paragraphs, lists, headings, code blocks). Some blocks (e.g.
list items) contain other blocks, whereas others contain inline contents (e.g. links, images etc.). A document can be
represented as a list of typed containers. In fact, blocks can be speci�ed as typed containers, where the type denotes the
kind of block (e.g. heading, paragraph, emphasised text, link, image etc.); lists are needed for specifying the sequence of
the blocks. Additional attributes such as the depth of the header or the type of list (bullets, numbers, etc...) can be also
supported, relying on the key-value structure.

Basic Data Structures for archives and �le system directories. Archives and directories can be seen as �les with the
purpose of collecting other �les. Therefore, if we abstract from the �le content (i.e. bytes composing the �le), then
archives and directories can be seen as lists of �lenames.

Basic Data Structures for Binary and Text. From the structural standpoint, binary data and text are quite similar
since they can be both represented as either a container including a single value item (byte stream or text) or as an
ordered sequence of primitive values (bytes or, in case of text �les, characters, words, multiwords, sentences, paragraphs
depending on the granularity level to which the data structure is mapped).

Basic Data Structures for Relational Databases. A Relational Database (RDB) is a collection of named relational tables,
where each table is a subset of the cartesian product of the domain of its attributes, namely a set of tuples. From a
structural perspective, a table is a typed container, where the type (denoted e.g. by the name of the table) is the intension
of the table, while each tuple is a collection of key-value pairs (all tuples being the extension of the table).

Formalisation of Facade-X in predicate logic. As mentioned above, the Facade-X meta-model is the result of the
combination of four basic data structures (container, list, map and instance-of). We abridge those structures to structural
design patterns by �rstly providing a predicate logic speci�cation of Facade-X.

A list (41, .., 4=) is speci�ed as a container of pairs (position, element), e.g. ?08A (8, 48 ). In doing so, lists di�erentiate
from maps exclusively in the kind of the �rst element of the pair (an integer for lists), but both are generalised as
containers of pairs.

In order to represent containers in predicate logic, we introduce a set of predicates, axiomatized as in Table 1:

(i) the unary predicate Container which includes the rei�cations of containers;
(ii) the unary predicate Slot includes the rei�cations of key/value pairs occurring at a certain position in a dataset;

7
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8: .StringKey(:) ! Key(:) 8: .NumberKey(:) ! Key(:)
¬9: .NumberKey(:) ^ StringKey(:) 8(G,~).hasSlot(G,~) ! Container(G) ^ Slot(~)
8(G,~) .hasType(G,~) ! Container(G) ^ Class(~) 8(G,~).hasKey(G,~) ! Slot(G) ^ Key(~)
8(G,~) .hasContainer(G,~) ! Slot(G) ^ Container(~) 8(G,~).hasValue(G,~) ! Slot(G) ^ Value(~)
¬9(G,~, I) .hasContainer(G,~) ^ hasValue(G, I) 8(G,~).hasSlot(G,~) $ hasContainer(~, G)
8(G,~, I) .hasValue(G,~) ^ hasValue(G, I) ! ~ = I
8(G,~, I) .hasContainer(G,~) ^ hasContainer(G, I) ! ~ = I
8(2, B1, B2,=).hasSlot(2, B1) ^ hasSlot(2, B2) ^ hasKey(B1,=) ^ hasKey(B2,=) ! B1 = B2

Table 1. The intended semantics of the predicates in the Facade-X model.

(iii) the unary predicate Key includes the slot identi�ers, which can be (at least in the selected formats) either
StringKey or NumberKey;

(iv) the unary predicate Value includes the primitive values;
(v) the unary predicate Class includes the classes.
(vi) the binary predicate hasSlot, holding between containers and slots.
(vii) the binary predicate hasContainer, inverse of hasSlot, holding between slots and containers. A slot can have

either at most one container, or one value, but not both.
(viii) the binary predicate hasType, holding between containers and classes.
(ix) the binary predicate hasKey, holding between slots and keys. Slots from a same container are uniquely identi�ed

by their key.
(x) the binary predicate hasValue, holding between slots and values.

We emphasise that the meta-model is domain-independent, therefore it provides a KG engineer with a uniform view
over any data serialised according to any mapped format. Moreover, since the mapping is determined by the façade
engineer, a KG engineer can design mappings based purely on Facade-X, ignoring the original data format.

5 RDF REPRESENTATION OF FACADE-X

In the previous section, we have introduced the Facade-X meta-model, and shown how it can capture the essential
elements (basic data structures) of popular �le formats. In this section, we deal with encoding Facade-X in RDF. We
�rstly validate the basic data structures with respect to real samples of source data, and align them to RDF or RDFS
components. As a result, we obtain an RDF version of Facade-X.

Formats such as CSV, JSON, or XML have di�erent meta-models that can be mapped to RDF in di�erent ways,
despite the common patterns shared by them. Facade-X provides a common semantics to encode them all. Facade-X
assumes the notion of a façade as "an object that serves as a front-facing interface masking more complex underlying
or structural code"11. Applied to our problem of abstracting the reverse engineering of heterogeneous source data,
Facade-X is a generic meta-model (a) to inform the development of transformers from an open-ended set of formats,
and (b) to generate RDF content in a consistent and predictable way. To support the reader, we introduce a guide
scenario reusing the data of the Tate Gallery collection, published on GitHub12. The repository contains CSV tables
with metadata of artworks and artists, and a set of JSON �les with details about each catalogue record, e.g. details of the
hierarchy of archive subjects. Both types of resources include references to Web URLs pointing to digital images of
the artworks. The �le artwork_data.csv includes metadata of the artworks in the collection, and references several

11https://en.wikipedia.org/wiki/Facade_pattern (accessed, 19/04/2021)
12http://github.com/tategallery/collection
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external resources, such as a JSON �le with the artwork subject headings and a link to a JPG thumbnail image. Similarly,
the �le artists_data.csv includes the list of artists, linking to a collection of JSON documents for each artist.

In the following, we describe the design of Facade-X in RDF, for re-engineering heterogeneous �le formats. From
the methodological standpoint, we refer to design science as a guiding principle [63]. Pragmatically, we place into the
problem space a collection of formats and associated meta-models, and on the solution space the components of the
RDF(S) speci�cations, as described in the W3C documents13. The design process is as follows:

(i) Our problem space includes the following formats: CSV, JSON, XML, HTML, Plain text, and Binary �les (e.g. JPG
images)

(ii) The solution space includes the components from the RDF and RDFS speci�cations (which we refer to as RDF in
the rest of the paper)

(iii) Initially, our façade speci�cation is empty
(iv) We select a format from the problem space, observe one or more prototypes, and abstract it into a meta-model
(v) The meta-model is partitioned topologically. Parts and relations are mapped to RDF components, �rst by selecting

the ones already in the façade or, in case something is missing, picking new components from RDF
(vi) We move to the next format, until the problem space is empty.

CSV. A CSV �le is a resource, identi�able by a URI, which contains a dataset, composed of an ordered sequence of
rows, which in turn contains an ordered sequence of data �elds. Therefore, we identify containment as a primary
requirement of Facade-X. Now, we look at the solution space for a component of RDF to use. The simplest way to
express containment in RDF is with an RDF property linking the container with the contained item. However, what type
of property should link the container to the contained elements in the case of a CSV? Rows are ordered; therefore, this
case of containment can be represented as an ordered sequence (our second component). Relying on a recent survey
on sequential linked data [23], we learn that there are several ways of representing sequences in RDF, and that some
representations are more e�cient to deal with in SPARQL than others. In the light of that analysis, we select container
membership properties from the solution space (rdf:_1, rdf:_2, rdf:_=) and discard rdf:List. In addition, we want
to distinguish the main data source container from its parts. We can select the rdf:type component and declare one
primitive entity type: root, for which we de�ne a namespace and pre�x: fx: <http://sparql.xyz/facade-x/ns/>.

What about data values? We observe how CSV data may have an optional “header”, where the �rst line is the list of
�eld names. When this happens, we can use the property component and generate an RDF property reusing the �eld
name, and minting an IRI with a conventional namespace. Otherwise, we can consider the values on each row as another
sequence, and fallback to the ordered sequence component. Our façade currently includes the following components:
rdf:Property and rdf:ContainerMembershipProperty as two ways of representing containment, rdf:type to point
to the fx:root element, and rdf:Literal to represent values. So far, we added the following namespaces to our toolkit:

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

3 @prefix fx: <http://sparql.xyz/facade-x/ns/>. # for fx:root

4 @prefix xyz: <http://sparql.xyz/facade-x/data/>. # for the properties

This is an example from the Tate Gallery open data14:

13RDF: https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
RDFS: https://www.w3.org/TR/2014/REC-rdf-schema-20140225/

14https://github.com/tategallery/collection
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1 id,accession_number,title,. . .
2 1035,A00001,�A Figure Bowing�,. . .
3 . . .

1 [ a fx:root ; rdf:_1 [ xyz:id �1034�; xyz:accession_number �A00002�;

xyz:title �A Figure Bowing�; . . . ], . . . ]

JSON. The JavaScript Object Notation is speci�ed by ECMA15. The syntax de�nes three types of elements: objects, a
set of key-value pairs, where keys are supposed to be unique; values, which are either strings, numbers, boolean, or
the primitive ’null’, and arrays, which specify sequences (containing other arrays, objects, or values). We interpret
objects and arrays as containers. We reuse rdf:Property to link objects to values. Arrays are represented by the
ordered sequence component. Values are expressed as rdf:Literal, selecting relevant XSD datatypes from the RDFS
speci�cation: xsd:string, xsd:boolean, xsd:int, xsd:float16. The following example shows a JSON document with
metadata of an artist in the Tate Gallery Collection. The JSON �le will be represented as follows in RDF (in Turtle
syntax):
1 {

2 �fc�: �Kazimir Malevich�,

3 �gender�: �Male�,

4 �id�: 1561,

5 �activePlaces�: [ �Ukrayina�, �Moskov� ]

6 }

1 [ a fx:root ;

2 xyz:fc �Kazimir Malevich�,

3 xyz:gender �Male�

4 xyz:id 1561^^xsd:int,

5 xyz:activePlaces [

6 rdf:_1 �Ukrayina�; rdf:_2 �Moskov� ]]

So far, we were able to express CSV and JSON data by using a limited set of RDF components. The JSON format
required us to add a number of datatype formats, while CSV values could only be represented with the default datatype
(string).

HTML and XML. We will approach these two formats together, as their di�erence is on syntactic aspects, while
their conceptual meta-model is the same. In fact, both formats can be captured by the Document Object Model (DOM)
speci�cation, which we will refer to in the following description. However, it needs to be clari�ed how our methodology
focuses on the elements of the syntax and does not aim at reproducing the DOM API in RDF. HTML/XML elements
(also known as tags) can be de�nitely considered containers, so we can reuse both the rdf:Property component for
specifying tag attributes, and container membership properties for specifying relations to child elements in the DOM
tree. These may include text, which can be expressed as RDF literals of type xsd:string. What about element types
(tag names)? Facade-X does already provide a solution of unary attributes: rdf:type. The range of the property will
therefore be a rdf:Resource, whose URI can be minted by using the tag name as local name. However, XML and HTML
already include the notion of namespace, therefore, we use namespaces declared within the original document to name
properties and types, if any. Examples with HTML content will be presented later in Section 6.1.

So far, we collected the following components: rdf:Property, rdf:ContainerMembershipProperty, XSD datatypes,
rdf:type, and declared one primitive: fx:root. We complete our analysis with two corner cases: plain text documents
and binary data (e.g. JPEG or PNG images). Textual data is an interesting case where we can use containment to refer to
di�erent elements of the text. The whole content can be included in one single literal of type xsd:string. Alternatively,
the text can be tokenized and the resulting sequence represented as RDF17. For the sake of our analysis, text can be
considered a single container including a sequence of (at least one) literal values. Binary content such as images can be
also supported, by embedding the content in a single literal of datatype xsd:binary64encoding. This solution does

15https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
16Currently, we chose to ignore �elds with the ’null’ value. However, we may decide to represent it as blank node or to create a primitive entity to

express it, for example, similar to rdf:nil.
17We could ask users to choose a separator, for example, the space, the new line, or even a regular expression
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not require to add components to the facade but still allows to bring in the content as linked data. In both these cases,
we can reuse the components already selected.

At this stage, we have all we need to implement the basic data structures identi�ed in the previous section into RDF. Fig-
ure 3 illustrates the resulting Facade-X/RDF as an entity-relation diagram.

Fig. 3. Facade-X/RDF entity-relation diagram

We are able to support all the other formats mentioned (BibTex, Markdown,
etc.), as they do not introduce new components.

6 SPARQL ANYTHING

In this section we describe SPARQL Anything, a proof-of-concept of our
approach.

Based on the output of our design activity, i.e. the RDF version of Facade-
X, we design a method to inject façade-based data sources into SPARQL
engines, with the objective of serving this content to the SPARQL prac-
titioner for de�ning mappings to the target ontology (cf. the re-modeling
activity mentioned in Section 1). To this end, we overload the SPARQL SER-
VICE operator by de�ning a custom URI-schema. The implementation of
Facade-X acts as a virtual endpoint that can be queried exactly as a remote
SPARQL endpoint. In order to instruct the query processor to delegate the
execution to Facade-X, we introduce a speci�c convention for building an
IRI to be used within SERVICE clauses: x-sparql-anything:. The related
URI-schema supports an open-ended set of parameters speci�ed by the
façade implementations available. A minimal example only includes the resource locator, and guesses the data source
type from the �le extension. Options are embedded as key-value pairs, separated by commas. These can incorporate a
set of parameters, to allow the user to con�gure the system (for example, to indicate that the system should consider
the �rst line of a CSV as headers):

1 x-sparql-anything:media-type=text/csv,charset=UTF-8,csv.headers=true,location=...

Figure 5 shows a UML activity diagram describing the interaction between the user, the SPARQL Anything endpoint
and the �le repository. Figure 5 describes, in the form of a UML activity diagram, the work�ow carried out by the
SPARQL Anything endpoint once the SPARQL query is received from the the user. For each query submitted by the
user the endpoint undertakes the following steps:

(i) it analyses the query in order to extract the parameters;
(ii) it uses the the parameters in order to read the source �le(s) (note that queries may involve multiple �les at the

time);
(iii) it transforms the source �le(s) into RDF according to the Facade-X metamodel, the parameters provided in the

query and, possibly, the query itself (cf. the triple �ltering strategy - Section 7.4);
(iv) it evaluates the the query over the RDF version of the �le(s);
(v) it returns the query results to the user.

We now show how to use Facade-X. Following our example scenario, users can select metadata from the CSV �le and
embed the content of the remote JPG thumbnails in RDF. Additional SERVICE clauses may integrate data from other
�les, for example, the JSON �le with details about artwork subjects. The following listing shows a complete example:
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Fig. 4. UML Sequence Diagram
Fig. 5. UML Activity Diagram

1 PREFIX fx: <http://sparql.xyz/facade-x/ns/>

2 PREFIX xyz: <http://sparql.xyz/facade-x/data/>

3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4 PREFIX tate: <http://sparql.xyz/example/tate/>

5 PREFIX tsub: <http://sparql.xyz/example/tate/subject/>

6 PREFIX schema: <http://schema.org/>

7 PREFIX dct: <http://purl.org/dc/terms/>

8 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

9
10 CONSTRUCT {

11 ?artwork a schema:CreativeWork ;

12 dct:subject ?subject ;

13 schema:thumbnailUrl ?thumbnail ;

14 dct:title ?title .

15 ?subject rdfs:label ?subjectName .

16 } WHERE {

17 # List of artworks

18 SERVICE <x-sparql-anything:csv.headers=true,location=./collection/artwork_data.csv> {

19 [] xyz:id ?id ; xyz:accession_number ?accId ;

20 xyz:title ?title; xyz:thumbnailUrl ?thumbnail .

21 }

22 BIND (IRI(CONCAT(STR(tate:), �artwork-�, ?id )) AS ?artwork) .

23 BIND (IRI(CONCAT(STR(tate:), �artist-�, ?artistId )) AS ?artist) .

24 BIND ( IF ( STRSTARTS( ?accId, �AR� ),

25 LCASE(CONCAT( �ar/�, SUBSTR( ?accId ,3 ,3), �/�, ?accId, �-�, ?id , �.json� )),

26 LCASE(CONCAT( SUBSTR( ?accId ,1 , 1), �/�, SUBSTR( ?accId ,2 , 3), �/� , ?accId, �-�, ?id , �.json� ))

27 ) AS ?filepath ) .

28 # JSON file with subjects

29 BIND (IRI(CONCAT(�x-sparql-anything:location=./collection/artworks/�, ?filepath )) AS ?artworkMetadata ) .

30 SERVICE ?artworkMetadata {

31 [ xyz:id ?subjectId ; xyz:name ?subjectName ] } .

32 BIND (IRI(CONCAT(STR(tsub:), STR(?subjectId) )) AS ?subject) .

33 }

The query iterates over a CSV with artworks’ metadata and, for each one, constructs the path to the local JSON �le
containing the artwork subjects. All the data is projected into a CONSTRUCT clause18.

SPARQL Anything relies on the ARQ query engine provided by the Apache Jena framework19 and it is composed of
four components: (i) the FacadeIRIParser, which takes an IRI (complying to the Fadade-X IRI schema), and extracts
the (>?C8>=, E0;D4) pairs contained in it; (ii) the Triplifier that, given a URL of a �le to transform and a set of options,
produces a set of named graphs; (iii) the TriplifierRegister that keeps track of the Triplifers available for the
transformation of source data; and (iv) the FacadeOpExecutor, which extends the ARQ’s operation executor for the

18This is reproducible, along with other example queries on the same data source, at https://github.com/sparql-anything/showcase-tate.
19https://jena.apache.org/index.html
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SERVICE clause in order to implement the approach described in Section 6. SPARQL Anything allows the addition of an
open-ended set of transformers as additional Java classes. At query execution, a query manager intercepts any usage of
the SERVICE operator and, in case the endpoint URI has the x-sparql-anything: scheme, it parses the URI extracting
the resource locator and the set of parameters. Default parameters are: mime-type, locator, namespace (to be used
when de�ning RDF resources), root (to use as the IRI of the root RDF resource, instead of a blank node), and metadata.
SPARQL Anything projects an RDF dataset during query execution, including the data content and optionally a graph
named <facade-x:metadata> including �le metadata extracted from image �les (also in Facade-X). Speci�c formats
may support speci�c parameters. For example, the CSV tripli�er supports an optional parameter to specify whether to
use the �rst row as column names (headers) or rely on column indexes.

We validated the generality of Facade-X as a meta-model with relation to the tripli�ers currently implemented in
SPARQL Anything. The current release (v0.5.1, December 2021) supports the following formats: JSON, HTML, XML, CSV,
BIN, PNG, JPEG, JPG, BMP, TIFF, TIF, ICO TXT, ZIP, Tar, File System, spreadsheets: XLS/XLSx, documents: DOCx, EXIF
Image Metadata, Bibtex, Markdown, and YAML. Currently SPARQL Anything is the only system for KGC supporting
such a variety of formats, and its design principles allow to easily add new types of source data. A collection of examples
with the supported �le formats is also available at the SPARQL Anything project page20.

6.1 Worked example: the IMMA online catalogue

The Horizon 2020 EU SPICE project21 aims at developing a linked data infrastructure for integrating and leveraging
museum collections using multiple ontologies covering sophisticated aspects of citizen engagement initiatives. Museum
collections come in a variety of data objects, spanning from public websites to open data sets in CSV, XML, JSON, or a
combination of these formats. In SPICE, �ve pilot case studies rely on a Linked Data Hub that aggregates resources
from museums, social media, and businesses active in the cultural industry22. However, the majority of cultural heritage
data is not published as Linked Data, and we cannot assume this is going to change anytime soon. E.g., all cultural
heritage institutions involved in the SPICE project do not have an in-house linked data publishing infrastructure. Data
are published on Web sites (HTML), or are released as a mix of CSV, XML, JSON �les.

SPICE research activity also aims at the design of task-oriented ontologies. This implies that there will be multiple
knowledge graphs (semantic viewpoints) built on top of the same resources. In the absence of a strategy to cope with
this diversity of resources and ontologies, the RDF lifting would result in multiple, heterogeneous e�orts, creating a
serious bottleneck.

As an example, we describe how we have used SPARQL Anything to design a knowledge graph of artworks and artists
from the collection website of the Irish Museum of Modern Art (IMMA), one of the key partners in the SPICE project.
The IMMA website includes web pages for each artist and artwork in the catalogue, including images of artworks and
their metadata. For example, the web page of the artist Marina Abramovic includes her birth date and biography23. The
web page also includes a list of the artist’s works from the IMMA catalogue. Each artwork web page includes museums’
collection metadata, including a description, the type of medium used in the work, credit and copyright information,
the catalogue item number, and the o�cial caption of the image report of the work24.

20SPARQL Anything: https://github.com/sparql-anything/sparql.anything.
21https://spice-h2020.eu
22The SPICE Linked Data Hub: http://spice.kmi.open.ac.uk
23https://imma.ie/artists/marina-abramovic/
24E.g. https://imma.ie/collection/freeing-the-memory/
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Our job is to extract this information from the web content, and express it as data shaped according to SPICE
ontologies. In IMMA case, we explored the website and found a web page listing all the artists25. We have then created
a JSON-LD26 �le for each artist or artwork included in the catalogue27. In what follows, ‘fx‘ refers to the following
instruction28:

1 java -jar sparql-anything-0.5.1.jar

The �rst thing to do is to get the list of artists’ web pages, which we will subsequently query with SPARQL Anything to
extract the useful metadata. The following HTML content snippet gives us a clue:

The data we need is included in a div with id az-group. Artists’ web pages are included in an anchor tag (a) within a
list item (li) with a data-image attribute. The anchor tag includes a span tag with an artist nickname, that we could use
to mint artist’s IRI. With this information we can design another SPARQL query:

1 prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 prefix xhtml: <http://www.w3.org/1999/xhtml#>

3 select distinct ?artistUrl ?artistNickname

4 WHERE {

5 SERVICE <x-sparql-anything:media-type=text/html,html.selector=#az-group,location=https://imma.ie/artists/> {

6 [] xhtml:data-image [] ;

7 rdf:_1 [ xhtml:href ?artistUrl ;

8 ?i [ a xhtml:span ; rdf:_1 ?artistNickname ]].} .

9 BIND ( IRI( CONCAT(�https://w3id.org/spice/imma/agent/�, ?artistNickname) ) as ?artistEntity ).}

The query selects the list of artists from the Web page and generates a SPARQL Result Set with two variable bindings:
?artistNickname and ?artistUrl, which we can save to a result set �le:

1 fx -q imma-artists.sparql -o imma-artists.xml -f xml

Next, we focus on the artist web page, and design the query to extract artists’ metadata. Again, we can explore the
HTML to gather some insight on the structure we want to query, mainly the artist name, biography, and the list of
artworks. We can query the artist page following the same approach used for obtaining the list of artists. However,
this time we want to generate a Linked Data object about the artist, de�ning mappings to one or more of the SPICE
ontologies as a CONSTRUCT query. In addition, our query includes two parameters: the artist nickname and artist web
page, since we want to run this against all the artists and generate one �le for each one of them. With the following
command, we extract data from the artists’ Web page and build one JSON-LD �le each, using the previously extracted
list of artists as input:

1 fx -q imma-artist.sparql -i imma-artists.xml -p �artists/?artistNickname.jsonld� -f json

25https://imma.ie/artists/
26JSON-LD is one of the serialisations for RDF knowledge graphs https://json-ld.org/
27The queries and instructions for reproducing the tutorial can be found at http://github.com/sparql-anything/showcase-imma
28The executable JAR can be obtained from https://github.com/SPARQL-Anything/sparql.anything/releases.
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We now have a collection of JSON-LD �les ready to be published into the SPICE Linked Data Hub. However, we want
to follow a similar approach to produce a linked data version of the artworks in the IMMA catalogue. This time we
don’t have a web page listing all the artworks. In this case, SPARQL Anything is used to load a collection of RDF �les,
and run a query against it. Exploiting this feature, we generate a SPARQL Result Set �le listing artwork webpages and
nicknames mentioned in the Artists’ JSON-LD �le generated before:

1 fx -q imma-artworks.sparql -l artists/ -o imma-artworks.xml -f xml

The –l option instructs the tool to load the �les from the given folder in an in-memory RDF dataset. We can reuse the
list of bindings in imma-artworks.xml to run another query, speci�cally designed to extract content from the artwork
web page.The following command extracts data from the artworks’ Web pages, and creates one JSON-LD per �le.

1 fx -q imma-artwork.sparql -i imma-artworks.xml -p �artworks/?artworkNickname.jsonld� -f json

With this command, our work�ow is completed, so that we have been able to create a metadata catalogue as Linked
Data with the sole use of SPARQL Anything. The �les are now ready to be loaded in the SPICE Linked Data Hub.

7 EVALUATION

This Section reports on the multi-dimensional assessment of our approach. We demonstrate that a simpli�ed version of
the Facade-X meta-model is generic enough to represent data complying with any formal grammar (Section 7.1.1) or
data structured according to the relational model (Section 7.1.2). Section 7.1.3 then shows how the Facade-X meta-model
(presented in Section 4) can be instantiated from its simpli�ed version. Next, we present a comparative evaluation of
our approach with respect to state of the art methods which consists of: (i) a quantitative analysis of the cognitive
complexity of the frameworks (Section 7.2); (ii) a performance analysis of the reference implementations with respect
to our naive implementation of the approach (Section 7.3). We also experiment with an alternative implementation of
the approach, namely the triple-�ltering strategy, which shows improvements in performance (Section 7.4). Finally,
we discuss the usability of the system reporting results from a survey questionnaire with the reference community in
Section 7.5.

7.1 Theoretical Evaluation

Section 6 intuitively showed how the Facade-X meta-model maps the selected data formats. This section lays the
theoretical foundation for such an intuition. In the following sections we adopt a simpli�ed notion of container as an
ordered set of values (cf. De�nition 1.929) and we use such notion to demonstrate that a container is able to represent
whatever is generated by a formal grammar (Section 7.1.1), as well as any tuple of the relational database (Section 7.1.2).
Finally, Section 7.1.3 shows how the Facade-X meta-model in Section 4 can be instantiated from a simpli�ed container.

7.1.1 Proving that Facade-X subsumes any file format. Let us start by considering the formal de�nition of Grammar
(De�nition 1.1), Derivation Relation (De�nition 1.2) and Language (De�nition 1.4). The grammar of a certain data format
generates sentences (i.e., �les) containing a sequence of primitive values and delimiters (e.g. comma and carriage return
for CSV). The delimiters (De�nition 1.5) are only meant to structure the content of the �le. In the data engineering
process, these symbols are usually discarded. In light of this consideration, we introduce in De�nition 1.6 the notions of
plain sentence, i.e. a sentence of G, stripped of delimiters, and plain language, i.e. the set of plain sentences that can be

29To improve the readability, some formal de�nitions are provided in the Appendix attached to this paper.
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generated by a grammar G. It is worth noticing that the plain language ù!(⌧) is a set of sequences of values, thereforeù!(⌧) ✓ + ⇤. Listings 1 and 2 show a simple example of a plain sentence derived from a JSON object.

Listing 1. JSON object

{�name�:�Orlando�,

�family name�: �Bloom�}

Listing 2. Plain Sentence

(name, Orlando, family name, Bloom)

We de�ne two common knowledge representation operators, i.e. Projection (see De�nition 1.7) and Rei�cation (see
De�nition 1.8).

A plain sentence may be split into projections according to the logical structure of the format. These projections can
be rei�ed and substituted by the URIs associated with the projections. For example, the plain sentence of the Listing 2
may be split into two (⇧2

1(c) having URI D1 and ⇧4
3(c) having URI D2) projections one for each key/value pair resulting

in the sentence (u1, u2). In order to formalise these ideas, we introduce the notion of container (see De�nition 1.9).
Finally, we introduce the function Dereference (see De�nition 1.10), which substitutes a reference (a URI) within

a container with the container the reference points to, and Dereference* (see De�nition 1.11), which the recursively
applies the dereference function.

For the sake of simplicity, we indicate with ⇡⇤ (⇠) the set obtained by applying the function ⇡⇤ on all the containers,
(⇡⇤ (⇠) = {E 2 + |82 2 ⇠ .E = ⇡⇤ (2)}). Now we can show that any sequence of values generated by a grammar can be
represented as a container.

T������ 7.1. Every sequence of values can be interpreted as a dereferenced container, i.e. + ⇤ ✓ ⇡⇤ (⇠).

P����. Suppose that 9E 2 + ⇤ such that E 8 ⇡⇤ (⇠). Then, according to the de�nition of ⇡⇤, there exists at least one
projection of E that doesn’t belong to the domain of the function R (i.e. 98, 9 .1  8  9  |E |.⇧ 9

8 (E) 8 D('))30. Since
D(') = + ⇤ by de�nition, such projection cannot exist. ⇤

Since + ⇤ subsumes ù!(⌧), we also have that any sentence of a plain language can be represented as a container (i.e.ù!(⌧) ✓ ⇡⇤ (⇠)). Interestingly, no assumptions were made on the structure of the production rules. Therefore, whatever
the grammar generates and whatever meta-model interpretation the façade engineer devises, the content of a �le can
always be represented as a set of containers.

7.1.2 Proving that Facade-X subsumes Relational Model. A Relational Database (RDB) is a collection of named relational
tables where each table is a subset of the cartesian product of the domain of its attributes. Intuitively, an RDB can be
expressed as a collection of containers, one for each tuple stored in the database, where each container is made up of
(i) the name of the table storing the tuple; (ii) the names of the attributes of the tuple; (iii) the values of the tuple. For
example, consider the Restaurant database showed in Table 2 constituted by two relational tables: (i) Customer that
stores the name and tax id of the customers of a restaurant; and (ii) Order that stores the orders of the customers of the
restaurant. The set of containers expressing the database are showed in the Listings 3.

Listing 3. A set of containers expressing the restaurant database.

(Customer, Customer ID, Tax ID, Name, 1, XXX1, Vincent Vega)

(Customer, Customer ID, Tax ID, Name, 2, XXX2, Jules Winnfield)

(Customer, Customer ID, Tax ID, Name, 3, XXX3, Mia Wallace)

30D indicates the domain of a function.
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(Order, Order No, Customer ID, Product, 1, 1, Royale with Cheese)

(Order, Order No, Customer ID, Product, 2, 2, Big Kahuna Burger)

(Order, Order No, Customer ID, Product, 3, 3, Durward Kirby Burger)

(Order, Order No, Customer ID, Product, 4, 3, Five Dollar Milk Shake)

The rest of the section is dedicated to proving that any relational database can be expressed as a collection of
containers. We start with some de�nitions and notations that are basic in database theory (cf. De�nitions 1.12 and 1.13).
Let U be a countably in�nite set of attributes. Every attribute A has an associated set of values �(�), called A’s domain.
A relation scheme '8 is a subset of U. Each relation scheme has a name and we assume that the name is '8 (in other
words '8 is interpreted as a rei�cation of the set of attributes that constitute the relation scheme).

Without loss of generality, we can express each tuple C = (C1 : �1, .., C= : �=) 2 A , where A is a relation over the
scheme '8 = {�1 ..�=}, as the tuple ('8 ,�1, ..,�=, C1, .., C=). It follows that a database 3 can be expressed as a collection
of tuples ' ⇥* ⇤ ⇥ �⇤. If we assume that the set + of values of the containers (cf. De�nition 1.9) subsumes ',* and �,
then each database can be expressed as a collection of containers (since ' ⇥* ⇤ ⇥ �⇤ ✓ + ⇤).

7.1.3 Meta-model interpretation. As already discussed in Section 3, our framework introduces a novel actor in the KG
construction, i.e. the façade engineer. The façade engineer is in charge of designing a façade, interpreting the legacy
formats with respect to that façade, and then, devising a strategy for triplifying the façade-framed data. This section
focuses on the interpretation and tripli�cation activities.

A meta-model interpretation is the act of mapping basic data structures from a format onto a façade meta-model.
The interpretation consists of two activities: containeri�cation and facadi�cation.
Containeri�cation. Containeri�cation uses projection and rei�cation operators to transform a sequence of values into
a set of nested containers. In other words, in order to interpret a sequence of values (i.e. a plain sentence) as a set of
nested containers, the facade engineer uses projection and rei�cation to “group together” a sub-sequence of values, to
create a container out of them, and to associate a URI with the container. By means of these two simple operators, the
façade engineer can frame a plain sentence as a set of containers. It is worth noticing that the decision of what is a
container and how containers are nested is up to the façade engineer, who has a large degree of �exibility for de�ning
the mapping.

We give the intuition of how containeri�cation is supposed to work. Ideally, we associate each projection with the
non-terminal symbol from which it is derived. For example, consider the grammar for JSON available at �les31 and in
the Section 2 of the Appendix. Intuitively, non terminals can be associated with projections (e.g. ⇧2

1 and ⇧4
3 are derived

from member). The façade engineer might decide which non terminals (hence which projections) to turn into containers.

31https://www.json.org/json-en.html

Customer ID Tax ID Name
1 XXX1 Vincent Vega
2 XXX2 Jules Winn�eld
3 XXX3 Mia Wallace

Customer

Order No Customer ID Product
1 1 Royale with Cheese
2 2 Big Kahuna Burger
3 3 Durward Kirby Burger
4 3 Five Dollar Milk Shake

Order

Table 2. Restaurant Database
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Facadi�cation. The facadi�cation is the activity of transforming a set of containers into an instance of Facade-X meta-
model introduced in Section 4. In what follows we refer to such as Facade-X model. Before giving a de�nition of
facadi�cation it is important to observe that Facade-X can be speci�ed by using the rei�cation and projection operators,
for the following reasons: (i) a slot can be de�ned as the rei�cation of a projection of length 1 of a container c; (ii)
names and types are qualities that are attributed to containers via an interpretation of the sequence of values. We can
now provide a de�nition of Facade-X models.

De�nition 7.2 (Facade-X models). A Facade-X model< is de�ned as a tuple (2, B, C,=,⌘B,⌘C,⌘=) where 2 is a set of
URIs identifying containers, B is a set of URIs identifying slots, C is a set of URIs identifying types, = is a set of names, ⌘B
is a subset of hasSlot, ⌘C is a subset of hasType, ⌘= is a subset of hasName. Therefore, the set" of all possible Facade-X
models is:32

" ✓ 2* ⇥ 2* ⇥ 2* ⇥ 2#0<4 ⇥ 2⌘0B(;>C ⇥ 2⌘0B) ~?4 ⇥ 2⌘0B#0<4

Facadify. We introduce the function Facadify to transform a set of pairs (container, non-terminal symbol) into a
Facade-X model.

De�nition 7.3 (Facadify). We de�ne Facadify as a function that takes as input a set of containers and returns a
Facade-X model, that is:

�02038 5 ~ : 2⇠⇥# ! "

The intent of the Facadify function is to interpret the components of the input format as basic data structures and to
instantiate the Facade-X model accordingly. For example, the containers derived from member can be interpreted as
key/value pairs. An example of such transformation is provided in the Listings 4 and 5.

Listing 4. Container-non terminal pairs

2: ((D1, D2), JSON)

D1: ((name, Orlando), member)

D2: ((family name, Bloom), member)

Listing 5. Facade-X model

hasSlot(2, D1)

hasValue(D1, Orlando)

hasSlot(2, D2)

hasValue(D2, Bloom)

hasKey(D1, name)

hasKey(D2, family name)

Listing 6. Triplification of the Facade-

X model

[:name �Orlando� .

:family_name �Bloom�]

Finally, we introduce the function Triplify, which takes as input a Facade-X model and uses a set of RDF constructs:
RDF properties, the predicate rdf:type, and container membership properties, to express sequences (instead of
rdf:List, following the recommendation of [22]).

)A8?;8 5 ~ : " ! 2*⇥*⇥*

An example of tripli�cation is showed in Listing 6.
In this section, we laid the theoretical foundation of the façade-based KGC. We demonstrate that the Facade-X

meta-model is general and �exible enough to specify data with any format described by a grammar. We then specify
KGC in terms of two activities, namely containeri�cation (i.e. the de�nition of rules for generating a set of containers
from a sequence of values) and facadi�cation (i.e. the instantiation of Facade-X from a set of containers). Note that,
although containeri�cation and facadi�cation functions out of a grammar might be automated, we currently assume
that those functions are designed by humans.

322� denotes the powerset of a set�, i.e. the set of all possible subsets of�.
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(a) Number of tokens per query. (b) Number distinct tokens per query.

Fig. 6. Analysis of the number of tokens needed for expressing each competency questions.

7.2 Cognitive Complexity

We present a quantitative analysis on the cognitive complexity of SPARQL Anything, SPARQL Generate, RML and
ShExML frameworks. One e�ective measure of complexity is the number of distinct items or variables that need to
be combined within a query or expression [33]. Such a measure of complexity has previously been used to explain
di�culties in the comprehensibility of Description Logic statements [62]. Speci�cally, we counted the number of tokens
needed for expressing a set of competency questions. We selected four JSON �les from the case studies of the SPICE
project where each �le contains the metadata of artworks of a collection. Each �le is organised as a JSON array containing
a list of JSON objects (one for each artwork). This simple data structure avoids favouring one approach over the others.
Then, an analysis of the schema of the selected resources allowed us to de�ne a set of 12 competency questions (CQs)
that were then speci�ed as SPARQL queries or mapping rules according to the language of each framework, in particular:
(i) 8 CQs (named q1-q8), aimed at retrieving data from the sources, were speci�ed as SELECT queries (according to
SPARQL Anything and SPARQL Generate); (ii) 4 CQs (named q9-q11), meant for transforming the source data to RDF,
were expressed as CONSTRUCT queries (according to SPARQL Anything and SPARQL Generate) or as mapping rules
complying with RML and ShExML. These queries/rules intend to generate a blank node for each artwork and to attach
the artwork’s metadata as dataproperties of the node. Competency questions, queries, experimental data, and code used
for the experiment are available on the GitHub repository of the SPARQL Anything project33. Finally, we tokenized
the queries (by using "(){},;\n\t\r� as token delimiters) and we computed the total number of tokens and the number
of distinct tokens needed for each queries. By observing the average number of tokens (cf. Figure 6a) per query we
can conclude that RML is very verbose (109.75 tokens) with respect to SPARQL Anything (26.25 tokens) and SPARQL
Generate (30.75 tokens) whose verbosity is similar (they di�er of the ⇠6.5%), and ShExML which required 54.75 tokens
on average. However, the average number of distinct tokens (cf. Figure 6b) per query shows that SPARQL Anything
requires less cognitive load than other frameworks. In fact, while SPARQL Anything required 18.25 distinct tokens,
SPARQL Generate needed 25.5 distinct tokens (⇠39.72% more), RML 45.25 distinct tokens (⇠150% more) and ShExML
49.25 (⇠168% more).

33https://github.com/SPARQL-Anything/experiments
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(a) Execution time per query (maximum value 5000ms). (b) Execution time with increasing input size.

Fig. 7. Analysis of the the execution time.

7.3 Performance and scalability

We conduct a comparative performance analysis of the reference implementations of SPARQL Anything, RML, SPARQL
Generate and ShExML. Speci�cally, we assess the performance of the four frameworks in generating RDF data. All
of the tests described below were run three times and the average time among the three executions is reported. For
practical reasons, for each test we set a 3 minutes timeout. The tests were executed on a MacBook Pro 2020 (CPU: i7
2.3 GHz, RAM: 32GB). Figure 7a shows the time needed for evaluating the SELECT queries q1-q8 and for generating
the RDF triples according to the CONSTRUCT queries/mapping rules q9-q12. SPARQL Anything, RML and SPARQL
Generate frameworks have comparable performance, while it is clear that the time needed for evaluating ShExML
mappings was signi�cantly higher (that is it exceeded the timeout) than the other cases.

We also measured the performance in transforming input of increasing size. To do so, we repeatedly concatenated
the data sources in order to obtain a JSON array containing 1M JSON objects and we cut this array at length 10, 100, 1K,
10K and 100K. We ran the query/mapping q12 on these �les and we measured the execution time shown in Figure 7b.
For all input sizes, ShExML performance are signi�cantly worse than others and for inputs greater than 1K the reference
implementation needed more than 3 minutes. Moreover, we observe that for inputs with size smaller than 100K the
other three frameworks have equivalent performance. With larger inputs, SPARQL Anything is slightly slower than
SPARQL Generate and RML. The reason is that, in our naive implementation, the data source is completely transformed
and loaded into a RDF dataset in-memory, before the query is evaluated. However, Section 7.4 presents our experiments
with di�erent implementations showing improvements of performance.

7.4 Experiments with a triple-filtering approach

In this Section, we experiment with an alternative strategy to the one of transforming the whole content before query
execution, which we call triple-�ltering. This approach inspects the SPARQL Anything query and only transforms
the parts of the data matching any of the triple patterns included. We select two queries from the evaluation setting
previously introduced. The �rst is focused on querying an open data �le in SPARQL (Scenario 1). The second, on
building a knowledge graph from legacy data (Scenario 2).
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We perform experiments comparing two execution strategies: naive, and triple-�ltering. Experiments are performed
on a Macbook pro with Java 14 and the default settings (no changes to the default heap size). We run each experiment
three times and report the average execution time and standard deviation. We discuss the scenarios and the results.
Scenario 1. Querying an open data collection as single JSON �le. A JSON �le with collection metadata is queried directly
in SPARQL. We designed three SELECT queries. The �rst query, selects all titles of artworks from author "GABINIO
MARIO". The value is directly inserted into a triple pattern which is joined with another, used to select the title:

1 ?s xyz:Autore �GABINIO MARIO� ; xyz:Titolo ?titolo .

The second query, selects all the techniqueswhich are described as "STAMPAALLAGELATINABROMUROD’ARGENTO
CAMOSCIO" and returns a distinct list of values:

1 ?s xyz:Tecnica ?t . FILTER(REGEX(?t,�.*STAMPA ALLA GELATINA BROMURO D�ARGENTO.*�,�i�))

The third query selects the artworks having a date matching a given expression (for example, ".*1925 ca..*"):

1 ?s xyz:Datazione ?date ; xyz:Titolo ?titolo . FILTER(REGEX(?date,�.*30/09/1926.*�,�i�))

We execute the three queries with JSON documents of increasing size, from 10 to 1000000 items. Results are reported in
Figure 8a. Improvement in the performance occurred in all the three cases, saving up to -70% of the time (�rst query
with 1M of collection items).
Scenario 2. Building a knowledge graph of artworks from a open data repository. In this scenario we produce a KG from
the Open Data of the Tate Callery collection34. The data include two CSV �les with artists’ and artworks’ metadata. The
latter references a collection of 69202 JSON �les, containing additional metadata such as a hierarchy of subjects. Not all
of the data are needed for the mappings. We report the execution of three CONSTRUCT queries35. Results are reported
in Figure 8b. The �rst (Artists) joins the two CSV and produces a KG of artists’ metadata linked to their collection of
artworks (our method saves 43% of the time). The second (Artworks) selects only the artworks and artists names from
the artworks CSV (our method saves 47% of the time). The third (Artworks-s) extracts basic metadata about artworks
and, for each one of them, queries the JSON �le for extracting the list of subjects (our method saves 14% of the time).
This last query accesses the CSV �le and all the referenced artworks’ JSON �les, meaning that most of the time is spent
in I/O operations on the �le system.

A triple-�ltering approach may help in reducing the load on the system. However, this will depend on the type of
query designed, and on the selectivity of its triple patterns. Future optimisations may inspect other components of
the query, such as FILTER statements. Crucially, we have shown how the performance of a system implementing our
façade-based approach can be improved even with a simple optimisation strategy like the triple-�ltering one, which we
implemented in our proof-of-concept system SPARQL Anything.

7.5 Community engagement

In order to add an empirical element to the multi-facated evaluation of the approach, we developed an online survey.
The role of the survey was: (i) to validate empirically the design requirements used for de�ning the approach and (ii) to
gain feedback on the usability of the notation. The survey is available at36. Target survey participants were Semantic

34https://github.com/tategallery
35The queries can be found in the additional material to this submission.
36https://forms.gle/nsdm8vsXz2o81CQ56
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(a) Scenario 1 (b) Scenario 2

Fig. 8. The x axis reports the size of the collection, while the y axis the execution time in seconds. The first query is in blue bars, the
second green, and the third red. The marked bars refer to the triple-filtering method.

Web practitioners, SPARQL developers/users and Master Students learning advanced Semantic Web technologies. The
survey was open for 1 week and 27 completed responses were received.

Fig. 9. We asked users about the usability of three notations: (a) RML, (b)
SPARQL Generate, and (c) SPARQL Anything.

The �rst set of questions were concerned
with the participants’ expertise and experi-
ence. 37% needed to transform non-RDF re-
sources into RDF either frequently or very
frequently. 33.3% performed this task rarely
or never. 37% rated their expertise in trans-
forming data into RDF as high or very high.
29% rated their expertise as low and 7.4% as
none. 14.8% of participants had contributed
to published and/or distributed tools for the transformation of non-RDF resources. Participants were asked which tools
they used for data transformation. 62.9% at least occasionally used program speci�c code for transformations. 22.2%
used RML at least occasionally. 22.2% used SPARQL Generate at least occasionally. 25.9% at least occasionally used other
tools such as morph-RDB, Topbraid Composer, RDFlib and ARC2. Participants were asked of their use of, and expertise
in, SPARQL 1.1. 51.8% used SPARQL 1.1 frequently or very frequently. 33.3% rated their expertise in SPARQL 1.1 as high
or very high. 37% rated their expertise as low. Overall, this is a su�ciently diverse range of user types, re�ecting the
target audience of our solution.

The second set of questions were concerned with the desirable usability characteristics of systems for transforming
non-RDF resources into RDF. 51.8% considered it very important or essential that the system should minimise
the languages or syntaxes needed. 66.6% considered it very important or essential that the mappings should be
easy to read and interpret. 70.3% considered it very important or essential that the systemmust be easy to learn
for a Semantic Web practitioner. Participants were asked how important is it that the system is able to support new
types of data sources without changes to the mapping language. 7.4% considered this essential, 48.1% as very
important and 44.4% as moderately important. These results highlight the value-to-users of some founding assumptions
of our system design. 25.9% considered it very important or essential to support complex manipulations within a single
mapping �le. 40.7% considered it very important or essential to support mappings to multiple data sources within
the same mapping �le. 40.7% considered it very important to enable data source exploration without committing to a
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mapping. This feedback can be interpreted by considering the iterative and incremental nature of the user activity,
typically performed as trial-and-error.

The third set of questions asked participants about the size and nature of the data sources they worked with when
transforming data. 18.5% worked with �les of less than 10MB. 48.1% worked with �les between 10MB and 100MB. 14.8%
worked with �les between 100MB and 1GB. 18.5% worked with �les of more than 1GB. 33% transformed the data �le
into less than 1 million triples. 25.9% generated between 1 and 10 million triples. 18.5% generated between 100 and
10 million triples. 22.2% generated more than 100 million triples. This feedback stresses the importance of scalability,
performance, and e�ciency.

Participants were asked whether they transformed all or part of a resource. 11.1% always transformed part of the
resource, 3.7% always transformed all of it. The remaining 85.1% transformed all or part of the resource depending
on context. Reasons for transforming part of a resource included the desire to ignore particular �elds, or to split and
incrementally transform a larger resource. This con�rms the importance of supporting composite pipelines, combining
multiple queries, and to develop strategies which �lters the data source to �t only the triples needed (as in our current
implementation).

The �nal set of questions compared the usability of three notations for transforming non-RDF data: RML,
SPARQL Generate and SPARQL Anything. Participants were presented with a JSON �le containing 6 metadata properties
of two di�erent artwork images. Participants were then presented with the RML, SPARQL Generate and SPARQL
Anything notations required to transform the �le. For each notation, the participant rated its di�cultly level and
provided an explanation for their rating. 7.4% rated the RML code as very easy, 22.2% as easy, 29.6% as neutral and
40.7% as di�cult. In explanation, 18.5% found the RML syntax straightforward when used in combination with the
JSON �le structure. 37% commented that RML would become easier to use with greater familiarity. 22% stated that
they found the syntax verbose. 14.8% rated the SPARQL Generate code as very easy, 40.7% as easy, 29.6% as neutral
and 14.8% as di�cult. In explanation, 25.9% distinguished the GENERATE and ITERATOR sections of the code, with
14.8% explicitly stating that the GENERATE section was easier to understand. 33.3% commented that SPARQL Generate
would become easier to understand with familiarity. 14.8% stated that SPARQL Generate was concise, 18.5% that it
was intuitive. 29.6% rated the SPARQL Anything code as very easy, 63% as easy, 3.7% as neutral and 3.7% as
di�cult. In explanation, 29.6% commented on the simplicity of mapping JSON to RDF in the WHERE clause. 37%
commented on how only standard SPARQL features were required. 11.1% described the notation as concise. This verdict
is summarised in Figure 9.

8 RELATEDWORK

We consider related work in end-user development, approaches to extend the SPARQL language, and methods for
Semantic Lifting.

8.1 End-user development

Motivation for our work resides in research on end-user development and human interaction with data. End-user
development is de�ned by [43] as "methods, techniques, and tools that allow users of software systems, who are acting
as non-professional software developers, at some point to create, modify or extend a software artefact". Many end-user
development tasks are concerned with the use of software to manipulate data. End-user development initially focused
on the use of spreadsheets and related tools but has more recently evolved to encompass sending, receiving and
manipulating data from web APIs, IoT devices and robots [52]. Unlike professional software development, end-user
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development involves the construction of software for personal rather that public use [39] in order to carry out
professional activities. Many SPARQL users fall into the category of end-user developer. In a survey of SPARQL
users, [61] found that although 58% came from the computer science and IT domain, other SPARQL users came from
non-IT areas, including social sciences and the humanities, business and economics, and biomedical, engineering
or physical sciences. Findings in this area [51] suggest that the data with which users work is more often primarily
list-based and/or hierarchical rather than tabular. For example, [14] proposes an extension to spreadsheets to explicitly
support hierarchical data and [34] proposes an alternative formulation to spreadsheets in which data is represented
as list-of-lists, rather than tables. Therefore, our proposal goes in this direction and accounts for recent �ndings in
end-user development research.

8.2 Approaches to extend SPARQL

We survey approaches to extend SPARQL. A standard method for extending SPARQL is by providing custom functions
to be used in FILTER or BIND operators37. Query processing engines can extend SPARQL by using so-called magic
properties. This approach de�nes custom predicates to be used for instructing speci�c behaviour at query execution38.
SPARQL Generate [42] introduces a novel approach for performing data transformation from heterogeneous sources into
RDF by extending the SPARQL syntax with a new GENERATE operator [42]. The method introduces two more operators,
SOURCE and ITERATOR. Custom functions perform ad-hoc operations on the supported formats, for example, relying
on XPath or JSONPath. However, there are also approaches to extend SPARQL without changes to the standard syntax.
For example, BASIL [24] allows to de�ne parametric queries by enforcing a convention in SPARQL variable names.
SPARQL Anything reuses BASIL variables to support parametric queries and �le names. SPARQL Micro-service [46]
provides a framework that, on the basis of API mapping speci�cation, wraps web APIs in SPARQL endpoints and uses
JSON-LD pro�le to translate the JSON responses of the API into RDF. In this paper, we follow a similar, minimalist
approach and extend SPARQL by overriding the behaviour of the SERVICE operator.

8.3 Semantic Li�ing

We now discuss approaches to Semantic Lifting from the user standpoint. In general, Semantic Lifting refers to the task
of transforming non-RDF resources into RDF. We can classify approaches to Semantic lifting into format-based and
ontology-based.

8.3.1 Format-based li�ing. In the format-based lifting the transformation depends solely on the input format.
In [50], the process focuses on re-engineering the meta-model, described as an ontology and a set of transformation

rules, to obtain an RDF dataset which will be in turn refactored to the end product, domain-oriented dataset. While
the abstraction proposed is similar to what we do in Facade-X, it requires a di�erent ontology for each source format.
Facade-X provides an additional abstraction step with containeri�cation and facadi�cation, making the approach fully
operational and query-driven.

37ARQ provides a library of custom functions for supporting aggregates such as computing a standard deviation of a collection of values. ARQ
functions: https://jena.apache.org/documentation/query/extension.html (accessed 15/12/2020).

38For example, this allows the speci�cation of complex fulltext searches over literal values. Query processors can delegate execution to a fulltext
engine (e.g. Lucene) and return a collection of query solutions as triple patterns
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Several tools are available for automatically transforming data sources of several formats into RDF (Any2339,
JSON2RDF40, CSV2RDF41 to name a few). While these tools have a similar goal (i.e. enabling the user to access the
content of a data source as if it was in RDF), the (meta)model used for generating the RDF data highly depends on the
input format, thus limiting the homogeneity of data generated from heterogeneous data formats. In addition, none of
those approaches are based on a common abstraction from heterogeneous formats.

8.3.2 Ontology-based li�ing. Ontology-based lifting refers to the process of taking one or multiple existing resources
and accessing them through the mediation of a conceptual view formalised by a domain ontology, i.e. Ontology-based
Data Access (OBDA), or transforming them into a single Knowledge Graph that complies with a target ontology, i.e.
Ontology-based Knowledge Graph Construction (OBKGC). Although this distinction might seem rather strained (as
tools often belong to both categories), identifying these two classes allows us to distinguish di�erent lines of research
studying strategies for accessing the ontology-based resource. While research in OBDA typically concerns the study
of virtualisation approaches that rewrite queries over the ontology into queries over the sources, OBKGC concerns
the study of strategies that materialise the knowledge graph before evaluating the query. Both perspectives are based
on the assumptions that (1) there is a known target ontology to be used as a reference model for transforming both
schema and data; (2) the source format has its own query language; (3) there exists a declarative mapping between the
data sources and the target ontology. Crucially, these three conditions are not always satis�ed in all the ontology-based
lifting problem instances. If the target ontology is not available, a Semantic Web practitioner has to invest considerable
e�ort in developing a model for the target domain. If the source format doesn’t have its own query language, the
practitioner has to fall back to a format-based lifting strategy. If the mapping is not available, a practitioner is expected
to develop it by analysing the input data sources. To this end, mapping languages typically incorporate format-speci�c
query languages (e.g. XPath), and require the practitioner to have deep knowledge of both the input data model, and
the standard methods used for its processing.

We now give an overview of the main languages for mapping data and prominent approaches to OBDA and OBKGC.
Mapping languages for OBDA and OBKGC. Mapping languages for transforming heterogeneous �les into RDF

are represented by RML [27], also specialised to support data cleaning operations [60], and speci�c forms of data:
relational [57], geospatial data [41], etc. RML has been adopted as reference mapping language in most of the OBDA and
KGC systems. Authors of a recent alternative to RML, based on ShExML [31], stress the importance of making mappings
usable by end users. Indeed, recent work acknowledges how these languages are built with machine-processability in
mind [36], and how de�ning or even understanding the rules is not trivial to users.

SPARQLAnything goes beyond current approaches and aims at equipping SPARQL userswith the simplest assumption
on how to deal with heterogeneous resources. In addition, mapping tools such as the ones based on RML can only
be used for formats that can be easily interpreted as collections of items (CSV), or that can have an accompanying
query language to be injected in the declarative rules, acting as selector of items to transform (e.g. JSON, XML). In
the remaining cases (e.g. YAML, Markdown, Bibtex), one needs to write ad-hoc code where the mappings are both
represented and enforced at the same time.

Ontology-based data access.Ontology-based Data Access (OBDA) [53] refers to the problem of accessing (i.e. querying)
one or multiple existing data sources through the mediation of a conceptual view formalised by a target ontology. In

39http://any23.apache.org/
40https://github.com/AtomGraph/JSON2RDF
41http://clarkparsia.github.io/csv2rdf/
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the OBDA framework, data sources and target ontology are linked together by a declarative mapping (e.g in RML) and
queries to the data sources can be expressed in terms of the target ontologies.

Although the OBDA paradigm has been also applied over document-based databases [9, 45] and CSV �les [15], most
of the existing approaches focus on providing access to relational database and optimising algorithms for translating
SPARQL queries into SQL queries (refer to Xiao et al. [64] for a complete overview). The �rst algorithm was essentially
based on backward chaining [12], but the query produced were extremely large for execution by DBMSs. Optimisation
to the algorithm were then investigated by Mora and Corcho [47]. Alternative approaches require to rewrite the query
by means of unfolding (i.e. substituting ontology terms of the query with with the terms of the source schema according
to the mapping) [13, 32, 40, 58].

Besides the query rewriting algorithm, research in OBDA has been dedicated to implementing the approach with the
standard web technologies, e.g. SPARQL. SPARQL is de-facto the standard query language of the OBDA paradigm. Xiao
et al. [65] proposed a method to translate a large part of SPARQL into SQL. A recent approach [8] applies OBDA to run
SPARQL on any type of Web resources, with a sophisticated set of mappings supporting an intermediate query service.

Currently, SPARQL Anything supports only static �les and implements a materialisation strategy for evaluating
queries. Future work includes supporting a connection to relational databases, for example by relying on engines
implementing the W3C Direct Mapping recommendation [55] for relational databases. To do this, we aim at reusing
recent research in OBDA (e.g. [59]) to develop optimised query-rewriting strategies from Facade-X to the underlying
relational model, on demand, without asking users to engage with the mappings. We plan to implement di�erent
methods, including experimenting with alternative back-end engines.

Ontology-based Knowledge Graph Construction. Ontology-based Knowledge Graph Construction (OBKGC) is the
task of extracting data from the sources and transforming it into a Knowledge Graph which complies with a target
ontology. This problem is typically addressed by designing ad-hoc mappings (mainly in R2RML [1] or RML [27]
languages) between sources and target ontology. Multiple interpreters of such mappings are available: Ontop [11]
and Morph-RDB [54] (which provide both a virtualisation and materialisation mode), SDM-RDFizer [38] to name a
few. Although they allow better transparency maintainability of the data transformation pipelines, designing and
maintaining such mappings constitute a signi�cant bottleneck for data managers. In fact, data managers are required
to inspect the data sources and express the mapping according to the speci�city of each source format. Moreover,
this approach is limited to formats for which a declarative query language is available. Instead, our approach aims at
reducing the e�ort of Semantic Web practitioners in dealing with heterogeneous data sources by providing a generic,
domain-independent meta-model to wrap the original resource and to make it query-able by KG engineers (even if a
query language is not available for the source format).

9 DISCUSSION, LIMITATIONS, AND FUTUREWORK

In this Section we discuss challenges introduced by our approach and sketch directions for future work.
The method generates an RDF view of the source data by applying the minimal possible ontological commitment. We

focused our evaluation on theoretical aspects of the approach, demonstrating that it can robustly represent data sources
at the meta-model level (not considering the speci�city of the domain model). It is worth noticing that the theoretical
evaluation also proves that the façade-based conversion is accurate and lossless (i.e. all the data records speci�ed in
any source format is ported to RDF). Although this enables software engineers to seamlessly map data formats into
RDF, one should note that applications based on knowledge graphs typically makes use of highly expressive domain
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models. Nevertheless, our approach can open new opportunities for automatic generation of domain ontologies from
structurally homogeneous RDF data.

Speci�cally, how could we provide better support for the generation of expressive OWL ontologies? Currently, the
façade is designed through a selection of structural design patterns that enable mapping of an open-ended set of formats
onto a set of RDF components. Although Façade-X already interprets some structural design patterns of certain formats
(e.g. XML, Word Processing Documents, Markdown, Bibtex) as semantic classes, the mapping mainly involves syntactic
features of the input formats. However, we claim that the mapping may make a stronger commitment on the semantic
of the containers. To this end, we are considering to extend Façade-X with OWL’s class expressions so as to enable a
formal speci�cation of the semantic of a container. For example, consider the container of the Listing 6. Even if we
don’t know the explicit name of the class the container belongs to, we can specify the conditions on the individuals’
properties of the instances of this class, i.e. the class of individuals having a :name and a :family_name. This class can
be anonymously expressed in OWL2 by the following axiom (speci�ed in Manchester syntax42) and be used to give a
type to the container

(:name some rdfs:Literal) and (:family_name some rdfs:Literal)

Such descriptions enrich the RDF transformation of the input sources and may assist Semantic Web practitioners in the
tasks of KG exploration, KG understanding and ontology alignment.

We presented our method as a suitable solution for an open-ended, unlimited set of formats. For example, the proposed
method enables knowledge engineers to embed unstructured content (e.g. Text and Binary �les) into multi-modal KGs.
However, the method is not su�cient alone for solving complex knowledge extraction (KE) tasks from unstructured
resources. Therefore, we plan to study how highly expressive KE methods could be combined with our approach.
Possible directions include the extension of the meta-model to cover novel structural design patterns that may emerge
from task-speci�c format, such as: Abstract Meaning Representation (AMR) [7] or Linguistic frames [6, 29, 49] for
natural language resources, annotation formats such as COCO [16] and YOLO [56] to support visually intelligent
applications [17], or JAMS [37] to leverage Music Information Retrieval (MIR) systems for publishing musical content
on the Web as linked data [25].

We demonstrate comparable performance to state-of-the-art tools with a basic in-memory transformation approach.
The implementation leans on mature software libraries that guarantee a reliable low-level access to the data sources.
As a result, the transformation will fail only in case of malformed data sources. However, performance can become
problematic on very large data sets, and either hit memory limits or take too much time to complete. Our survey has
also highlighted the importance of being able to deal with very large data sources. Therefore, the current version of
SPARQL Anything implements a strategy for reducing the amount of triples loaded in memory, by �ltering only triples
matching at least one of the triple patterns in the query. Future work includes research on query-rewriting approaches
to stream the data, similarly to the internal machinery of SPARQL Generate, to reduce the memory needs.

We have reported very positive feedback from potential adopters via a community engagement questionnaire. We
plan to further verify those results in a thorough usability study, currently under development, also aiming at identifying
cognitive di�culties and strategies in the design of the mappings with SPARQL Anything, compared to those needed
with alternative solutions.

42https://www.w3.org/TR/owl2-manchester-syntax/
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10 CONCLUSIONS

In this article, we have proposed a novel, uni�ed method to access heterogeneous data sources on the Web, in order to
streamline Knowledge Graph Construction (KGC). We base our method on an intermediate façade, called Facade-X,
which allows indirect access to an open ended set of formats (reengineering source data), and on the design of mappings
between two RDF structures in plain SPARQL: a Facade-X view of the source data, and the intended target ontology (re-
modelling source data). We have presented an implementation of our approach in a system called SPARQL Anything [3],
available as an open-source project. To the best of our knowledge, there is no other system for KGC that supports a
comparable range of �le formats, including non-trivial ones such as Word processors and Markdown �les. Next, we aim
at implementing connectors to relational databases and no-SQL databases such as MongoDB. We have evaluated our
implemented method from three perspectives. In a theoretical evaluation, we have demonstrated how our approach is
powerful enough to support transformation of any serialised data model expressible in a BNF syntax. We have also
demonstrated that the relational model can also be subsumed by Facade-X. In an experimental evaluation, we show how
our uni�ed approach is practically valuable, sustainable, and with comparable performance to state-of-the-art tools.
Finally, we have reported very positive feedback from potential adopters via a community engagement questionnaire.
Our work sketches the basis for a broader research agenda on knowledge graph integration strategies based on RDF
façades.
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APPENDIX

1 FORMAL DEFINITIONS

De�nition 1.1 (Grammar). A grammar G is de�ned as the tuple ⌧ = (# , ⌃, %, () where:

• # is a �nite set of non terminal symbols;
• ⌃ is a �nite set of terminal symbols;
• % is a �nite set of production rules, each rule of the form (⌃ [ # )⇤# (⌃ [ # )⇤ ! (⌃ [ # )⇤;
• ( is a distinguished start symbol ( 2 # .

De�nition 1.2 (Derivation Relation). Given a grammar G, we de�ne the relation )
⌧

(pronounced G derives in one
step) as follows

G )
⌧

~ () 9D, E, ?,@ 2 (⌃ [ # )⇤ | (G = D?E) ^ (? ! @ 2 %) ^ (~ = D@E)

Given a grammar G, we de�ne the relation
⇤

=)
⌧

(or
⇤) shortly) (pronounced G derives in zero or more steps) as the

re�exive transitive closure of)
⌧
.

De�nition 1.3 (Sentence). A sentence s is any sequence of non terminal symbols of a grammar G, i.e. B 2 ⌃⇤
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De�nition 1.4 (Language). Given a grammar G, we de�ne the language of G, denoted !(⌧) as all the sentences B that
can be derived in a �nite number of steps from the start symbol ( , that is !(⌧) = {B 2 ⌃⇤ |(

⇤
=)
⌧
B}.

De�nition 1.5 (Delimiters). Given a data format F whose syntax is de�ned by the grammar G, we de�ne ⌃� as the set
of delimiters.

De�nition 1.6 (Plain Language). Given a data format F whose syntax is de�ned by the grammar G, we de�ne:

• e⌃ is the set of value symbols, i.e. e⌃ := ⌃ \ ⌃� ;
• + is the set of all possible values that can be derived from G, that is + := {E 2 e⌃⇤};
• Given a sentence B derived from a grammar G, a plain sentence is obtained by removing the delimiters from B , i.e.
B̃ = (E1 ...E=) 2 + ⇤ ;

• ù!(⌧) is the set of all the plain sentences that can be derived from G, that is: ù!(⌧) := {B̃ 2 + ⇤ |(
⇤

=)
⌧
F}

De�nition 1.7 (Projection). Given a sentence B = (E1 ...E; ) of length l, two integers 1  8  ; and 8  9  ; , we de�ne
the projection onto 8, 9 (written ⇧ 9

8 (B)) as the sub-sentence ⇧
9
8 (B) = (E8 ...E 9 ).

De�nition 1.8 (Rei�cation). A Rei�cation is de�ned as a function ' that associates every tuple to a URI, that is
' : + ⇤ ! * where* denotes the set of all URIs.

De�nition 1.9 (Container). A container is a tuple whose elements are either values or URIs, that is ⇠ ✓ (* [+ )⇤,
where C encloses all the containers.

De�nition 1.10 (Dereference). We de�ne dereference as the function (⇡ : ⇠ ⇥ N ! ⇠) that given a container (2 =

(E1 ...E=) 2 ⇠) and an integer 1  8  |2 |, returns a tuple in which E8 is replaced with '� (E8 ), i.e.⇡ (2, 8) = (E1 ..'� (E8 )..E=).

De�nition 1.11 (Dereference*). We de�ne ⇡⇤ as the function (⇡⇤ : ⇠ ! + ⇤) that given a container (2 = (E1 ...E=) 2 ⇠)
returns, by recursively applying the dereference function, a tuple whose elements are only values.

De�nition 1.12 (Database scheme). A database scheme is de�ned as the tuple ⇡ = (',* ,�) where:

• * ✓ U is a �nite subset of attributes;
• � is the union of the domains of all the attributes, i.e. � =

–
�2* �(�);

• R is a collection of relations '8 over U.

De�nition 1.13 (Tuple, Relation and Database). Let ⇡ = (',* ,�) be a database scheme, '8 2 ' a relation scheme and
X a subset of U. We de�ne:

• X-tuple is a mapping from X to � such that each � 2 - is mapped to an element �(�);
• A relation r over '8 is a �nite set of tuple R-tuple;
• A relational database d over D is a set of relations.
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2 JSON GRAMMAR
JSON -> element

value -> object|array|string|number|�true�|�false�|null

object -> �{� white-spaces �}� | �{� members �}�

members -> member | member �,� members

member -> white-spaces string white-spaces �:� element

array -> �[� white-spaces �]� | �[� elements �]�

elements -> element | element �,� elements

element -> white-spaces value white-spaces
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