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We consider linear spectral statistics built from the block-normalized correlation matrix
of a set of M mutually independent scalar time series. This matrix is composed of
M x M blocks that contain the sample cross correlation between pairs of time series. In
particular, each block has size L X L and contains the sample cross-correlation measured
at L consecutive time lags between each pair of time series. Let N denote the total
number of consecutively observed windows that are used to estimate these correlation
matrices. We analyze the asymptotic regime where M,L, N — +4o0o while ML/N —
cx, 0 < ¢y < 00. We study the behavior of linear statistics of the eigenvalues of this
block correlation matrix under these asymptotic conditions and show that the empirical
eigenvalue distribution converges to a Marcenko-Pastur distribution. Our results are
potentially useful in order to address the problem of testing whether a large number of
time series are uncorrelated or not.
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1. Introduction
1.1. Problem addressed and motivation

We consider a set of M jointly stationary zero mean complex-valued scalar time
series, denoted as Y1 n, - - ., Ym,n, where n € Z. We assume that the joint distribution
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of ((Ym,n)nez)p—1... ar i8 the circularly symmetric complex Gaussian lawf]. In this
paper, we study the behaviour of linear statistics of the eigenvalues of a certain large
random matrix built from the available data when the M time series (Ym )m=1,... M
are uncorrelated (i.e. independent), assuming that both the number of available
samples and the number of series are large. Our results are potentially useful in
order to address the problem of testing whether a large number of time series are
uncorrelated or not.

In order to introduce the large random matrix models that we will address in
the following, we consider a column vector gathering L consecutive observations of
the mth time series starting at time n, namely

L T
Yman = [ym,na R ym,n-i-L—l]

and from this build an M L-dimensional column vector

T
vE= [t k)]

We will denote by Ry the ML x ML covariance matrix of this random vector,
ie. Rp = E [y,Ll (yﬁ)H] where (-)¥ stands for transpose conjugate. This matrix

is sometimes referred to as the spatio-temporal covariance matrix. Clearly, the M
series (Ym )m=1,...,m are uncorrelated, to be referred to as the hypothesis Hy in the
following, if and only if, for each integer L, matrix R, is block-diagonal, namely

RL = Bdiag (RL)

where, for an ML x ML matrix A, Bdiag (A) is the block-diagonal matrix of the
same dimension whose L x L blocks are those of A. We notice that the L x L diagonal
blocks of Bdiag (R ) are the L x L Toeplitz matrices Ry, ,, m = 1,..., M, defined
by

{Rm,L}k7k/ =Tm (k - kl) . (11)
Here, r,, (k), k € Z, is the covariance sequence of the mth time series, defined as

o () = /O S (v) 2TVR (1.2)

where, for each m, S, represents the spectral density of (Y n)nez. We will denote
by Recorr,1, the block correlation matrix defined by

—-1/2 —-1/2
Reorn = By *ReBLY (1.3)
where
BL = Bd1ag(RL)
1Any finite linear combination z = %:1 ijl @jYm,n; of the random variables

((Ym,n)nez)m=1,...,m is distributed according to the distribution Ng(0,62), i.e. Rez and Imz
are independent and A (0,§2/2) distributed, where 62 > 0 is the corresponding variance
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Consequently, R, is block diagonal for each L if and only if Reorr,r, = Inr for each
L.

A possible way to test whether the time series (Y, )m=1,...,m are uncorrelated
thus consists in estimating Rcorr,z for a suitable value of L, and subsequently com-
paring the corresponding estimate with I;r,. We will assume from now on that,
for each m =1,..., M, the observations ym, 1, ..., Ym,N+L—1 are available where NV
represents the number of observations that are averaged to build the test statistic
for each time lag. In the following, we consider the standard sample estimate ﬁcom L

defined by
7/?\rcorr,L = B\ZI/QﬁLB\Zl/2 (14)
where ﬁL is the empirical spatio-temporal covariance matrix given by
1 & H
5 _ L (L
Ri= 5 Yok (%) (15)
and where B 1, is the corresponding block diagonal
ﬁl,L
By, = Bdiag(Ry) = . (1.6)

Rwm,r

with ﬁm,L, m =1,..., M, denoting the corresponding L x L diagonal blocks. The
expression ([LH]) of R 1. explains why we assume that N+ L —1 samples are available,
because if the sample size had been defined as N, ﬁL should have been defined
by 7€L = ﬁ Zg:_lL yE (y,LL)H7 which would have complicated the notations. In
any case, in the asymptotic regime considered in the paper, the ratio % converges
towards 0. Therefore, the actual sample size N+ L—1 can be written as N(140(1)).
Changing N with N+ L —1 does therefore not modify the significance of the results

of this paper.

Remark 1.1. A relevant question here is how to choose the lag parameter L.
On the one hand, L should be sufficiently large, because this allows to identify
correlations among samples in different time series that are well spaced in time. For
instance, two time series chosen as copies of the same temporally white noise with a
relative delay higher than L lags will be perceived as uncorrelated by examination
of ﬁcom 1, which is of course far from true. On the other hand, L should be chosen
sufficiently low so that M L/N < 1 in order to make the estimation error ||7€C(m7 L—
Ips1| reasonably low under the hypothesis Hy. If the number M of time series
is large and that the number of observations N is not unlimited, the condition
ML/N < 1 requires the selection of a small value for L. Such a choice may thus
reduce drastically the efficiency of the uncorrelation tests based on ||7€C(m7 L—Imrl.
Finding statistics having a well defined behaviour under Hy when ML and N are
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of the same order of magnitude would allow to consider larger values of L, thus
improving the performance of the corresponding tests.

In this paper, we propose to study the behavior of spectral statistics built from
the eigenvalues of Reorr, 1., which will be denoted by (Mg, n)k=1,... M. More specifi-
cally, we will consider statistics of the for

R 1 R | ML
N = mTK {¢ (Rcorr,L)} =L I;¢ ()\k,N) (1.7)

where ¢ is assumed to be a suitable function, and will study the behaviour of g/b\N
under Hy in asymptotic regimes where M, N, L converge towards +oc in such a way
that cy = % converges towards a non zero constant ¢, € (0, +00).

The main result of this paper establishes the asymptotic conditions under which
g/b\ ~ converges almost surely towards the integral of ¢ with respect to the Marcenko-
Pastur distribution. In order to analyze the asymptotic behavior of the above class
of statistics, we use large random matrix methods that relate the quantity QAS N with

the empirical eigenvalue distribution of ﬁcorr, L, denoted as

1 ML
div(\) = 577 Z(sk;w, (1.8)
k=1
that is
Gy = / 6\ diin (V).

We will establish the behavior of a ~ by studying the empirical eigenvalue distribu-
tion din (N).

Definition 1. Let i, q denote the Marcenko-Pastur distribution of parameter
d. We recall that for each d > 0, [y, q is the limit of the empirical eigenvalue
distribution of a large random matrix %XXH where X is a J x K random matrix
with zero mean unit variance i.i.d. entries and where both J and K converge towards
+o00 in such a way that % —d.

We will prove that, under certain asymptotic assumptions, the statistic aN
can be described (up to some error terms) as the integral of ¢()\) with respect to
Marchenko-Pastur distribution of parameter cy, in the sense that

(EN - - (b(A) dﬂmp,CN ()\) —0 (19)

2The application of a function ¢ to a Hermitian matrix should be understood as directly applied
to its eigenvalues.
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almost surely. We will also characterize the rate of convergence to zero of the corre-
sponding error term in (). This result will establish the conditions under which

we can test whether the M time series yi,...,yy are uncorrelated by comparing
linear spectral statistics ¢ with the corresponding limits under Hy as established
above.

1.2. On the literature

Testing whether M time series are uncorrelated is an important problem that has
been extensively addressed in the past. Apart from a few works devoted to the case
where the number of time series M converges towards 400 (see below), the vast
majority of published papers assumed that M is a fixed integer. In this context, we
can first mention spectral domain approaches based on the observation that the M
time series (Y1,n)nez; - - - » (YM,n)nez are uncorrelated if and only the spectral coher-
ence matrix of the M—variate time series (¥ )nez, where Y, = (Y1.ny- -, Ynn)’ s is
reduced to I; at each frequency. Some examples following this approach are [40],
[39], [9], [I0]. A number of papers also proposed to develop lag domain approaches,
e.g. [1I77], [18], [8], [23] which considered test statistics based on empirical estimates
of the autocorrelation coefficients between the residuals of the various time series.
See also [I1] for a more direct approach.

We next review the very few existing works devoted to the case where the num-
ber M of time series converges towards +oco. We are just aware of papers addressing

the case where the observations yi,...,yn are independent identically distributed
(i.i.d.) and where the ratio & converges towards a constant d € (0,1). In particular,

in contrast with the asymptotic regime considered in the present work, these papers
assume that M and N are of the same order of magnitude. This is because, in this
context, the time series are mutually uncorrelated if and only the covariance ma-
trix E(y,yZ) is diagonal. Therefore, it is reasonable to consider test statistics that
are functionals of the sample covariance matrix % 21]:[:1 vy . In particular, when
the observations are i.i.d. Gaussian random vectors, the generalized likelihood ratio
test (GLRT) consists in comparing the test statistics log det(ﬁcorr) to a threshold,
where ﬁcorr = ﬁcorr’l represents the sample correlation matrix. [19] proved that
under Hy, the empirical eigenvalue distribution of ﬁcorr converges almost surely to-
wards the Marcenko-Pastur distribution fip,p ¢ and therefore, that %Tr(gb(ﬁcorr))
converges towards [ ¢(X)dfimp,q(A) for each bounded continuous function ¢. In the
Gaussian case, [20] also established a central limit theorem (CLT) for log det(Rcor)
under Hy using the moment method. [7] remarked that, in the Gaussian real case,
(det(ﬁcorr))M /2 is the product of independent beta distributed random variables.
Therefore, log det(ﬁcon) appears as the sum of independent random variables, thus
deducing the CLT. We finally mention [30] in which a CLT on linear statistics of the

eigenvalues of Ry is established in the Gaussian case using large random matrix
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techniques when the covariance matrix E(y,yX) is not necessarily diagonal. This
allows to study the asymptotic performance of the GLRT under certain class of
alternatives.

Regarding the asymptotic behaviour of the empirical eigenvalue distribution of
the complete matrix Ry, it scems relevant to highlight the work in [26] and [27],
which also addressed in the asymptotic regime considered in the present paper. More
specifically, [26] assumed that the M mutually independent time series y1, ..., ynm
are i.i.d. Gaussian and established that the empirical eigenvalue distribution of
Ry converges towards the Marcenko Pastur distribution fiy,yp .. Moreover, if L =
O(N?) with 3 < 2/3, it is established that almost surely, for N large enough, all
the eigenvalues of R, are located in a neighbourhood of the support of pmp,c,. In
[27], the mutually independent time series y1, ...,y are no longer assumed i.i.d.
and it is established that the empirical eigenvalue distribution has a deterministic
behaviour. The corresponding deterministic equivalent is characterized, and some
results on the corresponding speed of convergence are given. As it will appear below,
the present paper uses extensively in Sections [l and [Bl the tools developed in [27].

We also mention [29], which developed large random matrix methods in order
to test the hypothesis Hyg. However, the approach used in [29] is based on the study
of the asymptotic behaviour of the empirical eigenvalue distribution of a frequency
smoothed estimator of the spectral coherence matrix. While the techniques devel-
oped in [29] appear in general completely different from the technical content of the
present paper, we mention that our Section [Bl was inspired by Section 4.1 in [29],
even though the technical problem solved in section Bl appears harder to solve than
that in |29, Section 4.1].

We finally point out that a number of previous works addressed the behaviour
of the estimated auto-covariance matrix R, (7) = + Zg:_f Xp - XH of a M dimen-
sional time series x = (X, )necz at a given lag 7 in the asymptotic regime where
M — d with d > 0. We can mention [21], [24], [25], [4], [32], which, under vari-
ous assumptions on X, study the behaviour of the empirical eigenvalue distribution
of Ry (1) + RE (1), Ry ()R (1), symmetric polynomials of (Rq(7), RE (7)), or of
R, (7). We also mention the work in [28], where the asymptotic behaviour of the
singular values distribution of the estimated auto-covariance matrix between finite
dimensional past and future of x (which, up to the end effects, depend on matrices
(R (7))r=1... i for a fixed integer K) is studied when M — d with d > 0. These
contributions are not directly related to the present paper in that they study the
properties of R, (7) for a single value of 7 (or for a finite number of values of 7 in
[28]) when M and N are of the same order of magnitude, while our random matrix
model depends, up to a block Toeplitzification of matrix ﬁL, on (Ry(T))T:()____’L,
where, this time, M, N, L converge towards +oco in such a way that % — Cy.
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1.3. Assumptions

Assumption 1. The complex scalar time series y,,, m > 1, are mutually inde-
pendent, stationary, zero mean and circularly symmetric Gaussian distributed with
autocovariance sequence 7., = (7, (k))ken defined as 7., (k) = E[Ym nir¥s, ] and
associated spectral densities (S, (V))m>1-

Assumption 2. All along the paper, we assume that M — +o00, N = +00 in such
a way that cy = 2L — ¢,, where 0 < ¢, < 400, and that L = L(N) = O(N*) for
some constant S € (0,1). In order to shorten the notations, N — +oc should be
understood as the above asymptotic regime.

We will need that the spectral densities are bounded above and below uniformly
in M, namely

Assumption 3. The spectral densities are such that

sup max Sy, (V) = Smaz < +00 (1.10)
m>1v€E[0,1]
inf min S, (V) = Smin > 0. (1.11)
m>1ve(0,1]

Note that, for each m = 1,..., M, the matrix R,, ; can be seen as an L X

L diagonal block of an infinite Toeplitz matrix with symbol S,,(v). Therefore,
Assumption [] directly implies that, for each N, these matrices verify $,,,Ir <
R, < SmazIr. This property will be used a number of times throughout the text.

Let us denote by rj; the M-dimensional sequence of covariances, namely
rar(k) = [ri(k), .. rar (k)] (1.12)

where r,,, (k), m = 1,..., M are defined in (L2). We can consider the sequence of
Euclidean norms {[|ras(k)||},cz. At some points, we will need the corresponding
series to be of order O(v/M).

Assumption 4. The multivariate covariance sequence rp; defined in (12 is such
that

1
Sup —— ry (k)| < +oo.

M=1 kez

On the other hand, we will also need to impose a certain rate of decayment of
SUPp>1 Dk >nt1 [Tm (k)| when n — +o00. To that effect, we introduce the weighting

sequence (w(n)),, oy, defined as

w(n) = (14 n])”
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where v > 0 is given. This sequence belongs to the class of strong Beurling
weights (see [37], Chapter 5), which are functions w on Z with the properties:
(i) w(n) > 1, (ii) w(n) = w(—n), (i) wim +n) < w(m)w(n) for all m,n € Z and
(iv) n tlogw(n) — 0 as n — oco. We define £, as the Banach space of two sided
sequences a = (a(”))nez such that
lall, = > w®)la(m)= Y (1+n])" |a(n)] < +oc.

When v = 0, w(n) = 1 for each n, and ¢, coincides with the Wiener algebra
t1 = {a = (a(n)),cz,llall; < 4oo}. For each v > 0, it holds that |all, < |lal,,
and that £, is included in ¢;. The function Y, a(n)e* ™ is thus well defined
and continuous on [0, 1], and we will identify the sequence a to the above function.
In particular, with a certain abuse of notation, }, _, a(n)e?™™ will be denoted
by a(e*7) in the following. We can of course define the convolution product of
sequences in £, namely

(a1 * a2) (n) = Z ai(m)az(n —m)
mEeEZ

which has the property that ||a; * azl|, < [|a1]|,, [laz]l,,, and therefore a; x as € 4, .
Under the convolution product, we can see £, as an algebra (the Beurling algebra)
associated with the weight w.

Assumption 5. For some 79 > 0, the covariance sequence 7, defined in (2]
belongs to £, for each m, where wg(n) = (1 4 |n|)?. Moreover, it is assumed that

sup [[rm |, < oo (1.13)
m>1

Note that the fact that r,, € ¢, implies that, for each 0 < v < 79, we have
Tm € f,, where w(n) = (1 + |n|)7. Moreover, (LI3]) allows to control uniformly
w.r.t. m of the remainder -, . [rn (k)| Indeed, observe that we can write

Irmlloe = Y L+ k)P rm (k)] =0 Y |ra(k)].
[k|>n+1 |k|>n+1

Therefore, (LI3]) implies that
sup Z |rm (k)| < o (1.14)

no
M2l >0l

for some constant k.

In order to provide some insights on the significance of Assumptions [ and
Bl we provide examples and counterexamples. If there exists v > ~o for which
sup,, |rm(n)| < —f for each n large enough and sup,, |7, (0)] < 400, then, As-
sumptions @ and [B] hold. If one of the time series is such that > |r,,(n)| = +oo,
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then neither Assumption @ nor Assumption Bl hold true (we recall (see [27]) that
Assumption @ implies that for each m, > ., |rm(n)| < +o00)) . Finally, if one
of the time series (say y1) verifies |r1(n)| ~n—too 7o mrFs for 6 > 0 while
Y oms2 Tm(n)] < = for v > 70, then Assumption @ holds, but Assumption
does not hold.

1.4. Main Result

The main objective of this paper is to establish the asymptotic conditions that
guarantee that we can approximate the original statistic in (;AS ~ by the corresponding
integral with respect to the Marchenko-Pastur distribution as in (L9). To that
effect, we will introduce two intermediate quantities that will provide some refined
approximations of the original statistic a N-

In order to introduce the first intermediate quantity, we need to consider the
matrix

ﬁcorr L = 871/2 7/?\/ 371/2- (115)

Note that Rcorr L is matrix defined in the same _way as Rcorr 1 by replacing the
estimated block-diagonal autocorrelation matrix By, = Bd1ag(R 1) by its true value
B, = Bdiag(R ), which in fact coincides with Ry (we are assuming independent
sequences). We define ¢, as the modified linear statistic

1 ML _
12 90w) = [ oy (1.16)
k=1 R

where (Xk, N)k=1...M1L are the eigenvalues of matrix Reorr,z, and where Tiy()) is

the associated empirical eigenvalue distribution.

.....

In order to introduce the second intermediate quantity, we recall that, given an
integer K, a K x K matrix-valued positive measure p is a o—additive function from
the Borel sets of R onto the set of all positive definite K x K matrices (see e.g. [36]
Chapter 1] for more details).

Definition 2. We denote by Sy (RT) the set of all ML x ML matrix valued
functions defined on C\ RT by
1
Sy (RT) = dp(A
@) ={ [ aut]

where p is a positive ML x M L matrix-valued measure carried by R™ satisfying
p(RY) =Tur.

We will next introduce a deterministic scalar measure py(\) that will allow us
to describe the asymptotic behavior of the modified statistic ¢ . To that effect, we
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need to introduce some operators that were originally used in [27], which inherently
depend on the covariance sequences (7, )m>1. In order to introduce these operators,
for v € [0,1] and R € N, we define the column vector

. , T
dr(v) = (1,e2””, . ,e2”<R—1>”) (1.17)
and let ar(v) denote the corresponding normalized vector
1
agp(v) = ﬁdR(u). (1.18)

With these two definitions, we are now able to introduce the Toeplitzation operators
used to define the above deterministic measure py ().

Definition 3. For a given squared matrix M with dimensions R x R, we define
\If%n) (M), m=1,...,M, as the K x K Toeplitz matrix given by

\I!(I;n) (M) = /0 Sm (v) a (v)Mag (v)dg (v) dE (v) dv.

The above operator is the key building block that defines ¥ and ¥, which are
the ones that determine the master equations that define iy (X).

Definition 4. Consider an N x N matrix M. We define ¥ (M) as an ML x ML
block diagonal matrix with mth diagonal block given by \I!(Lm) (M). Finally, consider
an ML x ML matrix M, and let M,, ,,, denote its mth L x L diagonal block. We
define W (M) as the N x N matrix given by
_ 1 X
T(M) = 22 >0 U (M) (1.19)
m=1

Having now introduced the above operators, we are now ready to present the
master equations that define the deterministic measure py(\). Consider a z € C*
and the following pair of equations in Ty (z), Tn(2):

Ty () = —é (1 + B2 (T52)) 8;72) (1.20)
T () = —é (T +en” (B;WTN(Z)B;W))*I . (1.21)

We will see that there exists a unique pair of solutions (T (z), Tn(2)) to the above
equations in the set Sy (RT) xSy (RT). We will denote as p (A) the matrix valued
measure with Stieltjes transform T(z) and py the probability measure

() = = Ty (V). (1.22)

With this, we have now all the ingredients to present the main result of this paper.
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Theorem 1.1. Let Assumptions[IHA hold true. Then, fix(X) converges weakly al-
most surely to fmp ¢, (N). Furthermore:

(i) Consider o and ¢y defined in (I7) and (II0) respectively and assume
that ¢ is well defined and smooth on a open subset containing [0, +00) to be defined
in section[3 For every small enough ¢ > 0, there exists a v > 0 independent of N
such that

(}siw G| > N max <1\14 le>> < exp(—N7) (1.23)

for all N sufficiently large.

(ii) Let 8 < 4/5 and assume that ¢ is a smooth function with compact support.
Then, for every small € > 0 there exists a v > 0 independent of N such that

(‘(bN / P(A duN(/\)‘>N€max< NI A;)) <exp(—N7)  (1.24)

for all N sufficiently large.

(111) Consider the Marchenko-Pastur distribution with parameter ¢y = % as

given in Definition[dl Then, for every v < o, v # 1 and every compactly supported
smooth function ¢, we have

1

for some universal constant k > 0.

The above theorem basically establishes three levels of approximation of the
original linear spectral statistic $N and provides the speed of convergence to zero
of the corresponding error terms. In particular, it is interesting to observe that the
error term in (I28) becomes the dominant one as soon as 5 < 1/3 if 79 > 1. Note
that the situation where 8 is small (or, equivalently, L < M) is the most relevant
asymptotic scenario. Otherwise, the ratio M/N converges quickly towards 0, which,
in practice represents situations in which M < N. Therefore, it may be possible
to choose a reasonably large value of L such that % < 1. In this context, the
simpler asymptotic regime where M, N, L converge towards +oc in such a way that
% — 0 may be relevant.

As a consequence of all the above, we observe that when 8 < 1/3 and ¢ >
1, the dominant error incurred by approximating the linear spectra statistic (;ASN
as an integral with respect to the Marchenko-Pastur law is in fact an unknown
deterministic term as established in (25).
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12
1.5. Outline of the proof of Theorem [1.1]

In this section, we provide some detail on the strategy that is followed in the proof
of Theorem [[.T} In order to present the main steps, we first review the concept of
stochastic domination introduced in [I2] and slightly adapted in [29]. We summarize
next the formulation in [29]. This definition will allow to denote the convergence
of (23 and (L24) in a more compact and convenient way. More details can be
found in [29].

Definition 5 (Stochastic Domination). Consider two families of non-negative
random variables, namely X = {XM(u), N € N, u € UM} and Y = {YN)(u),
NeN ue U(N)}, where UN) is a set that may depend on N. We say that X is
stochastically dominated by Y and write X < Y if, for all small ¢ > 0, there exists
some v > 0 depending on e such that

sup P | XM (y) > NEY(N)(U)} <exp—N7
ucU W)

for each large enough N > Ny(e).

On the other hand, we will say that a family of events © = Q") (u) holds with
exponentially high (resp. small) probability if there exist Ny and v > 0 such that,
for any N > No, P(Q™N) (1)) > 1 — exp(—N7) (resp. P(QWN) (u)) < exp(—N?)) for
each u € UMW),

It can be seen that < satisfies the usual arithmetic properties of order relations.
In particular, given four families of non-negative random variables X1, Xo,Y7,Y5
such that X7 < Y7 and X5 < Ya, then X7 + X5 < Y7 + Y5 and X1 Xo < Y1Y5 (see
Lemma 2.1 in [29)]).

The proof of Theorem [[.1]is developed in Sections 2l to Bl The main steps are
outlined in what follows.

Before we begin with the proper technical content of the paper, we close the present
section with some useful properties and technical results that will become useful
in the rest of the paper.

Section 2l provides some preliminary results on the asymptotic behavior of the sam-
ple estimate of the spatio-temporal covariance matrix 7€L and its L x L diagonal
blocks. The objective is to show that the eigenvalue behavior of ﬁcorr, 1 can be stud-
ied by examining the eigenvalue behavior of the matrix Rcorr, .. More specifically,
we will first prove that ||7€L |l is bounded with an exponentially large probability (re-
call that ||| denotes spectral norm) and that ||7€m7L—Rm,LH < max(M~1/2 =)
for each m =1, ..., M, where we recall that ﬁm,L and R, denote the mth diag-
onal block of Ry, and Ry, respectively (see (II) and (I8)). This will immediately
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(iii)

(v)

13
imply that

~ — 1 1
HRcorr,L — Rcorr,L” < max (\/—M, m) . (126)
Section [B]is devoted to the proof of (I.23]), which basically quantifies the influence
of replacing Reorr,z, With ﬁcom 1 in the corresponding linear spectral statistics.
More specifically, by exploiting the Helffer-Sjostrand formula in combination with
the preliminary results in Section 2] Theorem [3.1] establishes that

‘¢N ¢N‘ < max (;4 le) (1.27)

Notice that (L23]) implies that

‘¢N — ¢N‘ < max (\/LM, %)
Therefore, (L27) appears as a stronger result. As shown in Section [B] its proof is
demanding.
Section [ studies the error term ¢, — f d(N)dun (). First, this section shows
that, for any smooth function ¢ with domain contalmng [0, +00) the study of the
modified statistic ¢ can be reduced to the study of the corresponding expectation,
E¢ . More specifically, we establish that

’(bN E(ZSN‘ = M\/_

The remaining error term E¢ y — [ ¢(N)dun (X) will be characterized by adapting
the tools developed in [27], which was devoted to the study of the empirical eigen-
value distribution of matrix ﬁL. The main difference between the matrix model
considered here and the one in [27] is the fact that here the matrix R is multi-
plied on both sides by the block diagonal deterministic matrix Bgl/ 2, see further
(LIE). This multiplication on both sides introduces some modifications in the mas-
ter equation that defines T y(z), which is obviously different from the one in [27].
Other than that, the strategy of the proof will follow [27] almost verbatim, and
will mostly be omitted. First, we will establish the almost sure weak convergence
of ix — pn towards zero (cf. Proposition [3)). Then, by additionally imposing
B < 4/5 in Assumption [2] and assuming that ¢ is compactly supported, we will be
able to conclude that

_ 1
i~ [ 60 (0] < nypz (1.25)
for some universal constant x > 0. This will directly imply (L24).
Section [ finally shows that the deterministic sequence of probability measures
(un)N>1 can be approximated by fimpcy in the sense of (IL25)) for compactly
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supported smooth functions ¢. A central step in the proof will be to establish that

_ 1
sup sup Sm(y)aL(V)HRmTLaL(V) - 1‘ =0 (m) ;Y <70,7 # 1

m ve(0,1]
_loglL
L
(see further Lemma [5.0]). This result, proved in Appendix [D] is obtained by noting
that az, (v)? R:nl rar(v) can be expressed in terms of the orthogonal Szegé polyno-
mials associated to the measure S,,(v)dv, and by adapting to our context certain
asymptotic related results presented in [37, Chapter 5].
(vi) Section [6] concludes the paper with a numerical validation that confirms the con-
verge rates as established in Theorem [[.1]

57:1<FYO

The main tool in order to study the linear spectral statistics of the estimated
block correlation matrix ﬁcorr, 1, will be the Stieltjes transform of its empirical
eigenvalue distribution defined by (L8]). More specifically, we will denote by g (2)
the Stieltjes transform of djiy()), that is

1 1 YL

div(\) = — S
fin (A) ML 2= S

N (2) B R+ A—z
which is well defined for z € C*. This function can also be written as ¢y (z) =
ﬁTrQN(z) where Qn (2) is the resolvent of matrix Rcopr, 1, namely

Qn(2) = (ﬁcorr,L - ZIML>71 : (1.29)

Likewise, for z € C*, we will respectively denote by Qn(z) the resolvent of Reopr. 1.
and by gn(z) the Stieltjes transform associated to its empirical eigenvalue distri-
bution dfiy (), namely

Qn(2) = (Reornz — 2Iarz) (1.30)

and

av(z) = /]R+ ALdgN(A) _ ﬁTrQN(z).

-z

1.6. Notations

The set CT is composed of the complex numbers with strictly positive imaginary
parts. The conjugate of a complex number z is denoted z*. The conjugate transpose
of a matrix A is denoted A while the conjugate of A (i.e. the matrix whose entries
are the conjugates of the entries of A) is denoted A*. ||A|| and ||A||r represent
the spectral norm and the Frobenius norm of matrix A, respectively. For a square
matrix A, we write A > 0 (resp. A > 0) to state that A is positive definite (resp.
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positive semi-definite). If A and B are two square matrices, A < B (resp. A < B)
should be read as B — A > 0 (resp. B — A > 0). Also, for two general matrices A
and B, A ® B represents the Kronecker product of A and B, i.e. the block matrix
whose block (7,7) is A, ; B. If A is a square matrix, Im(A) and Re(A) represent
the Hermitian matrices

A— A" A+ AH
Im(A) = —— A)= ——.

m(a) = 2227 pe(a) = A%

If (An)n>1 (resp. (ba)n>1) is a sequence of matrices (resp. vectors) whose dimen-
sions increase with N, (An)n>1 (resp. (bny)n>1) is said to be uniformly bounded

if supy>y [[AN]| < 400 (resp. supys [[ba|| < +00).

We will let Jx denote the K x K shift matrix with ones in the first upper
diagonal and zeros elsewhere, namely {Jx};; = 6;j_i—1. We will denote by J'
its transpose in order to simplify the notation. Likewise, J% = Ix will denote the
K x K identity matrix.

If x is a complex-valued random variable, its expectation is denoted by E (x)
and its variance as

2
Var(z) = E(|z]*) - [E(2)[".
The zero-mean random variable @ — E(z) is denoted x°.

In some parts of the paper, we will need to bound quantities by constants that
do not depend on the system dimensions nor on the complex variable z. These will
be referred to as “nice constants”.

Definition 6 (Nice constants and nice polynomials). A nice constant is a
positive constant independent of the dimensions L, M, N and the complex variable
z. A nice polynomial is a polynomial whose degree is independent from L, M, N,
and whose coefficients are nice constants. Throughout the paper, x and Py, P» will
represent a generic nice constant and two generic nice polynomials respectively,
whose values may change from one line to another. Finally, C(z) will denote a
general term of the form C(z) = Pi(|z])P2(1/Imz).

1.7. Background on Stieltjes transforms of positive matriz valued
measures

We recall that Sk (R1) denotes the set of all Stieltjes transforms of K x K positive
matrix-valued measures p carried by R verifying u(R*) = I. The elements of
the class Sk (R™) satisfy the following properties:

Proposition 1.1. Consider an element S(z) = [;. d;i(i‘) of Sk (RT). Then, the
following properties hold true:
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(1) S is analytic on CT.

(ii) Tm(S(z)) > 0 and Im(2S(z)) >0 if z € CT.
(1) limy_, oo —iyS(iy) = Ik.
(iv) S(2)SH(z) < (I;—i)g for each z € CT.

(v) [re Adp(N) = limy o0 Re (—iy(Ix +iyS(iy)).
Conversely, if a function S(z) satisfy properties (i), (i), (iii), then S(z) € Sk (RT).

While we have not been able to find a paper in which this result is proved,
it has been well known for a long time (see however [15] for more details on (i),
(i), (iii), (v)), as well as Theorem 3 of [I] from which (iv) follows immediately).
We however provide an elementary proof of (iv) because it is based on a version
of the matrix Schwarz inequality that will be used later. Given a certain K x K
positive matrix measure p carried by R*, we denote by L?(u) the Hilbert space
of all K-dimensional row vector-valued functions u(\) defined on R* satisfying
S+ u(A) d p(A) u (X)) < 400 endowed with the scalar product

v = [ a0y duv o).

Thena if U()\) = (ul(A)Ta s UK, (A))T)T and V(A) = (Vl ()\)Tv -+ VK, ()\))T)T
are matrices with K, and K, rows respectively, all of which are elements of L%(u),
it holds that

U, vy(v, vy, v <(u,u) (1.31)

where, with some abuse of notation, (U, V) denotes the matrix defined by
((U,V)),; = (i, v;). This inequality can be directly proven by considering the
(K, + K,) x K matrix W = [UT, VI]T and noting that (W, W) is positive semi-
definite. This implies that its Schur complement is also positive semi-definite, which
directly implies (IL3T)). Now, using (L31)) for U(\) = 1= and V = I, and remarking

A=z

that |\ — 2|? > (Imz)? for each A € RT, we immediately obtain (iv).

1.8. Further properties of stochastic domination and
concentration inequalities

The following result is a direct consequence of the union bound.

Lemma 1.1. Let Xq,..., Xp denote a collection of P € N families of non-negative
random variables, each one defined as X, = {X,(,N)(u), NeN, ueUM}. LetY
denote an equivalently defined family of non-negative random variables such that
X, =Y foreachp=1,...,P. Assuming that P < N for some universal constant
C, we have

max X, <Y.
p=1,...,P
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On the other hand, we will be using a number of inequalities based on concentra-
tion of functions of random Gaussian vectors. More specifically, consider the real-
valued function f(x,x*) where x is a complex N-dimensional variable and where
(1)* denotes complex conjugate. If x ~ N (0,Iy), f(x,x*) can be interpreted as a
function of the 2N-dimensional A'(0,Izx) vector (v2Re(xT), ﬁlm(xT))T. If fis
1-Lipschitz, there exists a universal constant C' > 0 such that

P[|f(x,x*) — Ef(x,x*)| > t] < Cexp—Ct>. (1.32)

This concentration inequality is well known if f is a function of a N(0,1y) real-
valued vector x (|38, Theorem 2.1.12]). We notice that (L32) implies that | f(x, x*)—
Ef(x,x*)| <1 (see [29] for more details).

Finally, we will also make extensive use of the Hanson-Wright inequality, proven
in [34] for the subgaussian real-valued case, but easily extended to the complex
Gaussian context. If A denotes an N x N matrix of complex entries and if x ~
Nc(0,1Iy), then

t2 ¢
P [|x" Ax — Ex® Ax| > t] < 2exp [—Cmin (—, —)} (1.33)
[ } IANE" 1A
where here again C' > 0 is a universal constant and where |- || and | - || respectively

denote Frobenius and spectral norms.

1.9. Additional properties of the Toeplitzification operators

We introduce here some additional properties of the Toeplitzification operators
introduced in DefinitionsBl4] which will prove useful in the course of the derivations.
For a given squared matrix M with dimensions R x R, the operator \I/%n) (M) in
Definition [B] can alternatively be represented as an K x K Toeplitz matrix with
(i, j)th entry equal to

R—-1
(v an} = 3 ma-i-0rn O (1.34)
7 =—R+41

or, alternatively, as the matrix

K-—1 R—1
v = Y (Z rm(n—l)T(M)(l)>JKn (1.35)

n=—K+1 \l=—R+1
where the sequence 7 (M) (1), —R <l < R, is defined as

1
T (M) () = 5T [MJ’R] . (1.36)
We observe that, with this definition,
R—1 1
S () < ETr(MMH). (1.37)

r=—(R—1)
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This inequality can be proven by noting that 7(M)(r), r = —R+1,...,R—1 are
the Fourier coefficients of the function v — ak (v)Mag(v) so that, by Parseval’s
identity,

Z |T(M)(r)|2=/0 }ag(u)MaR(y)}zdyg

1
< / all v )YMM"ag(v)dv = %Tr(MMH)
0

where we have used the Cauchy-Schwarz inequality.

We also mention the following property: If A is a R x R Toeplitz matrix with
entries A; j = a(i — j) for some sequence (a(l));=—(r-1),....r—1, and if B is another
R x R matrix, we have

%I&«(AB) = Y a)r(B)(-1) (1.38)

The following properties are easily checked (see [27]).

— Given a square matrix A of dimension K x K and a square matrix B of dimension
R x R, we can write

1 m 1 m
= Tr [A\IffK ) (B)} = & [\If; ) (A) B} (1.39)
— Given a square matrix M and a positive integer K, we have

9 ]| < s 18 1M

— Given a square positive definite matrix M and a positive integer K, the hypothesis
inf, S, (v) > 0 implies that

v (M) > 0. (1.40)

Consider now the two other linear operators in Definition 4] which respectively
operate on N x N and ML x M L matrices. If A and B are ML x ML and N x N
matrices, we see directly from (L39) that

1 — 1
NTr [\I! (A) B} = mTr [AT (B)]. (1.41)
We finally conclude this section by two useful propositions that follow directly
from [27].

Proposition 1.2. LetT™(z), m =1,..., M, be a collection of L x L matriz-valued
complex functions belonging to Sg, (RY) and define T'(z) as the ML x ML block
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diagonal matriz given by T'(z) = diag (T'(2),...,TM(z)). Then, for each z € CT,
the matriz Iy + CNTT (le/2I‘(z)BZl/2) is invertible, so that we can define
- 1 — _ B -1
Y(z)= - (IN N (BL“ D(2)B;Y 2)) . (1.42)
z
On the other hand, the matriz I, +B;1/2\I/ (TT(Z)) 821/2 is also invertible, and

we define

Y(z) = _é (IML +B; Y (TT(Z)) 551/2)_1 . (1.43)

Furthermore, X (z) and Y (z) are elements of Sy(RY) and Sy (RT) respectively.
In particular, they are holomorphic on Ct and satisfy

v &%, % Iy
Y(2)XYH(z) < Y(2)YH(z) < : 1.44
Moreover, there exist two nice constants n and 1 such that
Imz)?
Y)Y () > — Wy 1.45
(2)X7(2) = 16072 + 277 M* (1.45)
(Imz)?

Y(2)YH(2) > 602 + |22

In. (1.46)
Proof. The proof is an easy adaptation of the proof of Lemma 4.1 in [27]. More
precisely, if we replace in this Lemma matrix Bdiag(EQ(z)) by I'(z) and matrices
(R(2),R(2)) by (X (2),Y(2)), it is easy to check that the arguments of the proof
of Lemma 4.1 in [27] can be extended to the particular context considered in the
present paper. |

In order to state the next result, we consider two ML x ML block diagonal
matrices S, T and two N x N matrices g,i‘ We also assume that S,T,g,’i‘ are
full rank matrices. For each fixed z, we define the linear operator ® on the set of
all ML x ML matrices by

B (X) = 22N SU (§T@ (X) TT) T. (1.47)

Note that the operator ® of course depends on S, T, §, 'i‘, M,L,N and z. We also
define the following linear operators on the set of all M L x M L Hermitian matrices:
Bpw (X) = |22 enTHE (T@ (X) TT) T (1.48)

Bs (X) = |2 cnSU (éTﬁ (X) §) St (1.49)

We remark that both operators are positive in the sense that if X > 0, then
Ps (X) > 0 and Ppu (X) > 0. Let @M (X) = & (X) and recursively define
e+ (X) = @ (&™) (X)) for n > 1. Then, the following result holds.
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Proposition 1.3. For any two L-dimensional column vectors a, b and for each
m=1,..., M, the inequality

1/2
g

(1.50)
holds, where (A)m,. m denotes the mth L x L diagonal block of A. Moreover, if there
exist two ML x ML positive definite matrices Y1 and Yao such that

al (2 (X))

m,m

o for (s 0] o (o 00

Jim o0 (Y1) = 0 (1.51)
dim o) (Ya) — 0 (1.52)

then, for each ML x ML matrix X,

i (n)
im0 (X) =0 (1.53)
If, moreover, 3.1 <I>(S") (Y1) < 400 and 375 ‘1’5:13 (Ys3) < 400, then, for each
ML x ML hermitian matriz Y, the two series 3,5 @(Sn) (Y) and 32 @;?), (Y)
are convergent. Finally, for each ML x ML matriz X, /2% &) (X) is also con-
vergent, and we have

+o0 +00 1/2 1 400 1/2
o (X)) < 3 agY (xxH) ST o) (T (1.54)
n=0 n=0 n=0
as well as
+00 +oo 1/2 1400 1/2
S X)) < X |1 @g” Mun)|| ||D @50 (Turr) (1.55)
n=0 n=0 n=0

Proof. Inequality (I50) is established in Section 5 of [27]. We now prove (L53).
For this, we first remark that since matrices (Y;);=1,2 are positive definite, there
exist 1 > 0 and as > 0 such that Y; > oIy for ¢ = 1,2. As the op-
erators &g and ®x are positive, it holds that <I>(Sn)(Y1) > alfb(sn) (Tprr) and
@E;f,), (Yz) > oagfl)g;?, (Insr) for each n. Therefore, conditions (L5) and (L52) imply
that Q(S")(IML) — 0 and @EFIZ,(IML) — 0. If X is a generic M L x M L matrix, the
inequality XX < [|X]||2I5;., implies that &S (XXH) < [|X[|26$"” (T1s1,). There-
fore, we deduce that for each matrix X, @(Sn) (XXH) — 0 when n — +o0. The
inequality in (LE0) thus leads to (LE3). Using similar arguments, we check that
the convergence ::B <I>(S") (Y1) and ::B @SF,Z, (Y2) implies the convergence of

e <I>(S") (Y) and 3% @g?,l (Y) for each positive matrix Y. If Y is not posi-
tive, it is sufficient to remark that Y can be written as the difference of 2 positive
matrices to conclude to the convergence of the above two series. We finally consider
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a general matrix X, and establish that ZI::J ®(™ (X) is convergent. For this, we
remark that (C50) implies that for each m and each k, the inequality

k
3 |at (fIJ(") (X)) b‘ <
i A 1/2 i 1/2
< |aff <Z (<I>(Sn) (XXH)) ) a] [bH <Z (@S}lgl (IML)) ) b}
" = (1.56)
holds. This implies that
+oo
3 Jat (<I><"> (X)) b’ < 400

n=0

and that the series E;ﬁ% (™ (X) is convergent. The result in (L54) is obtained by
taking the limit in the inequality ([L56]), while (I55) is an immediate consequence

of ([L5A). O

2. Preliminary results on the empirical estimates ’ﬁL and ’ﬁm,L

Consider again the sample block correlation matrix, namely ﬁcom L =
ggl/zﬁnglﬂ, where we recall that gL = Bdiag(ﬁL). In this section, we will
show that we can replace the block diagonal sample covariance matrix B 1, by the
true matrix By = R without altering the asymptotic behavior of the empirical
eigenvalue distribution of ﬁcorr)L = 821/27€LB;1/2.

For this, we proceed in three steps. First, in Section 21l we prove that the
spectral norm of ﬁL is bounded with exponentially high probability. Then, using
similar arguments, we show in Section that |B, — Br|| < max(M~1/2, =),
Finally, in Section we establish that ||l§£1/2 - 821/2H < max(M Y2 L)
using Hermitian matrix perturbation results. The fact that ||7€L|| is bounded with
exponentially high probability will immediately imply that

. — 1 1
HRcorr,L - Rcorr,LH < max (\/—Ma m) . (21)
We will write the normalized observations as w,, v = \/—%yﬁ, wheren=1,..., N
and
WN: [W17N7"';WN,N]' (22)

Therefore R 1, coincides with R L =W NW%. In the following, we will often drop the
index N, and will denote Wy, w; v, Qn,... by W, w;,Q,... in order to simplify
the notations.
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2.1. Control of the largest eigenvalue of 75,1,

The approach we follow is based on the observation that it is possible to add
a bounded matrix to Wy WZ to produce a block Toeplitz matrix. Controlling
the largest eigenvalue of W W becomes therefore equivalent to controlling the
largest eigenvalue of the block Toeplitz matrix, a problem that can be solved by
studying the supremum over the frequency interval of the spectral norm of the
corresponding symbol.

2.1.1. Modifying W yW into a block Toeplitz matriz

In order to present this result, it is more convenient to reorganize the rows of matrix
W . For this, we define for each n the M dimensional random vector y,, defined
by

yl,n
YM,n
(¥n)nez is thus an M—dimensional stationary random sequence whose spectral den-

sity matrix S(v) coincides with the diagonal matrix S(v) = Diag(S1(v),...,Sm(v)).
We next consider the ML x N matrix Wy, which is defined as

Y1 y2 ... YN-1 YN
Y2 y3 ... YN YN+

Wn=—|: : : : . (2.4)

YL YL+1 - - YN+L-2 YN+L-1

Observe that Wy can be obtained by simple permutation of the rows of Wy and
consequently WNW]{,I and W NWJI\{, have the same eigenvalues. In particular, they
have the same spectral norm. For this reason, we may focus on the behavior of Wy
from now on.

We define matrices Wy 1 and Wy 2 as the ML x (N —L+1) and ML x (L—1)
matrices such that Wy = (Whn,1, Wn 2). In particular, matrix Wy 2 is given by

YN-L4+2 YN-L+3 --- YN-1 yn
YN-L4+3 YN—-L44 --- YN YN+1

W2 = (2.5)

L
VN

YN+1 YN+2 o YN+L-2 YN+L-1
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We now express W2 as Wy 2 = W 2.1+ Wn 2,2 where Wy 2 1 is the upper block
triangular matrix given by

YN-L+2 YN-L+43 --- YN-1 YN
YN-L+3 YN-L+4 --- YN O
1 YN-L44 yvn 0 0
WN)271 - \/—N . . . (26)
VN 0 S0
0 0 ... 0 0
and where Wy 2 2 is the lower block triangular matrix defined by
0 0 0 0
0 0 0 YN+1
1 0 0
WN,2,2 _ \/—N YN+1 YN+2 (2'7)
0 ynt1--- YN+L-2
YN+1 YN+2 .- - YN+L-2 YN+L-1

In other words, matrix Wy is obtained by replacing in Wy vectors

YN+1,--
tors YN—-L+25---

block triangular matrix given by

., YN+L—1 by O,...,0 while Wy 22 is obtained by replacing in Wy 2 vec-
,yn by 0,...,0. We also define Wy o as the ML x (L — 1) lower

0 0. 0 0
0 0. 0 w1
1 0 0
W = - oy (2.8)
0yr... YL-2
Yiy2...¥YL-2YL-1

We finally introduce the ML x (N + L — 1) block Hankel matrix Wy defined by
Wy = (Wn,0, Wn,1, Wh2,1). (2.9)

It is easy to check that WNWJ{,I is the block Toeplitz matrix whose M x M blocks
((WNWﬁ )k,l)

are given b
kil=1,...,.L & Y

(WNWﬁ)k,z =Ry

1 N-—1
Ri= Y vy

n=1
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for I > 0 and f{l = f{ﬂ for [ < 0. In other words, for each [, f{l is the standard
empirical biased estimate of the autocovariance matrix at lag [ of the multivariate
time series (yn)nez-

Matrix VNVNVV/ﬁ also coincides with the block Toeplitz matrix associated to the
symbol S(v) defined by

L—1
Sw)y= Y Rz (2.10)
l=—(L—1)
so that we can write
1
WaWE :/ dz(v)d¥ (v) ® S(v) dv. (2.11)
0

The M x M matrix S(v) coincides with a lag window estimator of the spec-
tral density of (y,)nez. Evaluating the spectral norm of VV/NVNV]{,I is easier than
that of WNW]{,I , because the spectral norm of VV/NVNV]{,I is upper bounded by
SUP,e0,1] Hg(y)H, a term that can be controlled using a discretization in the fre-
quency domain and the epsilon net argument in CM (see e.g. [38] for an introduction
to the concept of epsilon net). In the reminder of this section, we first prove that
IWyWH —Wy 17\7]{,1 || is bounded with exponentially high probability and then estab-
lish that sup,,¢g 1] IS(v)|, and thus HWNWJ{,I || is also bounded with exponentially
high probability.

We first state the following lemma, which will allow to reduce various suprema
on the interval [0,1] to the corresponding suprema on a finite grid of the same
interval. This result is adapted from Zygmund [42], and was used in [41].

Lemma 2.1. Let h(v) = lL:il(Lfl) hie= 2™ an order L — 1 real valued trigono-
metric polynomial. Then, for each vy € [0,1], 6 >0, K > 2(1+0)(L—1), we define
v =19+ k/K fork=0,...,K. Then, it holds that

1
< — . .
s [1(0)] < (1 " 5) Cmax [h(v)] (2.12)

We now compare the spectral norms of WyW4H and VNVNVV/JI\}’ .

Proposition 2.1. Let « denote a large enough constant. Under Assumptions [IH3
and[d, it holds that

P (||WNWJI\}I - WNWJI\}IH > a) < k1Lexp(—kaMa). (2.13)

for two nice constants k1 and Ks.
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Proof. We drop all the subindexes NV from all the matrices for clarity of exposition.
Matrix WWH is equal to WIWH = Wi WH + (Wa 1 + Wa o) (Wa 1 + Wa o) while
WWH WOWO + W1W1 + W2,1W£Il. Therefore,

WWH — WWH = Wy 3 WIL + Wa oW + Wo  WE, — WoWi.

In order to establish (ZI3), we have to show that P(|[Wo Wil > @), i,5 = 1,2,
and P([[WoW§'|| > @) decrease at the same rate as the right hand side of (2.I3). We
Just establish this property for matrix WoW{, or equivalently for matrix WQWO ,
where WO is defined as

Y1 0
Y2 At

S O O
o O O

Yi-2YL-3 -y1 0
Yo-1YL-2---Y2Y1

It is easily seen that 17\70 can be expressed as

~ 1
Wo = \/% / 1 (Af 4 (v) @ €p, (v) dv (2.14)

where &, (v) is an M-dimensional column vector defined as &, ,(v) =

% ZZL:702 yl+1e_2i”l” The matrix version of the Cauchy-Schwarz inequality in

(C31) with U(v) = y/%dr_1(v) ® €, ,(v) and V(v) = dp_1(v) leads immedi-
ately to

— L !
WY < 5 [ diaatdf ) 0, el () v
0
From this, we obtain immediately that

~ L
WoWs'|| < sup N||€L,y(u)||2'
velo,1]

Next, observe that v — £||¢ L.y(V)|I? is a real valued trigonometric polynomial of
order L — 2. Therefore, if K, and the points (v )k=o0,...,x are given as in Lemma
211 it holds that

o] < (145), e lessteol”

Noting that K = O(L), it is sufficient to evaluate P (%€, ,(v)||? > n) for some
fixed v and some well chosen constant 7, and then use the union bound. Observe
first that we can express

M

L ML 1
N”{L,U( ||2 Z |§L7y7n
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where {1, (v), m = 1,..., M are components of &; ,(v). These are mutually
independent complex Gaussian random variables, so that we can use the Hanson-
Wright inequality in order to establish an exponential concentration inequality on

FlleLy1?.

In order to use ([L33), we remark that for each m, &4, (v) can be written
as &r,y,, V) = (EléLy,. (1/)|2)1/2 Ty where x1,...,xp are Ng(0,1) ii.d. random

variables. If x = (z1,...,2nm), 77 2%21 €04 (V)] can be written as

M
1 2 =
T 2 6, ) = x"E)x
m=1
where Z(v) is the M x M diagonal matrix with mth diagonal entry equal to

B0 = 2Bl ()

In order to evaluate [|[E(v)|| and [|E(v)||%, we have to study the behaviour
of E|¢L.,. (v)]?, ie. the expectation of the periodogram of the sequence
Ym,1,--->Ym,L—1. The following result establishes that the diagonal entries of this
matrix are equal to scaled versions of the spectral densities %Sm v),m=1,...,M,
up to an error that decays as O (m)

Lemma 2.2. Under Assumptions 0 and B, E|¢L,, (V)|? can be written as
El¢L 4., (V)2 = S (V) + €m.1(v) where €n, (V) verifies

K
em (V)] <

(L _ 1)min(1,'yo)

for each m and for some nice constant k.

(2.15)

Lemma [2.2] is proved in Appendix [Al

This lemma implies that there exists a nice constant » for which E|¢, ., (v)[? <

k for each v and each m and L > 1. Therefore, if E(v) is the above mentioned
2

diagonal matrix, E(v) verifies |E(v)|| < 4% and [|E(v)||% < 4. Consider a nice

M
constant 7 > 2x. Then,

1 M
¥ (M mz::l €L, ()] > 77) <P (

M
=P < Y Ly ) = Eléry,, ) > 77/2> :

1

M
> ler . ) = EléLy, ) > 0 — n>

m=1

S

S

As min (M(Z/Q), M(ZQQ)z) = M(Z/Q) and ML/N — ¢, the Hanson-Wright inequal-
ity leads to
M

ML 1 ,
P (T i mz;l €Ly (V)7 > 77) < Ky exp(—Mkan)
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for some nice constants x1 and k2. Recalling that K = O(L), and using the union
bound to evaluate P (sup,_o _ x %€k, (x)||* > 1), we have shown that, if o is
large enough, there exist two nice constants x; and kg such that

P(|IWoWE || > a) < L k1 exp(—Mraa).

Following the same approach to evaluate the other terms [[Wx Wy ||, we can
conclude that ([2I3) is established. |

As a consequence of Proposition 1] the evaluation of P(|WyxWH|| > «) can
be alternatively formulated in terms of the evaluation of P(|WyWH|| > «).

2.1.2. Controlling the spectral norm of VNVNVV/JI\}I

In order to establish the fact that ||VNVN)7V/JI\}I | is bounded with exponentially large
probability, we use the expression in ([Z11]) and remark that

[l < sup 18I
ve(0,1]

In the following, we thus control the spectral norm of §(V) In particular, we have
the following result.

Proposition 2.2. If « is a large enough constant, under Assumptions[IH3 and [3,
it holds that

P < sup Hg(V)H > oz) < k1L exp (—kaMa) (2.16)
vel0,1]

for some nice constants k1 and K.

Proof. We denote by S°(v) the centered matrix S°(v) = S(v) — ES(v). We first
notice that

sup |S(v)|| < sup [ES(v)|| + sup [|S°(v)|

and work on the two terms separately. First, we prove that sup, [[ES(v)|| is
bounded. Indeed, it is clear that E(S(v)) = lL:il(Lil)( - %)R(l)e_%’l” where
R(l) = E(ynuyl) is the autocovariance matrix of y,, at lag [. Since the com-
ponents of y, are independent time series, matrix R(l) coincides with R(l) =
Diag ((rm (1))m=1,... m). Therefore,

L—1

IESMI < sup D [ra(@D] < sup Y lrm ().
=1, M

I=—(L—1) mz1liey,
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Condition (I3) thus implies that sup, ||ES( /)| < +oo. Therefore, in order to
establish (2.16]), we need to study P(sup,¢ 1 IS°(v)|| > o) for « sufficiently large.

We first show that the study of the supremum of ||S°(v)|| over [0,1] can be
reduced to the supremum over a discrete grid with O(L) elements. The idea is to
make use Lemma 2] by conveniently expressing ||S°(v)| in terms of trigonometric
polynomials.

Lemma 2.3. We consider §, K, and (Vi)k=0
following result holds:

So 1 “o
swp 180 < (145 ) w8001, (2.17)
k K

ve(0,1]

x as i Lemma [2.l Then, the

.....

.....

Proof. We will first verify that

sup [[S°()] = sup hH§°(y)h‘ (2.18)

vel0,1] v€[0,1],hesM 1

where S¥~! is the unit sphere in CM. We remark that, because of the continuity
of the spectral norm as well as the continuity of both true and estimated spectral
densities, there exists a certain ¥ that achieves the supremum on the left hand side of
([2.I8), that is sup, (o 1] [S°(v)|| = |IS°(¥)||. Moreover, for such given 7, there exists

a hy € S™~1 for which ||§°( )| = |h§IS°( )hz|. In other words, sup,, ¢ 1] ||S )|
coincides with |hZ S°(¥)hy|. Hence, we obtain that the left hand side of (2IR) is
less than the right hand side of (ZI8]). The converse inequality is obvious.

Using a similar continuity argument, we can readily see that

sup  [hS°(v)h| = [S°(9)hy)|
ve[0,1],heSM -1

also coincides with sup, ¢ 1] |hg§°(u)hg|. The function v — hg/S\o (v)hy is a real
valued trigonometric polynomial of order L — 1. Therefore, Lemma 2.1l implies that

1
hy;| < <1—|——> sup
0) k=o,..K

Since |hg§° (vi)hp| < [|S°(vk)]|, we have shown that

sup hggo(u) hggo(uk)hg .

ve(0,1]

. . 1 .
sup [8°W) = sup |hZE°(v)hs §<1+—) sup  [8° ()]l
vel0,1] vel0,1] 0/ k=0,...K
This establishes (2.17). |

We now complete the proof of ([2I6) in Proposition 22l The union bound leads
to

K
~ 1)
P E . 2.1
(vzl[loli)l] HS ( | g aN) <||S o H " T+% 1+9 QN> ( 9)
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Thus, we only need to evaluate P(||S°(v)|| > nn), where v is a fixed frequency and
where ny = %6 ay. For this, we use the epsilon net argument in C™. We recall
that an epsilon net NV, of CM is a finite set of unit norm vectors of CM having the
property that for each g € SM =1 there exists an h € A, such that ||g — h|| < e.
It is well known that the cardinal |[N;| is upper bounded by (f)ZM for some nice

~

constant x. We consider such an epsilon net NV, and denote by h a vector of S]E — for
which [|S°(v)|| = [h”S°(v)h|, and consider a vector h € N, such that ||h —h|| <e.
We express h'7S°(v)h as

hS°(1)h = (ﬁ +h- E)H S°(v) (ﬁ +h- ﬁ) .
Using the triangular inequality, we obtain that
}E%O@)E‘ > ‘EH§°(V)E} _9 ‘(E EENY §°(u)ﬁ} - ‘(E ) §°(w)(h — h)H|.
Since h € SM~1 and ||h — h|| < ¢, we can write
(b~ B) 8 ()| < I8°@)(h — B < € S°(v)]
together with }(E —h)" §°(v)(h — E)H] < €2||S°(v)||. This implies that
[B7S° ()R = (1 - 26— ) [S° (W)

In the following, we assume that e satisfies 1 — 2¢ — €2 > 0. Therefore, using again
the union bound, we obtain that

P(IS° W)l >nv) < 3 P(|b8° b = (1 —2e=Hny) . (2.20)
heN,

In order to evaluate P(|hH§° (v)h| > (1 — 2¢ — €2)nn) for each unit norm vector h,
we denote by z, the scalar time series defined by z, = hfy,,. Then, the quadratic
form h¥8°(v)h coincides with 5 (v)—ES. (v) where 5 (v) represents the lag-window
estimator of the spectral density of z defined by 5,(v) = ZZL::l(Lfl) 7 (l)e=2imlv,
Here, 7,(1) is the standard empirical estimate of the autocovariance coefficient of
z at lag I. We denote by z the N-dimensional vector z = (21,...,2nx)T. As is well
known, S,(v) can be expressed as

2

1
0= [ -ng s (2.21)

N-1
—2imn,
E Zn+1€ B
n=0

where w(y) is the Fourier transform of the rectangular window ljer—(r—1),...L—1}-
The expression in (221 can also be written as a quadratic form of vector z:

1
5.0 =2 (5 [ w0 avatan) = (2.22)
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where we recall that dy(u) is defined by ([LI7). If R, represents the covariance
matrix of vector z, z can be written as z = R!/*x for some N (0,Iy) distributed
random vector x. Therefore, if we denote by € the N x N matrix defined by

1 !
Q=R = / w(v — p) dn () (p) dp R,
0
the quantity 5,(v) — E3,(v) can be written as 5, (v) — E3,(v) = x7Qx — Ex? Ox.
Therefore,
P (3:(v) —E5.(v)| > (1 — 2¢ — €%)n)

can be evaluated using the Hanson-Wright inequality (L33]). This requires the eval-
uation of the spectral and the Frobenius norm of €2. Observe that we can express
Q= Ri/QQwRi/Q where Q,, is a Toeplitz matrix defined as

Q, = %/O w(v — ) dn () dy () dp.

It is easy to check that the spectral norm of R, is uniformly bounded. Moreover, the
spectral norm of §2,, is bounded by % sup,, [w(v)| = L/N. Therefore, ||| < k£ for
some nice constant k. In order to evaluate the Frobenius norm of €2, observe that

Q,, is band Toeplitz matrix with entries given by (Qu)k; = %™ F=0VL ;.
Therefore, [|[|% < k%, which implies that [|[€2[|% < x%. Consequently, the

Hanson-Wright inequality in (IL33)) implies that, if 7 is large enough,
P (‘hHgo(u)h‘ > (1—2e— 62)77) < k1 exp (—koMn)
where we have introduced two nice constants 1 and k2. Recalling that |NV.| <
(%)2M, the union bound (2:20) implies that
~0 K 2M
p(us Ol >n) < (Z) K1 exp (—r2Ma)

The right hand side of the above inequality can clearly be bounded by
k3 exp (—kaMa) for « large enough, where k3 and k4 are two new nice constants.
Finally, (ZT19) leads to

]P’( sup ||S°(v)|| > a/2> < k1Lexp (—raMa)
vel0,1]

for N sufficiently large and two nice constants k1, k2. This completes the proof of
Proposition O

As a direct sequence of Propositions2.J]and 2.2] we have the following corollary.

Corollary 2.1. For each « larger than a certain positive constant, then, it holds
that

PWNWE | > @) < k1 Lexp(—kaMa) (2.23)
P(|RL|l > a) < k1 Lexp(—raMa) (2.24)



January 15, 2021

31

for some nice constants k1 and k2. Moreover, |Ry|| satisfies

IRL| < 1. (2.25)

2.2. FEwvaluation of the behaviour of ||Bdiag(7€L) — Bdiag(Ry)||

Recall that Ry, ., m =1,..., M, denote the L x L diagonal blocks of the matrix
Bdiag(Rpr). We will denote by R, 1, the mth L x L diagonal block of Ry. In this
section, we establish that

Rt — Rom.1|| < max ( (2.26)

1 1
VM L)
Note first that we can express ﬁm, 1, as the empirical estimate of R, r,, that is

~

1 & H
L L
Rm,L = N ngl ym,n (ym,n)

or equivalently by ﬁm, L =W} (W}(})H where W7} is the L x N matrix defined
by
m 1
Wy =—= (van,1a-~7y1Ln,N) .

VN

The arguments used in this section are based on the techniques used in Section
21 Therefore, we just provide a sketch of proof of (2:26]) based on the same two
steps as above: first, we approximate W (W}(})H with a Toeplitz matrix and then
study the equivalent Toeplitz version of (2.20]).

2.2.1. Modifying W7 (W’]’\})H mnto a Toeplitz matriz

We prove here that Wiy (W’]’\})H can be approximated as the Toeplitz matrix
W72 (W7 H where W7 is obtained by replacing vectors (y,)n—1.... N by the scalars
Ym.n)n=1,....N in the definition of matrix Wy in above. In particular, it holds

i ....,N in the definiti f matrix Wy i b I ticular, it hold
that

wp (WW)H - /0 1 S, (n)dr (v)dH (v) dv (2.27)

where S, (v) represents the mth diagonal entry of the lag window estimator (Z.10).
More specifically, following the proof of Proposition 2.1 we justify that

HWN (W) - wn (WN) H <07 (2.28)

To verify (228), we drop the dependence on N of all matrices to simplify the
notation and remark that

Wm(wm)H_Wm(Wm)H = WQTQ(WZLQH'FWQTQ(W%)H"'W?l (WQTQ)H_WBTL(W(T)H
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where the various matrices of the right hand side are obtained by replacing vectors
(¥n)n=1,...N+L—1 in the definition of matrices Wa 2, Wa 1, Wy used in Section 2]
by the scalars (Ym.n)n=1,... N+L—1. In order to verify (Z28]), we just briefly check
that

.....

1
e <
H o (Wg)7 || < Vi
or equivalently (after proper column permutation of (W{*) that
wy (W) || < =
[ (%) <5
where \7\76” is defined by

. 1
Wy =% [ a0 e

As in Section [ZI] we notice that the matrix-valued Cauchy-Schwarz inequality in
(C31) with U(v) =/ £dr_1(v)éL,y,, (v) and V(v) = dp_1(v) implies that

Wy W) < 5 [ da )l @l W
This allow us to establish that

~m ~m L
[We Wi | < sup Llénan, ).
ve(0,1]

By Lemma 2] we know that the supremum can be replaced by a maximum over
O(L) points, so that by Lemma [[T]it is sufficient to establish that

L 1
N |§L7y7n (I/)|2 =< M

for some fixed v. Following the same reasoning as in Section 2.1} a direct application
of the Hanson-Wright inequality shows that |¢r, . (v)]? < 1 for any fixed v, from
where the result follows.
2.2.2. Studying the Toeplitz equivalent of (2.26)
In order to prove (2:26), it thus remains to establish that
- 1 1

max [ —, —

m’ Lo

Noting that W}(} (WW)H — R, is the L x L Toeplitz matrix associated to the
symbol S, (v) — S (v), and using Lemma 2] it is sufficient to prove that

—~ —~ H
HW}(} (W) =R

811) = S (v)| < max (\/LM L%)



January 15, 2021

33
for each v. In order to see this, we write Sp, (1) — Sy (V) as
V) = Sn) = Su) —E (8a(0)) +E (Sn() = Su()
The bias E(S,, (1)) — Sm(v) is equal to
=
o o —2imly —2imly
E (Sm(u)) —Su) == ral)e % X llr@e ™,
=L 1= (L-1)
An easy adaptation of the proof of Lemma in Appendix [A] establishes that
~ 1 L(=v0)+
‘E (Sm(u)) - sm(y)‘ <k <LT + T) (2.29)

for some nice constant x, where ()4 = max (+,0). This implies that

sup sup
m=1,....M v

E (gm(l/)) - Sm(u)‘ < Kk max (%, %) (2.30)

-~

for some nice constant «. In order to study the term Sy, () — E(S,, (v)), we remark
that it can be written as

Sn(v)—E (S*m(y)) — TS (v)enm

where e,,, is the mth vector of the canonical basis of C*. Using the Hanson-Wright
inequality as in Section 2.I], we obtain immediately that for each v and for each m,
there exist two nice constants k1 and ko such that

P (|eﬁ§o(u)em| > aN) < Ky exp(—raMai)

where (an)n>1 satisfies ay — 0 and Ma3 — +oo. In particular, the choice
ay = N¢/ VM satisfies this property for all small enough ¢ > 0, which allows to
conclude that |[eZ8°(v)e,,| < M~Y/2 for any fixed m and v. However, noting again
that €2 S°(v)e, is a real valued trigonometric polynomial, we see by Lemma 23]
and Lemma [L.T] that sup,), , €2 S°(v)ep| < M~1/2,

As a consequence of all the above, we have established that Hﬁm L—Rmuil| <
max(M /2 L=7°), which directly implies that

P . 1 1
|IBdiag(R 1) — Bdiag(Ryr)|| < max (\/—M’ m) . (2.31)

All these results are all the ingredients that we need in order to evaluate the spectral
norm of the matrix

®N = 7/éfcomr,L - ﬁcorr,L (232)

which is carried out in the following section.
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2.3. Ewaluation of ||OnN]| = ||7/icorr,1, — Reorr,L||

We first precise that almost surely, all the matrices (7A€m7L)m:17___7M(N)7N21 are
invertible. To verify this, we remark that the random variable det(R,, ) is
a differentiable function of the 2(N + L — 1) entries of the Gaussian vector
(Re(Ym,1s-- -+ Ym, N+L- 1), Im(Ym 1, -+ Ym . N+L—1)). Therefore, the probability dis-
tribution of det(R,,. 1) is absolutely continuous, and the event {det(R,, 1) = 0}
has probability 0. Therefore, the union of the above events is also negligible, thus
showing the almost sure invertibility of the matrices (7A€m L)m=1,..,M(N),N>1-

Using the above definition of ® y, we are able to write
Oy — 521/27€Lg;1/2 B 321/27€LB;1/2
= (B,'? =B, RBP4+ B PRUBL P - B, (2.33)

We have shown above that ||7/€m L — Rzl < max (M~Y/2 L=7). Our first objec-
tive here is to show that ||R—l/2 R, 1/2 | < max (M ~'/2, L=°). For this, we use

perturbation theory of Hermitian matmces arguments (see e.g. [22, Sec. 2, Ch. 1
and Sec. 1, Ch. 2]) that will also be needed in Section [3

We first recall that Assumption implies that for each N, matrices
(Rom,L)m=1,...m Verity sminIr < R < Smazlr. Therefore, if we denote by C a
simple closed contour included in the half plane {Re(\) > 0} and enclosing the inter-
val [Smin, Smaz), then, C also encloses the spectrum of the matrices (R, L )m=1

This in particular implies that matrix R;llf can be written as

= N P 2.34
R, 2z7r/ \/_ R, — ML) dA (2.34)

where C_ means that the contour is negatively oriented. In the following, we denote
by (Ak,m)k=1,... .k, the distinct eigenvalues of R, 1, and by (Il m)r=1
orthogonal projection matrices over the corresponding eigenspaces. Therefore, R, 1,

.....

can be written as

Ko,

Rm,L = Z )\k,m Hk,m' (235)
k=1

We denote by A, 1, the matrix defined by
A =R~ Rmn,L. (2.36)

In order to investigate A,, 1, it will be convenient to introduce a collection of
operators D, 1, (X), m = 1,..., M, which transform L x L matrices into L x L
matrices and are defined as

_ 1 1 -1 -1
,Dm7L(X)_27T7:/Ci\/X(Rm)L M) X (R, — ML) dA (2.37)



January 15, 2021

35

where, as before, C_ is a negatively oriented simple closed contour on the half
plane ReA > 0 enclosing [Smin, Smaz)- As seen below, Dy, 1 can be interpreted as
the differential operator of the matrix valued-function A — A~1/2 evaluated at
Rm.r- Note that, using the definitions in (2:35), we can express

K.
_ L | P
(Ron,p = ML)~ = _—km
i Ak — A

Plugging this expression into (2.37) and using the residue theorem, we can trivially
check that this operator can also be expressed as

T XT1, . (2.38)

Ko K 1
Do (X) =) > Ve A/ Mom (v Nem + v/ Am)

k=11=1

We summarize next a number of properties that will be useful about these operators
throughout the paper.

Lemma 2.4. Consider the operator Dy, 1, as defined in (2.37)-(2.38). Then, for
every L x L matrixz A:
(i) If B denotes another L x L matriz,
Tr (Dy,,.(A)B) = Tr (AD,,, .(B)) (2.39)
(i) There exists a nice constant £ > 0 such that
1D,z (A)] < &[A]- (2.40)

(i1i) There exists a nice constant k > 0 such that

%TI“ (D, (A)DE L(A)] < & %Tr(AAH). (2.41)

Proof. The identity in (239) follows directly from the definition of Dy, 1.
To see (2.40), simply consider the definition of D, ; in ([237) and note that
supyec || (R, — M) || < & for some nice constant . In order to justify ZI),
we express Dy, ,(A) using (Z38) so that, noting that II; ,, 11, = I 01—, we

can write
11 . I g Iy
Dm,L(A)Dm,L(A)H = . A A 2
2 SO o e SO

Taking the normalized trace, changing the order of the matrices, and using again
the fact that Hk,mHk’,m e Hhmdk,k/, we obtain

1 1 g A TT AT,
ZTF [DW7L(A)'Dm,L(A)H] = Z ~Tr k, 1 &

Kl L /\k,m/\l,m(/\l/2 +A§,ﬁ)2

k,m
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Using that Ay > Smin for each k£ and m, we obtain immediately that

Hk:,mA Hl,mAHHk:,m
)‘k,m)‘l,m()‘llc,/i + )‘11,42)2

<k Hk,mA Hl,mAHHk:,m

from where the inequality

1 H 1 H
_ < g = E
Tr [Dm,[ (A)Dm)[ (A) ] k=Tr - Hk,mA HlﬂnA

follows directly. Noting that ), Iy ., = I, we obtain (Z4I). O

Having introduced these operators, we now formulate a result that will be useful
here and in the following sections.

Lemma 2.5. Under Assumptions[IH3 and[3, it holds that

Ry =R = Do (Amr) + Yo (2.42)
where the matriz X, 1, implicitely defined by (2:42), verifies
1 1
I, L] < max { 77, 755 ) - (2.43)
Proof. See Appendix [Bl O
Since [|An,. L] = ||7€m7L — Rl < max(M~Y2 L=7), we directly observe

from the above proposition and @Z0) that ||B; /? — B, '/?|| < max (M~1/2, L=70).

This of course implies that ||g£1/2|| < 1. Moreover, using the fact that |R.| < 1

(see (2.20), ([233)) leads to

1 1

To close this section, we remark that the identity ﬁ;lL — R;LlL =
—ﬁ;{LAm,LR;:L leads immediately to ||7€;11L - R;LILH < max (ﬁ’ %) Using
this and (2:24]), we obtain the following Proposition.

Proposition 2.3. Under Assumptions[IH3 and[d, there exists ag > 0 such that for
each o > v, one may find € > 0 and Ny (both depending on «) such that

P (| Reorr, || > @) < exp—N* (2.45)
P (llﬁcm,Lll > a) < exp —N¢ (2.46)

for each N > Ny.
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From all the above, we can therefore conclude that the spectral behavior of the
sample block correlation matrix Reorr, 1, is equivalent to the spectral behavior of the

matrix Reor., = By /*RpB; .

3. Study of the influence of the estimation of matrices
(Rm,L)m=1,....Mm-

In this section, we study the impact of the estimation of matrices (Rm)L)m:Lm,M
on the asymptotic behaviour of the linear statistics ¢y, defined as

N 1 ML
oN = VL ; d(Me,N) = /]R+ d(N)dfin (N)

More specifically, we evaluate the behaviour of aN — ¢ where ¢y is defined in
(LI6) by establishing the following result.

Theorem 3.1. Let Assumptions U3 and [A hold true. Assume that the function
¢ 1s defined on (—8,+00) for some & > 0 and smooth in a neighbourhood of the
interval [0, ag] where ag is defined in Proposition [2.3. Then, it holds that

lon — by | < max (i ! ) . (3.1)

M’ Lo
In order to establish Theorem Bl we first mention that Proposition 2.3 implies
that it is possible to assume without restriction that ¢ is compactly supported by
the interval [—4, @] for some a > . To justify this claim, we consider £ € (ag, @)
and introduce the event Ay defined by

Ay = {Roorr | < €} 0 {IReomrll < €}

Proposition implies that there exists a n > 0 for which P(A%) < exp—N" for
each N large enough. We denote by ¢. a smooth function, supported by [—§, o, and
which coincides with ¢ on the interval [—§/2,¢]. Then, it is clear that ¢y and ¢
coincide with aa ~ and EC) ~ Trespectively on Apy. For each € > 0, by conditioning

on the event Ay and its complementary A%, we can express
~ — . 1 1
P([¢n — dn| > N max U Ie )T
=P (|pern —& N° L 1) 4
= |pe. N — Do n| > max T )W +
n s € 1 1 c
+]P) |¢N—¢N|>N max M,m 7AN

where we have used the fact that aN and ¢, respectively coincide with aa N
and EC)N on Apn. Now, for N large enough we can bound the first term of the
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above equation by P(|$C,N — ¢en| > Nemax(M~', L~7°)) and the second term by
P(AS) < exp(—N"7). Therefore, it is sufficient to establish that |($QN — denl <
max(M 1, L=7) to prove (B.1]). For this reason, from now on we assume without
loss of generality that ¢ is supported by [—4d, a].

The main tool that we will use in order to analyze the asymptotic behavior of
the linear spectral statistics is the Helffer-Sjostrand formula for sufficiently regular,
compactly supported functions.This formula was already used in the large random
matrices literature, see e.g. [2], [3], [31]. In order to introduce this tool, assume that
#(A) is compactly supported and of class C¥*1 for a certain integer k, and denote
by ®(¢) : C — C the function of complex variable

O () (2 + iy) = 0 @e) (3.2)

1=0
where p: R — R* is a smooth, compactly supported function (to fix the ideas, we
assume that the support of p is [—2,2]) that takes the value 1 in a neighbourhood
of zero. Now, taking z = x + iy, we see that the function ®(¢4)(z) is compactly
supported on the complex plane, and therefore by [35, Lemma 20.3] we have

[ oNdun) = TR [ dedyi0)(e)s(2)
where p is a probability measure, s,,(2) its Stieltjes transform and where we define

09;,(¢)(2) = 0Py (¢)(z + iy) +ia@k(¢)($+2y)

Or dy
In particular, according to the definition of ®x(¢)(2) in (B2), we can see that
K
— 1Y
904(¢)(2) = LV g0+ )

when y belongs to a neighbourhood of zero where p(y) = 1. The regularity of
¢ will allow us to bound quantities of the form [0®(¢)(z)y~*| when y is in a
neighbourhood of zero.

Consider now the two resolvents Qx (z) and Qu (z) defined in (I29) and (30)
respectively. Recall that their normalized trace is equal to the Stieltjes transform
of the empirical eigenvalue distribution of ﬁcom . and ﬁcom 1 respectively. Hence,
a direct application of the Helffer-Sjostrand formula to our problem leads to the
identity

oy =y = 11 [ dody 0.0 (577 T@u () - 37 TQuD ) 63

where D is defined by D = [—d,a] x [0,2] and where k is large enough. Before
going into the details of the proof of Theorem [3.1] we first present the main steps
of the proof. In what follows, we will omit the dependence on N and z in all the
matrices in order to simplify the notation.



January 15, 2021

39

We recall that © is the matrix defined in ([2232]) and remark that, by the defi-
nition of resolvents, we can write

Q- Q=-Q0Q=-Q0Q+QeQeq
Therefore, B3] can also be written as

ON — Oy = — %Re/pdmdy 5@;@((;5)(2)%(1’1"(22@)

1 _ ~
—R dx dy 0P z2)—Tr(QOQOQ). 3.4
+ 2R [ dody00u(0)(:) 77 THQOQOR).  (3.4)

Having established these basic facts, the proof of Theorem [B.1] proceeds as follows:

(1) The first step of the proof consists in showing that, by virtue of ([2.44), the second
term of (34) can be disregarded from the evaluation, in the sense that

1 _ 1 N 1 1

We therefore just need to evaluate the first term of the right hand side of ([B.4]).
(2) In the second step, it is proved that ® can be written as

e = (é—l/z - 8—1/2) BY*Reorr + Reon BY/? (3—1/2 - 8—1/2) +0@, (3.6)

where ||@2| < max(M !, L=2). This will imply that the contribution of @2 to
the first term of the right hand side of (8:4) can be omitted.
(3) If we take @1 = ® — O, the purpose of the third step is to establish that

_ | , 11
/Dda: dy 8<I)k(¢)(z)mTr(Q ®;)| < max <M, m) . (3.7)

For this, we will just verify that

/ dx dyé(l)k(@(z)ﬁﬁ Q*(B/? —8—1/2)81/2@30”}
D

1
< max M’ F
(3.8)
(note that the second term in (B.6) can be handled similarly). The proof of (3]

is demanding. Using Lemma 2.5 we only need to show that

M

1 1/2
37 2 7T [Pt IRYQ Q0]

1 1 3.9
< max M’ F ( . )
where Qg m denotes the mth L x L diagonal block of Q, where the operator

Dy, 1 is defined in (Z37)-(238) and where A,, 1, is defined in (Z.36). We will only
establish that

_ 1 M
RELAOICR DS

m=1

Sl

/ d dy 90,,(6)(2)
D

1

Tr [D,W,L(A,,L,L)Rl/2 }

m, L em,m

1 1
< max M, m
(3.10)

1=
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because the term due to 2(Q?),, m can be handled similarly. In order to show this,

we rely on the fact that, up to a term stochastically dominated by %, it is possible

to replace matrices (ﬁm L)m=1,...m in BI0) by their Toeplitz approximations

ﬁfn)L = W%(WQ)H, m = 1,..., M introduced in 221) of Section The

upper bound in (2:29) will imply that the contribution of the bias of the Toeplitz

estimates of (Ryn.1)m=1,... v to B10) is a term of order O(max (M1, L770)). At

this point, it will remain to study the term ¢ defined by

<:/ da dy 9D () (2)—= iV[: 1o [D L (7? _E(R )) R/ }
> M ] L m, m,L m,L m, L m,m| -

(3.11)

Recall that 7, (1) = & SNy (n + Dy, (n) and 7, (—1) = 7%,(1) for | > 0 rep-
resent the empirical estimate of the autocovariance sequence of y,, at lag [, and

consider 70, (1) = #,, — Ey, (1). With these definitions and using (2.39) and (L38]
the term ¢ can be re-written as

B 1 M L—-1
(= [ drayon@)y Yo Y i (Do (RYQu)) (-0
b m=1u=—(L—1)

(3.12)
where we recall that if A is a L x L matrix, 7(A)(u) is defined by 7(A)(u) =
1Tr(AJY), see (L36). This way of expressing ¢ will be the key to showing that

1
<] < i (3.13)
which will complete the proof of Theorem [3.I} This will be shown in two final steps.
— We check that E(¢) = O(M~1). To verify this, we use that the Nash-Poincaré
inequality and obtain that Var [T (’DWL(R;/?L m)m)) (—u)] = O(N~1). Since
Var (7, (u)) is also a term of order O(N~1!), we obtain immediately from the

Schwartz inequality that E(¢) = O(M~1).
— The most difficult part of the proof consists in establishing that

1
—E)| < —. 3.14
¢~ B < 57 (3.14)
For this, for each m, we introduce the (N 4+ L — 1)-dimensional row vector
Ym = Yma,--->Ym N+L—1), which can be re-written as
Y = Xm Ryl nir 1 (3.15)

for some Ng (0, Iy —1)-distributed row vector x,,. By using the above defini-
tion, we can re-interpret ¢ as a function of of the M(N + L — 1) i.i.d. Ng(0,1)
entries of vector

X = (X1, X0M)- (3.16)

If ¢, considered as a function of (x,x*) were a Lipschitz function with constant
of order O(M ~1), the result in ([3.14]) would follow from conventional concentra-
tion inequalities of Lipschitz functions of Gaussian random vectors (see (L32))
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above). Unfortunately, the terms #,,(u) are not Lipschitz functions of x due to
the quadratic dependence on this vector. In any case, it is still true that for each
€ > 0, the inequality |7y, (u) — E(7p (u))| < JX; holds for fixed u and m, except
for an event that has exponentially small probability. Therefore, we show that

it is possible to replace (for each v and m) 7, (u) — E(#,(u)) by a well chosen
function, and that the corresponding modification ¢ of ¢ is Lipschitz with con-
stant % We deduce from this that | — E(¢)] < NV for each € > 0, a property
which will directly imply (314).

We now proceed with the three steps of the proof.

Step 1. In order to establish (1), we simply notice that

1 A

_ 1 ~ _
[ ardsom0):)57,1:(Q0Q0Q)| < [ draylomu(oo)

It is clear that if 2 € C*, we can use the item (iv) in Proposition [ to establish
that

1

mayrl©l”

1 A 211 A 2
$177(Q9Qeq) < [Q1Qle]? <

Since ¢ is smooth by assumption, we can choose £ > 3 to guarantee that the integral
Jp d dy [0k (0) (z)|m is finite. This, together with (2.44]), shows that

_ 1 . 11
/Dd:cdy aq>k(¢)(z)m(TrQ®Q®Q)’ < £[|®]* < max (M’ LT)

which completes the proof of ([B.3]).
Step 2. In order to establish (B6]), we take (Z33)) as a starting point and express
R as R = BY2R .o B2, that is
o— (3—1/2 _ 8_1/2) Bl/2ﬁcorr81/21§—l/2 T Ry B2 (3—1/2 _ 8_1/2)
_ (371/2 _ 871/2) BY? R + Reoows B2 (371/2 _ 871/2) 1O,
where ®; is given by
e, = (371/2 _ 871/2) B/?R....B/? (371/2 _ 371/2) '

As we showed that [|[B=Y2 — B=Y2|| < max(M~Y2 L=0), ||@,] -clearly
verifies [|@2] < max(M~1 L7270) as expected. Hence, using the inequality
|2 Tr(Q%0,)| < (Qgi)lg together with

= 1
/Ddxdy ’8@%(@(2)‘ Tma)? < 400
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we obtain that

1

/Ddéﬂ dy 5‘1)k(¢)(2)m A T2

Tr(Q%*@2)| < K [|©2] < max( LI )

Step 3. We finally establish [B1), and just verify ([B.8]) because the contribution
of the second term of ®; can be handled similarly. Using (2:42)) and the resolvent
identity ReorrQ = I + 2Q, we obtain immediately that the term on the left hand
side of (B8] can be written as the sum of the term on the left hand side of (9]
plus a term depending on the matrices (Y ,)m=1,... am. As this last term is easily
seen to be stochastically dominated by max(L~=27, M 1), (3.8) becomes equivalent

to (B9).

We now prove ([BI0). We first reason that we can replace the matrices ﬁm L
with their Toeplitz approximations R, ;. Indeed, it was shown in ([Z28) of Section

that || R, 1 — ﬁfnLH < 4. We claim that this implies that

1 M

Mm

1
< —

~ ~ 1/2
Tr [Dm,L (Rm,L - an,L) RW{,L mvm} M

==

/ d dy 3%1,(6)(2)
D

=1

Indeed, a direct use of (Z.40) together with the fact that ||Quu.m| < (Imz)~! for
z € CT shows that

Z FT[Por (R~ Ry ) R Q|

for some nice constant x > 0. However, since the integral [, da dy |0®(¢)(2)|1as
is finite as long as k > 1, we readily see that

K
< R Rt
- m:sf,l.?,MH |

M
1 1
/dmdy@@k g TI‘|: mL( mL_R )qun/?L m,m:| <
D m:l
<k sup |[Romr—RL L~
>~ me,. o » m,L M

Consequently, in order to establish ([3.10)), it only remains to prove that

/D dz dy 5@;@((;5)(2)% f: %Tr Do (Rh 2= Ront ) Ry Q|| <

1 1
~< max (M L’Yo) . (3.7

Given the Toeplitz structure of ﬁfn 1, — Rm,r, the bound that was established in
([2:29) directly implies that sup,,_; s ||E7€fn7L—Rm7L|| < R(L™04N-1LO=0)4),

—

.....
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This leads immediately to
L Mo ~
/Ddzzzdyafbk = ZTr[ 2 (E(Rr) = Rons ) Ryl Qo

m:l
1 L(=v0)+ 1 1
§H<LWO+ N >§H(LWO+M>'

It thus remains to study ¢ defined in (BI]). Noting that ﬁan — E(ﬁfnL) is the
L x L Toeplitz matrix with entries 79, (i — j) = 7 (i — j) = Efp (i — 7), 1 < 4,5 < L,
we can establish, by virtue of (2Z39) and (L38),

<

1 ~ ~ 1/2 1 = ES 1/2
ETY Dm,L(an,L - E(anL))Rm/L m,m} = ZTf [(anL - E(an,L)),Dm;L(Rn{,L m,m)}

L-1

=—(L-1)

We first study the expectation of ¢ and prove that

E() =0 (%) . (3.18)

For this, we first note that, using again (IZ{QI), we can write

50 = [dyinio s Y S B (e 21 (@ PR

m=1y=—(L—1)

where we recall that Qp, ,, = Qum m —E(Qum,m). By the Cauchy-Schwarz inequality,
we have

‘E (ffn(u) 1‘; (Qm D1 (J7 )R;{Z’L))‘ <

1
< Var'/? (¢, (u)) Var'/? <ZTr (memDmyL(JL“)R:n/i)) (3.19)

and it is therefore enough to bound these two variances. Regarding Var(f,, (u)), we
observe that we can write

) 1 1/2 I —u 1/2
P (u) = NXmRm/,NJqu ( (z)v) JN" (In,0) Rm/,N+L71X7Hn (3.20)

from which we deduce immediately that Var(7,,(u)) < +. Regarding the term
corresponding to the second variance in ([B.I9)), we first introduce the following
lemma, proven in Appendix

Lemma 3.1. Let X, ; the ith entry of vector X, defined in (313) and consider an
ML x ML deterministic matriz A. For z € Ct, we have

M N+L-1 2
1 0Q Kk 1+]z] 1 1 "
(A < B 14+ — ) — Tr(AA
ML r<6xm7i ) S W e U Tms ) arp TAAT)

2 2
T (3.21)
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for some nice constant k.

As a consequence of the above lemma, we have the following result, which follows
from a direct application of the Poincaré-Nash inequality (see further [27, Lemma
3.1)).

Corollary 3.1. Let (An)n>1 denote a sequence of deterministic ML x ML ma-
trices. Then,

1 P 1) 1 u
—Tr (A < — 1+ — ) —Tr(ANyA .22
VarML r(AyQ) < ( + Imz) WL r(AvAY) (3.22)

for some nice constant k.

We can apply the above corollary to study the second variance term in (3.19)
by defining the M L x L matrix E,,, which is composed of M blocks of dimension
L x L, all of which are zero except for the mth one, which is equal to I;. This
means that we can express Qu, » = EZQE,,. Hence, the use of (322) with Ay =
EmDmyL(JZ“)R;{?LEg leads immediately to

1 o —uyp1/2 Kk 14|z 1
- R < — ).
Var (LTr (Qm’mDm’L(JL ) m’L)> ~ N (Imz)?3 1+ Imz

Using these two bounds in (8I9) we can conclude that

K _ 1/2
E(Q)] < M/Dd:cdy|6<1>k(¢)(z)| m (1+ %) ,

m

Noting that ¢ is smooth, we see that the above integral is finite by choosing k > 2,
and consequently ([BI8) is proved.

We finally establish that |¢ — E(¢)| < & following the approach in [29]. More
specifically, we interpret ¢ as a function of the M (N + L — 1)-dimensional vector
x = (x1,...,Xp) (where we recall that the vectors (X, )m=1,... m are defined by
(B13)) and exchange ¢ by a term that is Lipschitz with a relevant Lipschitz constant.
For each € > 0, we denote by Ay . the composite event

A= n_ {17 (w) = B ()] < 25} (3.23)

2
N (Mo {535 <2}).
It is clear that }J\I}X%L”jl - 1‘ = \/_1N and that |f, (u) — E(7p, (u))]| < ﬁ Therefore,
the family of events (A )y, holds with exponentially high probability, i.e. there
exist Ny and 7 > 0 such that P (Afvyé) < exp —N" for each N > Ny. Our strategy is
to replace ¢ with a certain random variable C~€ such that 56 = ¢ on Ay, and which,
considered as a function of x, is Lipschitz with constant NWE In order to build C~€, we
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consider a smooth function g¢(t) satisfying g(t) =t if t € [-1,1], g(t) = 0 if [¢| > 2,
g(t) >0ift >0, g(t) <0if t <0 and |g(t)| < 2|¢| for each t. We then define gn ((t)

by
Ne (VN
gNe(t) = Winkd (—Ne t) (3.24)

It is easy to check that gy verifies:

€ 2N¢© 2N¢©
() =tif |t] < , (t) =0if [t| > —, ()] < for each t
onA(t) = L] < T v 0) = 03 1 > 2 fan (0] < o
(3.25)
and
2N¢© 2N¢©
gn,(t) =0if [t > lgne()] < mif [t] < (3.26)

VN’
We also introduce a C; function §(t) verifying g(¢t) = 1 if t € [0,2], and g(¢t) = 0 if
t does not belong to [—1, 3]. We then define (. by

&= 37 [ drdydm@))rx.2) (3.21)

where f(x, z) is defined by

o o 12
1= 0 (T ) |2 w0 7P s R Q) )

m=1 =—(L-1)

(3.28)
It is clear that Ce ¢ on the set Ay . In the following, we first estabhsh that, con-
sidered as a function of x, Ce is a Lipschitz function with constant . This property

will imply thaté ICe —E(()| < JX/[ Next, we justify that if |, — (CE)| < &, then
|¢ —E(¢)| < 5. As this property will be true for each € > 0, we will deduce from
this that [¢ — E(¢)| < 57 as expected.

In order to show that CE is a Lipschitz function w1th constant &, we establish

that the norm square of the gradient of ¢, is a O& M2 ) term.

Lemma 3.2. Under the assumptions of Theorem [31], the inequality

M N+L-1 : : %
V> = > Ot 856 _mNz (3.29)
= = OXmg.i 8xm0)i M

holds true for some nice constant k > 0.

We just evaluate the contribution of the derivatives w.r.t. the variables X, ;

because the derivatives w.r.t. x7, , can be addressed in a similar way. It is clear

K
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that
AC. 2

8xm0 i

of

mew-

2
< 372 [ dedy [own(0))]°

so that Lemma will be established if we choose k£ > 4 and prove that

M N 2

< N?¢ Py(|2|) P, (ﬁ) (3.30)

where Py and P are nice polynomials, with deg(Ps) < 4.

We now observe that the derivative 9 f/0Xn, i is the sum of the followings three
terms:

* L—-1

. (| %m0 |12 Xino.i o R/

Thoi =8 () 22 |8 el () 7D (R Qu (- 0)
u=—(L—1)

9 L—1 P
Tﬁmfg(M) S (5 @) 2o o RY2 Q) (—0)

8Xm0’i

=i () (8 o) ronnmz, 22m
mo,i_zg m Z gN,e(Tr, (1)) T(Dm, L mo)Lm —u

m=1 =—(L-1)

We first address the behaviour of ) For this, we first remark that

T il
mo,t mo,t!l *

o Bmol®
N+L-1

Now, using the inequality |gn ()] < NT together with the Cauchy-Schwartz
inequality, we obtain

<kl meou2
+L—

<3

L-1
Z IN,e(Prmg (W) — E(Fing (w) 7(Dimg, (R 717{02LQm0 mo))(—u)| <
u=—(L—1)

25 L*l

S O (R L Q) (w)

=—(L-1)

2

<kL

Now, the inequality in (L37)) together with (2.41]) imply that, for each L x L matrix
A, we have

L—-1
> 7Dy L(A)(W)] < & %Tr(AAH) (3.31)
=—(L-1)
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for some nice constant x > 0. Using this for A = R}n/oz I

Qung,mo leads to the
conclusion that
L—1
R1/2
> [P R Q)0 < AT (Qur o Q) - (332
u=—(L—1)
Therefore, we obtain that

| |2 K LN26 |Xm0,|2
™ot (N+L-1) N N+L-1 !V*rg”l<3L

(Qmo mo ng mo)

from where we deduce that

N+L— 1| |2 P LNQelT (Q Q )
- 1ir mo,m mo,m
D [T (NTL-1) N L 0,10 =mo,mo

i=1

and
M N+L-1 2

N2 1 my < N
2 D Ml < v g™ (QQY) <5 5

mo=1 i=1

We now consider > |?. We first remark that

m01| mo,t

N+L-1
and that ‘gEV)E(me (u) — E(7m, (u))‘2 < k. Therefore, a direct use of the Cauchy-
Schwartz inequality and ([B.32]) leads us to

2

<kl 2
—_ lI%mg ll
N+L[/) 1S3

Oy () |
< o7 .
| o Z} =" 1 U\;(r[?l‘? <3 <; 8Xm0,i Tr (Qmo mOQm[))m[))
Using (3:20), we obtain that
N+L-1
Z armo (’U,) K meo ”2
Lt | Oy | T N+L—IN+L—1

and eventually that

1
mzo:z| ol < (@A) <

. Using once more the fact that |gy(t)]> < 4N]\?€

We finally study Zmo AT mo,i

2
and that ‘ g (”’"—Lf’ul) < k, Jensen inequality leads immediately that

St 5 oo () o

mo,t m=1u=—(L—1) mo,i
(3.33)

| 2

2
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In order to evaluate y_, . |T5 ;% we use (Z39) and observe that we can write

T <Dm,L (Rl/z an,m>) (u) = 1n <8Qﬂpm,L(Jz)R;{?L> _1n ( 0Q A)

m,L mew- L mew- L 8xm0,i

where A is the ML x ML matrix defined by A = EmDm7L(J%)R¥?LEﬁ. Lemma

B leads immediately to
k (14 1z]) 1
< LTEV (L =
- N (Imz)3 + Imz

1/2 a(an,m
2|7 (o (R 5022) ) 0
mo,?
Plugging this into the evaluation (3.33]) eventually leads to

1+1z]) 1
T3 12 < N2e ( 1
Z Tong il < 5 (Imz)3 + Imz

m[),’i

2

This establishes (B.30) and Lemma [3.21 Therefore, we have shown that, considered
as a function of x, (. is Lipschitz with constant HNWE. The Gaussian concentration
Ce —E(¢)

inequality thus implies that =< NV

It remains to justify that ’56 - E(fe)’ =< % implies that | — E(¢)] < % For
this, it is sufficient to follow the proof of [29] Lemma 4.1, p.41].

4. Evaluation of the modified statistic ¢,
4.1. Reduction to the study of the expectation of ¢p
In this short section, we show that we can reduce the study of the statistic ¢, to

the study of the expectation E(¢,) up to an error that is dominated by Mi/f' We
express the result in terms of the following proposition.

Proposition 4.1. Let Assumptions [IH3 and [A hold true and let ¢ have the same
properties as in the statement of Theorem[31. Then,

on —E (¢ ! 4.1

’¢N_ (¢N)’<M—\/f (4.1)

We devote the rest of the section to the proof of this result. We first reason that,

without loss of generality, we can replace the function ¢ by a smooth function that
is supported by [—d, «] for some o > g (see the statement of Theorem B for a
definition of ay, ). The justification is the same that we used at the initial steps of
the proof of Theorem [B.1]and is therefore omitted. We therefore focus on this class
functions for the rest of the proof.
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In order to show Proposition [£.I] consider again the Helffer-Sjostrand represen-
tation of ¢ in (B:3), which allows us to write

T = Ox ~Edy = 2Re [ dody0u(0)e) 7T (@Qu(2) - BQu (). (42
T D ML
Here again, the idea is to consider ¢y as a function of the Ne(0, Iy ny—1))-
distributed random vector x defined in ([BI6). We will show that this function
is Lipschitz with constant of order O((M+/L)~'), so that the result follows from
conventional concentration results of Gaussian functionals in (I32) (see also [38]
Theorem 2.1.12]).

Indeed, let Vaﬁv denote the gradient of 5?\, with respect to x. Then, we can
obviously write

‘ - mOZ: g mejzz 8xf::7i

where we recall that x,,,; denotes the ith entry of x,,, the mth block of x, with
dimension N + L — 1. A direct use of Lemma [3.1] shows that

9oy | _ 1+ 1
E < ]\;N/dedy ’5%(@(2)}2 (Imljl (1+@>

8Xm071‘
for some nice constant x, where the integral on the right hand side is finite if we
select k > 4, which is always possible because ¢ is smooth. This concludes the proof
of Proposition (4.1

M N+L-1

> 2

mo:l =1

4.2. Weak convergence of fin (M) and evaluation of E(¢y)

The aim of this section is twofold. On the one hand, we will show that 7t (A) —pun (A)
converges weakly almost surely to zero. On the other hand, we will evaluate the
convergence of the E(¢,) by establishing that, when ﬁ;—ﬁ — 0 (equivalently 8 <
4/5), we have

£Gx) - [ 600w ()] < r 7 (13
for some nice constant k > 0.

We will address the problem by studying 77 Tr (EQn(z) — Tn(z)). We will
study this term by conveniently adapting the tools in [27] to the present context.
First, we study the master equations that define the matrix function Ty (z) in the
statement of Theorem [I.T] and establish existence and unicity of the solution using
again the tools developed in [27, Section 5]. We then establish that, considering a
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sequence of ML x ML deterministic matrices Ay of uniformly bounded spectral
norm, we have

TR (EQy (2) — T (=) An]| < nor

for z in a certain subset of C*, assuming that 3 < 4/5. Even if the subset where
the above inequality holds is not the whole semiplane CT, it will be sufficient to
deduce ([@3) by conveniently adapting the arguments in [2] Lemma 5.5.5].

First of all, we consider here the two asymptotic equivalents T(z),’f(z), as the

solutions to the equations (L20)-(T21).

Proposition 4.2. There ewists a unique pair of functions (T(z),T(z)) €
Sy (RY) x Sy(RY) that satisfy (1.20)-(L.21) for each z € C*. Moreover, one

can find two nice constants n and 7 such that

H (Imz)?
T(2)T"(2) = WIML (4.4)
T(2)T" (z) > %IM (4.5)

The proof follows the steps as the proof of Proposition 5.1 in [27]. To prove
existence, we consider the composition of (L.20)-(L2I)) as a mapping in the set of
ML x ML block diagonal matrices. Using Proposition one can establish that
iterating these two equations one can create a sequence of M L x M L diagonal block
matrices with blocks belonging to the class Sy (RT) that has a limit in this set.
Then, in a second step, it can be shown that this limit is a solution to the canonical
equation. For more details, the reader may refer to the proof of Proposition 5.1 in
[27].

The proof of unicity follows the same path that was established in [27]. More
specifically, assume that T(z), T(z) and S(z), S(z) are matrices solutions of the sys-
tem (20, [L2T]) of equations at point z, and assume that T(z) and S(z) have posi-
tive imaginary parts. Let Tp(z) = 821/2T(2)B£1/2 and Sp(z) = BZI/ZS(Z)BZUQ.
It is easily seen that

T5(2) — Si(z) = 0 (Ts(2) — Ss(z)) (4.6)
where we have defined the operator @5 (X) as
By (X) = 22enSp(2)T (§T(z)@ (X) TT(Z)) Ts(2) (4.7)

where X is an ML x ML matrix. This operator is the analog of @y (X) in [27]
translated to our current matrix model. Operating like in [27] we write @g)o (X) =
®p3o(X) and recursively define @gﬁgl) (X) = QJB’O((I)Q%(X)) for n > 1. By (4.4),

unicity is proven if we are able to show that lim,, @g% (X) = 0 for every ML x
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M L matrix X. Now, using Proposition it is easily established that, for any two
L-dimensional column vectors a, b, we can write

1/2 1/2
(o) %)) mb‘ < [aH (a0 (xx7)) a] [bH (o W) b}
(48)
where @Tg and ®g, are the positive operators defined by
Dy (X) = |2 enTH ()@ (T* ()T (X) T7(2)) T(2) (4.9)
B, (X) = |2|? cnSp(2)¥ (éT(z)ﬁ (X) S’*(z)) SH (2). (4.10)

Thus, by Proposition [[.3] lim,, @g%(X) = 0 will follow directly if we are able
prove that there exist two positive definite matrices Y1 and Y5 such that <I>(n) (Yy)

and <I>(S7;) (Y2) converge towards 0

Lemma 4.1. Let T(z), T(z) be a solution to the canonical equation (.20, [.21)
at point z € C* satisfying Im(T(2)) > 0, and define Tp(z) = le/2T(z)B;1/2. Let
X be a positive semi definite matrixz. Then, it holds that

o5 (X) - 0 (4.11)
and
<1><T"£, (X) =0 (4.12)

as n — oo. Moreover, the series 2 <I>(n) (X) and 312 fI)g;lH (X) converge.

Proof. The proof of the lemma follows the same steps as the proof of Lemma 5.4
in [27] and is therefore omitted. m|

As a consequence of all the above, Theorem [[.T] will be a direct implication of
the following result.

Proposition 4.3. We consider a sequence (Anx)n>1 of ML x ML deterministic
matrices such that supy ||An|| < a for some nice constant a. Then, for each z €
C*, we have

1
L (An(Qn(2) = Tn(2))) =0 (4.13)
almost surely. For any bounded continuous function ¢ we have
ST 0Ream)) = [0 (3)] 0 (1.14)

almost surely.
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Assume, in addition, that ﬁ;—j\j — 0, i.e. that 8 < %. In this case, we have

L
MN

L (AvEQa () - TW)))\ < () (4.15)

ML

when z belongs to a set En defined as

Ey = <c+i/2P Py(1/1 1
N =17 €CH T Pilz]) Pa(1/Imz) <

and where Py and Py are two nice polynomials. Finally, for each compactly supported
smooth function ¢, we have

T (6Reamn) ~ [ ¢<A>duN<A>' <l (4.16)

ML MN

for some nice constant k > 0.

Proof. The proof of (£I3) can be established by essentially following the approach
in [27]. The main idea is to consider the resolvent in (IL30) together with the co-
resolvent, defined as

Qn(z) = (WEB "Wy — 21y) .

Using a trivial modification of [27, Lemma 3.1] one can reduce the problem to
the study of the expectations EQn(z) and EQn(z). We can then introduce two

matrix-valued functions Ry (z) and Ry (z) defined as

Ry (z) = _% (IN Nt (B;l/2EQN(z)B;1/2))_1 (4.17)
Ry (2) = —é (Tre + 5,20 (RE(2)) 351/2)71 (4.18)

which are the analogous of the same quantities in [27, Section 4]. In particular, one
can establish that Lemma 4.1 and Proposition 4.3 in [27] also hold true with these
new definitions, so that

L
MN

S TANEQNE) - Ra ()] < 12

for all z € CT. In order to see this, we need to make explicit use of Assumption
[ At this point, in order to show ([@I3]) and (£I5) one only needs to evaluate the
quantity Ry (z) — Tn(z) using the approach in Section 6 of [27], which essentially
holds verbatim after replacing the operators ®;(X) and ®}(X) with

Bp. (X) = 22enRa(2) ¥ (ﬁJTv(z)@ (X) TJTV(Z)) Ts(2) (4.19)
0fs1(X) = 22en ¥ (TH ()T (Ts () XRa(2) RE (=) ) (4.20)

where now Rp(z) = le/QRN(z)Bglﬂ. In particular, (ZI5) will follow the ar-
guments in [27, Section 6.1], which basically requires the application of Montel’s
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theorem. To see that (Z.13]) implies (LI4) we need to check that (fix)n>1 is almost
surely tight and (un)n>1 is tight (see [I5], Corollary 2.7]). The fact that (in)n>1
is almost surely tight follows from the fact that

M
_ 1 ~1/2 —12 _ 1 1 —1/2.43 —1/2
/]R+ Nji () = - T8 W WhB, m§:1j Tt [R,, "R 1R, 1]
The identity in (226) implies that
1 _
sup ‘LTr [R YR LR 1/2] - 1‘ 50, a.s.

m=1,....M
Therefore, f]w Adin(A) — 1 almost surely, and tightness holds with probabil-
ity one. To verify that (ux)n>1 is tight, we evaluate [, Aduy()) using item
(v) of Proposition [LT] and immediately obtain that [, Adpy(A) = Iy and
J+ Mpn(X) =1, so tightness established.

To establish (£.I5) when 8 < 4/5, we follow the corresponding arguments in [27,
Section 6.2]. Regarding ([.I6), it will be a direct consequence of [6, Lemma 5.5.5]@
provided that we are able to show that, given two nice constants Cy, C, there exist
three nice constants Cy,Cs, C3 and an integer Ny such that

L 1
—Tr E T C
iz Y (EQn(2) = Tw(2))| < Cogre e (Imz)Cs
for all z inside the domain |Rez| < Cp, N~ < Imz < C{ and N > Ny. For this,
it is sufficient to to follow the arguments used to establish Theorem 10.1 in [26]. O

Remark 4.1. We notice that (@I6]) is just established for compactly supported
functions ¢. In order to extend (€I0) to non compactly supported ¢, it would be
necessary to establish that the support of p v is included for each IV large enough in
a compact subset independent from N. While we feel that this property holds, its
proof does not seem obvious. In Section [Gl we provide an example of non-compactly
supported ¢ for which ([£I0) still holds.

5. Approximation by a Marchenko-Pastur distribution

Let us denote by tn(2) the Stieltjes transform of the Marcenko-Pastur law fipp ¢y
associated to the parameter cy = % In other words, for each z € CT, tn(z2) is
the unique solution of the equation

tn(z) = — (5.1)

—z+ lJrCNtN(Z)

3The statement of [6, Lemma 5.5.5] requires that the function ¢ vanishes on the support of .
However, the reader may check that this assumption is in fact not needed.
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for which Im (¢ (2)) > 0. If T 5 (2) represents the deterministic equivalent of Qn (2),
solution of the equations (20, [[2T)), the following theorem establishes that, for
cach v < 70, v # 1, the Stieltjes transform 5+TrTy(z) is well approximated by
tn(2), up to an error of order O(L~2min(17),

The strategy of the proof follows two steps. In a first step, we will establish
that the spectral norm of the error between the two Stieltjes transforms || Ty (z) —
tn(2)Iarz] is upper bounded by a term that decays as L~ ™17 for each v <
0,7 # 1. In a second stage, this result is used to obtain a refined convergence rate
for the normalized trace of the result, so that, in fact

1 1 1

for each z € C* and for two nice polynomials Py (z), P(z).

We observe here that a direct application of the above result to the Helffer-
Sjostrand formula implies (L25) in Theorem [Tl Indeed, observe that in this case
we can write

/ S\ djin () — / (Nt v (V) =
R+ R+

= %Re/D dx dyg@k(qﬁ)(z)ﬁ’ﬁ (Tn(z) —tn(2)IaL) -

If k is taken to be larger than or equal to the degree of P, in (B.2]), this directly shows
([C27). On the other hand, from the convergence of 377 Tr (Tn (2) — tn(2)Iasz) for
all z € C" to zero together with the fact that both (ux)n>1 and (fmpey )N>1 are
tight@, we see that un — fmp,cy converges weakly to zero. But since pipp ¢, in turn
converges weakly t0 fmp.c,, the proof of Theorem [[[T]is completed.

Remark 5.1. We again notice that (L.25) is established for compactly supported
smooth functions ¢. As in the context of Remark [4.1] the generalization of (I.20])
to non compactly supported functions would need to prove that the support of
is included in a compact independent of N.

We will present the two stages of the proof in two separate subsections that
follow. In order to simplify the notation, we will drop from now on the subindex N
in all relevant quantities, i.e. tx(2),tnx(2), cn, Tn(2), Tn(2), etc.

4Tightness of (un)n>1 has been established before, whereas tightness of (mp,cy)n>1 follows
from the fact that cy — cx.
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5.1. Bounding the spectral norm ||Tn(z) — tn(2)Inz]|

The objective of this section is to prove the following result.

Theorem 5.1. Under Assumptions[3, [3 and[d, there exist two nice polynomials Py
and Py as given in Definition[8, such that for each v < vy, v # 1, the inequality

1

1
T () — oM < iy PP 1 ) (5.3

holds for each z € CT.

We devote the rest of this section to the proof of Theorem (.1l First of all,
it is well known that the function #(z) = ct(z) — 1=¢ coincides with the Stieltjes
transform of the probability measure cfmp e + (1 — ¢)dp and is equal to

- 1

so that ¢(z) can also be written as
1
t=) = - 2(1+1(2))

Consider here the two matrix-valued functions Tmp(z) and T,,,(z) defined by

1 L _ _ -1
Tmp(z) = —; (IN + CN\IJT (BL1/2 t(Z)IML BL 1/2)) (55)

Toplz) = = (Tarr + 8,20 (T0,(2)) B,2) (5.6)

According to Proposition [[L2, these functions belong to Sy(RT) and Sy (RT)
respectively, and verify the various properties of functions Y (z) and Y (z) defined
in the statement of that proposition. In order to establish Theorem [5.1] we define

Amp(2) by
App(2) = t(2)In — Tp(2) (5.7)
and express t(z)Iy — T(z) as
t2) e = T(2) = (Tmp(2) = T(2)) + Amp(2)- (5.8)

We also define t5(z), Tgmp(2) and Apmy(2) by ts(z) = B,/ t(2)Iar B, /2,
Ty mp(2) = le/2Tmp(z)le/2 and Agmp(2) = le/2Amp(z)Bgl/2 respectively.
Using the definition of T, and T, as well as the canonical equations (L.20] [[.21)),
we obtain easily that

Ts.mp(2) — Tp(2) = P2 (ts(z) — Tn(2)) (5.9)

where ®p 5 is the linear operator acting on ML x M L matrices defined as

Bpo(X) = 22T mp(2)¥ (wa(z)ﬁ (X) TT(Z)) Ts(2). (5.10)
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Using this definition, we can re-write (5.8) as
tB(Z) — TB(Z) =g (tlg(z) — TB(Z)) + AB)mp(Z). (5.11)

Our approach is to use Proposition in order to establish that

+oo
ts(z) — Ta(z) = Y O (Apmp(2)) (5.12)

n=0

and that [[tp(z) — Tr(2)|| < C(2) ||AB,mp(2)||- The identity in (53) will then be
established if we are able to show that [|Ag my(2)|| < C(2) tmmasy if ¥ <70, 7 # 1.

We begin by evaluating the spectral norm of A,,,(2) and Ag ,,(2). For this,
we observe that T (z) is given by

T, (2) = == (I +ct(=)T (B7")) "

z

where we can express ¥ (le) as

U (B 1) z/li i Smw)a (MR ap(v)dy (v)dE(v) dv
L 0 Mm—l m L m,L L N N :

Let us denote by Ex the N x N matrix defined by

M

Ey _/0 <% > eme (u)> dy (v)dE (v)dv (5.13)

m=1

where €, 1.(v) is defined by
€m,L (V) = Sm(v)all (v) ’R;ﬁLaL (v) —1.
It is clear that ¥ (Bgl) =1y + Ep, so that ’i‘ﬁp(z) can be written as
= t(z) o
TL (2) = |—2(1+ct(2) (Iy + ———E
1400 = |-+ ate) (v + 22 my )|
or equivalently as
’i‘ﬁp(z) =1(2)Iny (In —czt(2)t(2)En)
=1(2)Iy + czt(2)(2)En (In — c2t(2) 1?(Z)EN)71 .

1

In order to express T,p(2) in a convenient way, we define I'(z) as the ML x ML
block diagonal matrix given by

T(z) =¥ (EN (Inp — c2t(2) f(z)EN)*l) . (5.14)
Using that U(Iy) = By, we obtain

o) = [ (14 1Mo+ et 008, r ;)]
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or, equivalently,
Typ(2) = 1(2) (Lrz — c(2t(2)E(2))*Ts(2) "
= t(=)Iarr + H(2)e(2t(2)(2))*T5(2) (L — e(=t(2)8(2))°Ts(2))
where T'5(z) = B, "/’T'(2)B;,'/*. We eventually obtain that
Amp(2) = —t(2)e(=t(2)1(2))°T(2) (I - e(2t(2)i(2))*Tp(2)) " (5.15)

The asymptotic behaviour of A,,,(z) depends on the behaviour of matrix Ey,
which itself depends on the properties of the terms (€,,,(v))m=1,....p. The following
Lemma, established in the Appendix [D] is the key point of the proof of Theorem
5311

Lemma 5.1. For each v < o, it holds that
K

sup sup |ém.p(V)| < ————— 5.16
mZpl VG[OI?l] | 7L( )| Lmin(y,1) ( )
for some nice constant k (depending on ) if v # 1 while if vy =1,
1 L
sup sup |em. (V)] < K —2 (5.17)

m2>1ve(0,1] L

In the following, we use Lemma [5.1] for a value of v as close as possible to g
in order to obtain the fastest speed of convergence for sup,,>1 Sup,¢(o,1] l€m, (V)]
If v9 <1, v <99 <1 cannot be equal to 1. If 79 > 1, we will of course consider a
value of v for which 1 < v < ~. Therefore, in the following, we assume that v # 1.
If 79 < 1, we thus obtain that for each v < g

sup sup |em, (V)| < s (5.18)
m>1ve[0,1] Ly

holds, while if vy > 1,
sup sup |eém (V)] §% (5.19)

m>1ve(o0,1]

Noting that Ey is the N x N Toeplitz matrix with symbol ﬁ E%:l em,L(V), we
immediately infer from this discussion the following corollary.

Corollary 5.1. If vy < 1, then, for each v < 7y, there exists a nice constant K

depending on v for which ||En| < . If 0 > 1, there exists a nice constant &

such that |En| < %

In order to control the norm of I'(z), we mention that for each z € CT,
then c|zt(2)t(2)|? 1 (see e.g. Lemma 1.1 in [26]). Therefore, the inequalities

|zt(2)t(2)] < % nd clzt(2)i(z)] < /¢ hold on CT. Corollary G thus im-

plies that for L large enough, ||[Iny — czt(2)t(z)En|| > 1 — \c|[Ex| > 3 and
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| (In —czt(z) t~(z)EN)71 | < 2 hold for each z € C*. For L large enough, we
thus have |[Ey (Iy — czt(2) f(z)EN)_l | <
property which also implies that |T'(z)| <

7me(7 ) for some nice constant x, a

Tmme because if X is any N x N
matrix, then ||¥(X)|| < $maq [|X||, where we recall that s,q, is an upper bound on
the spectral densities (cf. Assumption B]). We also notice that for L large enough,

[Tar — c(2t(2)i(2))?Ta(2)|| > 1 — |Ts(z)|| > 3 for each z € C*, and therefore,
that || (Inr — c(2t(2)t(2))*Ta(z ))71 || <2on (C*. This, in turn, implies that

C(2)
1Amp ()l < e (5.20)
and also ||Ag mp(2)|| < % for L large enough, as we wanted to show.

We now establish that (512 holds. We first prove that for any ML x ML
o)

block matrix matrix X the series Z ®55(X) is convergent. For this, we use
Proposition I3 According to Lemma IH, S ,;2, (Y) < 400 for each positive
B

matrix Y. In order to establish a similar property for operator ®, . , we notice
that a simple calculation leads to the identity

mReenslE) g el ()8, o, ()

Imz Imz

if 2 € C*. This implies that

Imtp(z)  —1/2 H ~1/2 ImAgymp(z) Imtg
R L e LR S A

Noting that [|Ag mp(2)| < —CE) - Lemma B.1 in [16] implies that

[min(y,1)
ImAB mp(2) C(z)
Imz = [min(y,1)°

Proposition .2 implies that Ty, (2)TH () > C% I for each z € C*. Therefore,

if we denote by Y1 (z) the matrix Y(z) = B, 1/QTmp( )T (2)B, 2y %7

then, Y1 (2) > ﬁ Iy > 0if z € Fy where Fy is a subset of CT defined by

1 1

for some nice constant k. Using the same arguments as in [27], we obtain that for

each z € Fly, the series :zoo (1)51:2 - (Y1(z)) is convergent. Proposition [[.3] implies

that for each positive matrix Y, 3720 (1)51:2 oy (Y) < +o0 and that for each matrix
X, the series Y, @(Brf% (X) is convergent if z € F. Therefore, (512) holds true
for z € Fy, and

1/2 1/2

—+oo

S0 (Apmp(2))

n=0

Z@&"B (Tnz) Z@ (Tnrz)

n=0

< HABJTLP( )H
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It is easy to check that ::B @SEQ . (Inr) < C(2)Ipg for z € Fy. Therefore, we
obtain that ||tp(z) — Tg(2)|| < ) for each z € Fy. It remains to evaluate

Tmin(y,1)
[lts(z) — Tpr(z)| if z does not belong to Fy. For this, we remark that |[tp(z) —
Ti(2)| < |Its(2)|| + |Tr(2)|| < C(2). As z does not belong to Fi, the inequality

1< =& 1olds for a certain C(z), from which we deduce that ||[tg(z) —Tg(2)| <

[,min(1,y)
C(z) . . —-1/2 . —-1/2 1 .
T as expected. Since the matrix B, '~ verifies By '~ > \/mIML, we obtain

(5.3) for each z € C™.

5.2. Bounding the term ﬁTr (tn(2)Imr — Tn(2))
We begin by considering the identity in (5.11J), and obtain that
{2 = T(2) = By 2@ (B2 are = T(2)B; ?) B+ Aup(2) (5.22)

which directly implies that

Hz) — ﬁT‘r(T(z)) _ ﬁﬂ (5 (8,2 e — T(2))B; ) Br) +

1
+ I (2). (5:23)

We introduce the operator (1)723,2 defined by the property that, for any two M Lx M L
matrices X, Y, we have

LTr (XP32(Y))

o Ly (ol ,(X)). (5.24)

T ML

This can be seen as a transpose operator of ®p 5. Using (A1) it can be expressed
in closed form as

Ol 5(X) = e (TTU(TEXTr,n) T, )

Using (5.24)), the expression in (5:23)) can be rewritten as

1 1 ~1/2 ~1/2
) = T TH(T() = 7 T () Tare, — T(2)B; @l 5 (BL)B, )
1
+ mTr(Amp(z)). (5.25)
In order to simplify (5.25), we observe that there exists C(z) = Pi(|z])Pa(5x;) for
some nice polynomials P; and P, such that
_ C(z)
1
[Ts(z) —t()BL || < Tmn(y,1)
_ C(2)
1T B,mp(2) — t(2)BL || < Tom(yD)
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and
||Z’I‘(z) —2t(2)In| < %
Hz’i‘mp(z) —2t(2)In| < %

which follow directly from Theorem B and (5.20). From this, it is easily checked
that for each matrix X, ®% ,(X) can be written as

O (X) = e(2t(2)1(2)) ¥ (U(BL'XB.Y)) + X(X) (5.26)
where Y is a linear operator verifying
1|
[TX)) <r C(Z)m (5.27)

for each z € C*. By (5.26), and using the fact that U(B;') = Iy + Ex and that
U(Iy) = Br, we obtain

DL o (B) = u(2) ¥ (B(B.")) + X (BL) = u(z) (BL + ¥(En)) + Y(BL)  (5.28)

where we have introduced the definition u(z) = c(2t(2)#(2))%. We can express the
above equation as

@%)2(52) =u(2)Br + Y(Br) + u(2)V(Ep). (5.29)
Plugging (5:29) into (5:25), we obtain
1

() = ) = u(e) (1) = ETHTED) + 5 T () + ()

where 01(2) is the error term defined as

01(z) = ﬁTr ((t(z)IML — T(Z))le/2(T(BL) i u(z)\IJ(EN))le/2) .

We recall (see e.g. [20], Lemma 1.1) that u(z) verifies 1 — |u(z)| > % on Ct,

where C(z) = Pi(|z])P2(5x;) for some nice polynomials Py and P,. Therefore, we

have the inequality
1

1
t(z) — mTr(T(z))‘ <C(z) mTr(Amp(z))‘ + |61(2)| (5.30)
The bound in (53) together with Corollary [B.1] and the properties of operator Y

imply that |01(2)] < % As a consequence, in order to complete the proof of

(E2), we only need to establish the following fundamental Lemma.

Lemma 5.2. Under the above assumptions and for any z € C*, we have

L n(A(2)| < 28

ML — [2min(y,1) (531)

where C(z) = Py(|z|)Pa(55) for two nice polynomials Py and P;.
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To justify (5:31]), we consider Eq. (5.15) and express (Inr, — u(2)Tp(2))"! as
(I = w(2)T5(2)) ™" = T +u(2)Ts(2) (Iarr — u(2)Ts(2)) 7
Hence, A,,,(z) can thus be rewritten as
Amp(2) = —t(2)u(z)T5(2) + Amp1(2)
where A,,p.1(2) is now defined by
Ampa(2) = —t(z)u*(2) (T5(2))* Doz — u(=)Ts(2) "

Using the fact that ||1"B( I < z=me on CT, we obtain immediately that
Amp1(2)] < m for each z € C*. We finally remark that I'z(z) can be

written as

T(z) = B, PUW(EN)B, 2 + c2t(2)H(2)V (B (In — c2t(2)i(z)En) ") . (5.32)

The spectral norm of the right hand side of (532) is clearly upper bounded by a

term such as zzmfsey for each z € C*. Therefore Tr(Amp(z)) can be written

T
as
1T A () = —H(2)ule) g THO BB + () (5.33)
L 2)) = —t(z Ll ~N)BL 2(z .
where d3(z) verifies |2(2)| < % for each z € C*. Using (I.4I)), we notice
that 1 Tr(U(Ey)B; ") is equal to
1 _ 1 ——— 1
77 (Y (EN)BL) = STe(BxT(B, 1) = T (Ex(Iy + En))
so that 417 Tr(App(2)) can in turn be rewritten as
1
MLTr(Amp( 2)) = —t(z)u(z)NTr(EN) + 03(2) (5.34)
where [03(z)] < % for each z € CT. We complete the proof of (5.3I)) by
simply noting that
Tr(Ey) = 0. (5.35)

This can be shown by noting that we can express R,,,1 as

1
Rm’L:/(J Sm(u)dL(V)df(u)du.

As a consequence of this,

1
1
/ Sn(v)all (R ar(v)dy = S Tr [R;;LRM} =1
0

which directly implies that

/0 em,L(V)dv = /0 Sm(v)al (v) ;;LaL(V)dI/ —1=0.
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However, from the definition of Ex we see that

1 M 1
Tr (Ey) = 57 > /0 em.r(V)dv =0
m=1

which completes the proof.

6. Numerical Validation

The aim of this section is to validate the asymptotic study carried out above via
simulations. To that effect, we consider a simple example in which the M indepen-
dent time series are all autoregressive processes of order one with parameter p and
unit power. By this, we mean that we generate each time series independently by
the recursion Y, nt1 = pYm.n + €mn Where ey, ~ Nc(0,1 — [p|?).

Let us first compare the empirical eigenvalue distribution of the sample cross
correlation matrix ﬁcom 1 with the measure py and the Marchenko-Pastur distri-
bution with parameter cy. Figure [l represents the histogram of the eigenvalues of
ﬁcom 1, together with the Marchenko-Pastur distribution iy, ¢, for different val-
ues of M, N, L. In general terms, the Marchenko-Pastur approximation provides a
relatively good approximation of the actual eigenvalue density. In general terms, we
observe that the Marchenko-Pastur law is a very good approximation of the actual

empirical eigenvalue distribution, even for relatively low values of M, L.

Next, consider a correlation detection test statistic consisting of the sum of
the squared value of all the off-diagonal entries of ﬁcorr, . As mentioned in the
introduction, this is reasonable test since under Hy the true cross-correlation matrix
Reorr,. is equal to an identity. This corresponds to a linear spectral statistic of

~

Reorr,, built with the function ¢(A) = (A — 1)2.

Remark 6.1. We observe that this function is not compactly supported so that
in principle the asymptotic rates predicted in items (ii) and (iii) of Theorem [Tl
are not guaranteed to hold. However, we claim here that these two items still hold
for the choice ¢(\) = (A — 1)2. Indeed, consider first item (ii) in the statement
of this theorem. The only point in the proof of this item where the hypothesis of
compactly supported ¢(A) is used is in order to establish (£I6). However, for this
choice of ¢(A) it is possible to compute ﬁETr (qﬁ(ﬁcorr, L)) in closed form as well
as [ ¢(A)dun (X), and to establish that

TET (6(Reons) = [ 6Ndin (V) (6.1)

so that ([@I6) is, in fact, trivial. Indeed, the quantity on the left hand side can
be computed by using conventional formulas on the expectation of four Gaussian
random vectors, whereas the quantity on the right hand side can be evaluated by
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Histogram of the eigenvalues of Reorr. vs the MP dist, M=10, N=600, L=80, p=0.5  Histogram of the eigenvalues of Reorr.L vs the MP dist, M=80, N=600, L=10, p=0.5

0 05 1 15 2 25 3 35 4 45 0.5 1 15 2 25 3 35 4 45 5
eigenvalues eigenvalues
(a) M =10, N = 600, L = 80. (b) M =80, N = 600, L = 10.

Histo%rsam of the eigenvalues of R, vs the MP dist, M=10, N=1000, L=80, p=0.} Histo%rsam of the eigenvalues of Reo.z vs the MP dist, M=80, N=1000, L=10, p=0.!

|

14 145

0 0.5 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35
eigenvalues eigenvalues
(¢) M = 10, N = 1000, L = 80. (d) M =80, N = 1000, L = 10.

Fig. 1. Histogram of the eigenvalues of ﬁcorr, 1. and Marchenko-Pastur law for different values of
M, N, L with p = 0.5. Upper plots correspond to a situation where ¢y > 1 whereas lower plots
deploy the case ¢y < 1.

relating the second order moment of the measure pin () with its Stieltjes transform.
In both cases, we can establish that both quantities are equal to

/¢(>\)d/,LN(>\) =cn + CNﬁTI" (BZI\P(EN)) (6.2)

where we recall that Ey is defined in (5.13). Regarding item (iii) in Theorem [I1]
we simply need to observe that [ ¢(N)dpmp,cy (A) = cn, so that

[ 6dnn ) = [ 6Nty ) = en T (B EEN) . (63)

Consequently, a direct application of Corollary[5.1]thus leads to the conclusion that
(T23) also holds for this particular choice of ¢(A). We may therefore consider this
statistic to validate the results of the paper.

In order to assess the error between c;AS ~ and the corresponding integral of ¢(\)
with respect to the Marchenko-Pastur distribution, we considered here a set of
10* realizations of the multivariate autoregressive process described above. In each
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experiment, we fixed the three parameters c,, N and § and considered a set of
M = [(c.N)'~#] independent time series, where [x] here denotes the integer that is
closest to x. The number of time lags was therefore fixed to L = [(c.N)?]. Figure
represents the error between (;3N and its corresponding asymptotic limit as a
function of g for different values of N. The errors are represented as the square
root of the empirical mean of the corresponding normalized difference, averaged
over the 10* realizations. The plots on the left hand side represent the total error
oy — J #(N)dpmp,n whereas plot on the right hand side represent the two main
constituent errors, namely: “Error 1”7 (solid lines) represents the square root of the
empirical mean of the square of ¢y — J ¢(N)dpn, and “Error 27 (dotted lines)

represents [ ¢(A)dun — [ ¢(N)dpmp,n as given in (6.3).

These numerical results tend to confirm the fact that the error between the
considered statistic and its asymptotic deterministic approximation tends to be
dominated by two different phenomena depending on whether M <« L (large /) or
M > L (small 8). In the fist case, the main contribution to the error corresponds
to the term ¢y — J ¢(N)dun (Error 1). We recall that, since the correlation se-
quence considered here decays exponentially to zero, this error term is dominated
by N~(1=A) which in particular increases with 3. Conversely, when M > L (small
B), the error is dominated by the difference between the two measures uy and
fmp.n- We have seen that this error term is dominated by a term of order N =28,
which in particular decreases with 3. Observe also that the optimum choice of 3
appears to be close to 1/3, which corresponds to the case where the two error rates
coincide.
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APPENDICES

A. Proof of Lemma

A classical calculation (see e.g. Theorem 4.3.2 in [5] in the non Gaussian case) leads

to
L—2

El§L .y, (V)|2 — Z (1— |l|/L)Tm(l)672iwlu'

—(L-2)
Taking into account that S, (v) = Y, rm(1)e~2™", we obtain immediately that
El€L.y,,(V)* = Sm() + €m,1(v)
where €, (V) is defined by

. 1 L=z2 .
emr() == Y rme ™ — < L7 (De 2.
[l|>L-1 —(L-2)
It is clear that
=
lem () <Y rm (Dl + 7 > llrm@)-
[|>L-1 —(L-2)

Using the bound in (ILI4) we directly obtain an upper bound of the first term,
namely

Z Irm ()] < m

[|>L—1
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I 50 > 1, Y7 o) llrm ()] < [lrmlw, and it holds that + 57 o) [l|rm(1)] < 4.
Therefore, if v9 > 1, we obtain that

K
lem, (V)] < i
If 79 < 1, we equivalently have
L—2
Y D] < L0 rm -
—(L-2)
Therefore, the inequality
1 2 K
- lrm ()] < 75—
L _;2) (L — 1)
holds, as well as
K
|6m;L(U)| S L’YO .

This completes the proof of Lemma

B. Proof of Lemma [2.5]

In order to establish (242), we first recall that ||7/€m7L - Rl =
max (M ~1/2, L.77°). We consider some & > 0 for which N° max (M~/2 L=%) — 0
and introduce the event £y defined by

En = { max IR,z = Rzl < N° max (M1/2,L7°)} (B.1)

Then, the event £y holds with exponentially high probability. In order to establish
243), we have to evaluate P(||X,, || > N¢max (M1, L=2%)) for each ¢ > 0. For
this, we express P(|| X, 1| > N¢max (M1, L727)) as

P(|€m,c] > N max (M~ L727), En)+P (|| X ]| > N max (M, L727°), &%) .
Therefore, it holds that

P(| Xzl > N max (M ™", L727°)) <
<PEFK) +P (| Xzl > N max (M~ L721), Ey).
In order to establish ([Z43]), we thus just need to prove that there exists a v > 0
such that P (|| X z|| > N€max (M ~1/2, L=7),Ex) < exp(—N") for each N large
enough. For this, we remark that for each N large enough, on €y, all the eigenvalues

of matrices R, 1, are enclosed by the contour C. Therefore, on €y, the equality

=12 1 1

~ -1
Rt =5 | 75 (Ronz = ALz)  d (B.2)
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~ -1
holds. We note here that (RW L — )\IL) can be written as

(ﬁm,L - /\IL)_l = (R — M) '+

— (ﬁm,L — /\IL)_l (ﬁm,L - Rm,L) (Rm,L - )\IL)71

so that, by iterating this formula, we obtain

(Rt =Mi) =Rz = Ma) ™" = (Ronz = M)~ Aunp (R = ALp) '+

+ (ﬁm,L - )\IL) At (Ront — ML) Apor, Ry — ML)

We deduce from this expression together with (2.34) and (B.2) that on Ex we can

write
. _ 1 1 _ _
R1/2—R1/2:——/ R =M A (Rowr — M)t dA
m,L m,L 2Z7T c. \/X ( ,L L) L ( L L) +
1 1 ~ -1 B
3 | (RWL _ /\IL) At Ronp = MNz) ' Apr (Ronp — ML)~ dA.

)
(B.3
Now, it is clear that on the contour C, |\%| and the spectral norm of (R, 1, — M) ™"

are upper bounded by a nice constant. This property also holds for (ﬁm L—Mp)™ !
on the event £y. Therefore, on £y, the spectral norm of the second term on the
right hand side of (B3) is upper bounded by k||A,, 1||?, which is stochastically
dominated by max(M ~!, L=27). This, in turn, establishes that there exists a v > 0
such that P (|| X .|| > N max (M !, L72%),Ey) < exp(—N7) for each N large
enough. This completes the proof of Lemma

C. Proof of Lemma [3.1]

We first express matrix W7} in terms of vector x,,. For this, we observe that for
each I = 1,..., L, the N-dimensional vector (ym,i;--.,¥Ym N+i—1) can be written
as

(- I
(ym,h s 7ym,N+l—1) = meN(_;,_Ll_)l ( (J)\/)

- 1/2 —-1 (In
= XmRm,N+L71JN+L71 ( 0 >
Therefore, matrix W7} can be written as

1/2
XmRm,N-i—L—l

Wi - L () (1)

1/2
XmRm,N+L—1JN+L—1
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We recall that Wy is the matrix Wy = ((Wx)7,..., (W]LV)T)T, and that Ry =
Wy WHE. Using this notation, we can write

OQN (2 1 ORp .
) (e 5,2 DR 512 )
1/2
H,R'm{o N+L-1 I
— L Q)8 2B,, s (N)WEBL”QQN@
VN -1 0

1/2
e Ry NL-1I N+ L
where we recall that E,,,, is an ML x L selection matrix with entries (E,,)i,; =
di=(mo—1)M+; and where e; denotes the ith column of Iy 1. We introduce the
matrix Hy (z) defined by

Hy(z) = L (I(])V> WRB, 2Qu(2)ANQn (= B, P

It is easily seen that

1/2
€ Rmo,NJrLfl

. <8QN(Z) AN> _ L : Hy(2) Epng -

ML Oy i HR1/2 J- (L— 1)
mo,N+L—1Y N+L—

If we denote by f;"° the I-th column of E,,,, we can re-write the above expression

as
2

1/2 -1 m
i Z HRn{U N+L— 1JNSrL21 Hy(2) £

mTf( By MV

M2

Consequently, a direct application of Jensen’s inequality leads to

’mT‘f( D )

2

L
m -1 1/2
ﬁfz (£ ) HE (2 J§V+2 1Rm/o N+L—18i%

1/2 -1 m
HRm/o N+L— lJN(-l—L—)l Hn(2) f™.

Hence, using ), e;e;" = Inyr—1 and Jg\l,JrlL)flRmo,NJrL_le}(J:Llf)l < kIntp—1, we
obtain
1 oQn(2) 2 1 "
_ <K——
2. MLTr< s N MMLTF(H (2)Hy (2))

m(),i
so that, inserting the expression of Hy(z) above,

2

1 0Qn(z)
<
mzz ML <axm0,i Av )| <
K 1 _1/2 _1/2 i g1/2
< T (B 2QE () AR QE ()8 WA WL Qu(:) AnQu ()8, 7).
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Finally, using the resolvent identity 821/2WNWﬁB£1/2QN(Z) =TIy +2Qn(2),
we obtain

H ~1/2v WHB~/2 < b 1 N <1+|z| 1 B
QN (2)B, NWiyB, QN(Z)H_Imz +Imz = Imz +Imz

so that (B21) follows directly from
2

1 (0Qu() e 1t (. 1N 1 L
<
mzi MLTr(axmo,i Av)| <378 e (U i) a1 (AvQu()BL QN (:)AY)
K
<

1 1 1 -

D. Proof of Lemmas [5.1]

The proof of Lemma [ follows from the observation that the term

alf (V)R;}LaL(u) can be expressed in terms of the Szegd orthogonal polynomials

associated to the scalar product
1
(ko) = / S ()21 g, (D.1)
0

For each integer I, we introduce the monic orthogonal polynomial ®;(z) defined by
™ (2) = 2t = Zlsp(1, z,..., 27 (D.2)

where the symbol |A stands for the orthogonal projection over the space A in the
sense of the scalar product (D.I). We denote by Jf’m the norm square of @l(m), and

define for each [ the normalized orthogonal polynomial (bl(m)(z) by
")

m
0y

o™ (2) =

(D.3)

It is well known that the sequence (07"™);>¢ is decreasing, that o3 = r,,,(0), and
that lim; 4 o0 Uf’m = 2™ coincides with exp fol log S, (v)dv. Tt is clear that the
normalized orthogonal polynomials satisfy

1 *
<¢lm),¢l(,m)> 2/0 qﬁl(m)(em””) (¢l(fn)(62“w)) Sm(v)dv =6, .

In the following, we also denote by Q)l(m)*(z) and (bl(m)*(z) the degree [ polynomials
defined by

B () = (2E) ol ) = 2 (A7)

Noting that ®; is for each [ a monic polynomial, it is clear that <I>l(m)*(z) can be
written as

l
O (2) =14 a2 (D.4)
k=1
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for some coefficients (a,(ﬁ))k:17,,,,l. Moroever, <I>l(m)*(z) coincides with
@l(m)*(z) =1—1|sp(z,2°%,...,2")

and the /-dimensional vector al( m) (ag’?), . al(T))T is given by

1
( (m)) = 0'l Rm 41 (3] (D5)

a
where e; is the [ 4+ 1-dimensional vector e; = (1,0,...,0)7. It is moreover easily
checked that
l
Ym,n — ym,n|sp(ym,n—lu B 7ym,n—l) = Ym,n + Z a](gj;)*ym,n—k (D6)
k=1

where the orthogonal projection operator is this time defined on the space of all
finite second moment complex valued random variables. For more details on these
polynomials, we refer the reader to [37] and [13].

The matrix ’R L can be written as

1 1
oy’ 011
where A, 1, is the upper-triangular matrix defined by
1 ag 1) aé 2) . a(Lm)l L—1
0 1 ag 2) a(L"i)Q)L_l
0 ... ... 0 1

In order to see this, simply observe that R, A, 1 is lower triangular because
of (D.5) and the fact that RZ i41 = Jip1Rmis1Jigr. Since AHL is also lower
triangular, so is the product AWLRm,LA .1.. However, matrix AWLRm,LAmL is
also hermitian, which implies that it must be diagonal. Close examination of (D.5])
reveals that its diagonal entries are equal to al2’m forl =0,...,L— 1. Inverting the
corresponding equation we obtain (D).

Using the above decomposition of the matrix R;: ;, we immediately obtain that

aL(V) AL = e—2i7ruq)§m)*(e2i7ru)

go ey

1 3 ™m)* ;
ﬁ (1, 6_2”'—([’_1)”(1)27)1 (621771/)>

and consequently

ar (W R, ar(v Z 6™ (272, (D.9)
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We first explain informally why, for each m, S, (v)ar (v)? R ', ar(v) —1 converges
uniformly towards 0. For this, we need to recall certain results that are summarized
next.

Since the spectral densities S, (v) are uniformly bounded from below, we can
define the cepstrum coefficients (¢, (k))rez, namely

1
em (k) = /0 log Sy, (v) e*™ ¥k qy,

We notice that lim;_, 4 Uf’m = 0™ coincides with exp ¢,,(0). Assumption [ and

a generalization of the Wiener-Lévy theorem (see e.g. [37]) implies that for each m,
Cm € L, for each v < 9. We define the function 7(™)(2) given by

+o0
7M™ (2) = exp — (cm(O)/2 + Z cm(—n)z”> :

Then, 7™ (z) and w(m)(z) = W are analytic in the open unit disk D and
continuous on the closed unit disk. In the following, we denote by 7("™)(z) =
S wm(n)z™ and 9™ (2) = 30720 4™ (n) 2™ their expansion in . Moreover,
functions v — 7™ (e2™) and v — ("™ (™) also belong to /. To check this,
we denote by (€,,(n))n>0 the one-sided sequence defined by &,,(0) = ¢,,(0)/2 and
ém(n) = cm(—n) for n > 1. Then, the sequences 7("™ and (™) can be written as

=1
(m) _ (m) = (Em *(k)
L )T 0 ;k

k)

where for a sequence a, a*(%) represents a % a * ... * a. Observe, in particular, that
—_———

k
both sequences are one-sided. Now, for each v < 7, it holds that

™ )l < Z illemls = exp(llemll) < exp(lemll.) (D.10)

™l < Z Hcmllk exp([|émllw) < exp(llem|lw)- (D.11)

In the following, we also need a version of (D.10} [D.11]) holding uniformly w.r.t. m.
For this, we establish the following lemma, which can be seen as a uniform version
of the generalized Wiener-Lévy theorem.

Lemma D.1. Consider a function F(z) holomorphic in a neighbourhood of the
interval [Smin, Smaz] Where Smin and Smazx are defined in Assumption[3. Then, for
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each v < o and for each m, the function F oS, belongs to £, andﬁ

sup [|[F oSmllw < +o0. (D.12)

m>1

Proof. We adapt the proof of the Wiener-Levy theorem in [42] (Theorem 5.2, p.
245). We first claim that if p is an integer such that p > 1+ v and if G(v) =
> ez 9(n)e* ™™ belongs to Cp, then, g € £y,, and

19lloo < & (sup G(w)] + sup |G <u>|) (D.13)

for some constant x depending only on 7. To verify (D.13]), we remark that |G(0)| <
sup, |G(v)|. Moreover, for each n # 0, the integration by parts formula leads to

1
g(n) = ! / G (v)e= 2 gy
0

(2imn)P

and to |g(n)| < ¢ L = sup, |GP) (v)|. As p > 1+ 70, we obtain immediately that

5x)P Tlp
(D13) holds.

Since F' is holomorphic in a neighbourhood of [$;in, Smaz], there exists a p > 0
for which F' is holomorphic in the open disk D(s, 2p) for each s € [Smin, Smaz]- In
particular, for each m and each v, F is holomorphic in D(S,,(v), 2p). We consider

a partial sum Spp, () = D02, rm(k)e” 2™ and claim that for each v < 7o,
we have
K
1S (V) = SmeWllw = D L+ k) rm ()] < (D.14)

Yo=Y
n,
|k|>(no+1) 0

for some nice constant . To justify (D.14)), we remark that

Irmllwo > Z (L&D rp (k)] > ng" ™7 Z (LKD) [rm (F)] = 16" [[Sm (V) =Smne (V) |-
[k|>(no+1) [k|>(rno+1)

Assumption [ implies that sup,,, ||7m|lw, < +00. This leads immediately to (D.14).

We choose ng in such a way that —f= < £, and notice that (D.I4) leads to
"o

sup,, |Sim (V) = Smne (V)| < § for each m. Therefore, the circle C(Sy,,n,(v), p) with

center Sy, n, (¥) and radius p is included into D(S,,(v), 2p), and S,,(v) belongs to

the disk D(Sp, n, (V), p). The Cauchy formula implies that

1 [ F(S v) + pet?) .
FoS, =_— .o _ pe'ddp. D.1
( 08 ) (V) 2m /O Sm(y) - ©Om,ng (7/) - pele pe ( 5)

5We make the slight abuse of notation by identifying the w-norm of a function on the unit circle
as the corresponding norm of its Fourier coefficient sequence.
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Since |8y (V) = Smono (V)| < §, it holds that

6

pe —k_—i
Sn(V) = Spomg () — pei® Zp Fem M (S (V) = Simno ()"

and that
i0
pe A .
S mn < 2-
Hsm(lj) _Sm,ng( pe“’ w ZP ” s 0” >

Using (D.13), it is easy to check that G, (v, 9) deﬁned by G (v,0) = F(Simn, (V) +
pe'?) verifies

sup [|Gm (v, 0)]w <

m,0,v
for each v < 7y for some nice constant x. We thus obtain that for some nice constant
K, it holds that

<K

w

F(Smyno (v) + pe®) et
S (V) = Smno (V) — pet®

for each v < 7, each m and each 6. (D.15]) thus implies (D.12). The proof of Lemma

[D.1lis thus complete. O

The use of Lemma [D.] for f(z) = logz shows that

sup |[em|lw < 400 (D.16)

for each v < 9. Therefore, (D10 [D.1T)) imply that
sup [|7™ |, < &, sup |||, < k. (D.17)
It also holds that S, |1/) m)( 2“”’)| and therefore 1/(™)(z) coincides with

the outer spectral factor of Sm in the sense that both (™) (z) and —dj(ml)(z) = x(m) (2)
are analytic in the unit disc. Theorem 5.1.8 in [37] leads to the conclusion that
||(bl(m)* — (™|, = 0 when | — 400, a result which implies that

( 21771/) _ 7.‘.(m) (eQiﬂV) — 0 (D18)

1
r(m) (62'L7ru)

2
Given the fact that S, (v) = , (I0) and (LII) allow us to conclude

that

0 < inf inf [7(™) (£2™)| < sup sup |7(™) (2™)| < +oc0. (D.19)

Therefore, (DI8) leads to supAWgﬁlm)*(e%””) — 1 = 0, and to

sup,, |W| |¢ m)*( 2“”')|2 - 1’ — 0, or equivalently, to

Sn(@)|o"™" (™) = 1| = 0. (D-20)
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This, in turn, implies that

sup | Z|¢l’”>* ™2 —1| =0 (D.21)

when L — +o00 as expected. In order to complete the proof of Lemma 5.1l we have
thus to prove that (D.2I)) holds uniformly w.r.t. m, and to evaluate the rate of
convergence. For this, we can follow the proof of Theorem 5.1.8 in [37], adapting
the corresponding arguments to our particular context.

Theorem 5.1.8 in [37] follows from general results concerning Wiener-Hopf
operators defined on the Wiener algebra f;. As explained below, we will show
that sup,, ||¢lm)* — 7™} — 0, and will only use that sup,, ||7m]lw < 400 and
sup,, ||emllw < +oo for each v < 7o in order to obtain an upper bound of the above
term. In the following, we denote by C(™) the operator defined on the Wiener
algebra ¢; by

C™a =7, *a

where 7, is the sequence defined by 7,,(n) = rp,(—n) for each n € Z. C™ can
alternatively be defined in the Fourier transform domain as the multiplication op-
erator

Z a(n)e?™™ — S, (v) Z a(n)e? ™™,

neZ nez
It is well known that |[C (|1 = |[Fomlli = |7mll1. As Sm(v) = [ (e2™)|2, the
operator C™) can be factorized as C(™) = LMy = gy pm) where U™
and L("™) represent the multiplication operators by (") (™) and (1/)(’”)(62””))*
defined on ¢; respectively. We denote by P, the projection operator defined on ¢4
by

Py ({a(n),n € Z}) = {a(n),n > 0}

or equivalently in the Fourier transform domain by

+oo
P+ (Z a(n)e2irrnu> _ Za(n)e%ﬂ-nu'
nez n=0
The operator P_ is defined by P = I — P,. The operator U™ is called
upper triangular in the sense that P_.UM™P, = 0 While LM is lower trian-
gular because Py L™ P_ = 0. Moreover, as 7(™) = belongs to ¢; and

w(m)
m(m) (e2imvy = S hee ol ( )™ the operators U™ and L™ are invertible,
and (U (m)) and (L(m)) are upper triangular and lower triangular respectively.
In the Fourier domain, (U™))~1 and (L("™))~! correspond respectively to the mul-
tiplication operator by (™) (e?7) and (7("™ (e2*™))* These properties imply that



January 15, 2021

7

the factorization C" = LMy = (M) [(M) is a Wiener-Hopf factorization. In
the following, we denote by 7™ the Toeplitz operator defined on ¢; by

7™ = p,.Cc™p,. (D.22)
It is clear that if j > 0 and if §; is the sequence ¢; defined by §,(n) = d,_;, then,
< 8;,T™¢§; >, defined as (T("™§;) (i), is equal to 1y, (j —i). Therefore, the matrix
representation of 7™ in the basis (J;);>0 is the infinite matrix RY - Theorem

5.1.1 in [37] implies that, considered as an operator defined on Range(Py ), T(™) is
invertible, i.e. that for each a € Range(P;), there exists a unique b € Range(P4)

such that 70™p = a. (T(m))_1 b is of course defined as a. If an element a does not
belong to Range(Py ), (T(m))_1 a is defined as (T(m))_1 P.a. We also notice that
(T(m))_1 =P, (U(m))_1 Py (L(m))_1 P,. For each n > 1, we denote by @Q,, the
projection operator defined by

Qn {a(l),l e Z}) ={a(l),0 <1l <n} (D.23)
or equivalently by

Qn <Z a(l)e2iﬂ-lu> — S a(l)e2iﬂ-lu'
=0

leZ

We also introduce the truncated Toeplitz operator T,E’"’ defined by

We note that in the basis (;);=0,...n, the matrix representation of Tflm) is the
matrix ’Rﬁn 4+1- We now introduce the projection operator R, defined by R,, = P, —
Q., and state the following Lemma which appears as an immediate consequence of
Theorem 5.1.2 and Theorem 5.1.3 in [37].

Lemma D.2. For each n > 0, it holds that RnL(m)Qn = RnL*(m)Qn =
Q. U™R, = Q,U R, = 0. Moreover, there exists an integer ng indepen-
dent of m such that for each n > ny, T,S’”), considered as an operator defined
on Range(Q,), is invertible, in the sense that for each a € Range(Q.,), it ex-
ists a uniqgue b € Range(Qy), defined as (T,gm))fla, such that TS™b = a. If
a € Range(Py), (T,S’”))*la is defined as (Trgm))’la = (Trgm))’lQna. Moreover,
there exists a nice constant a such that, for each n > ng and each a € Range(Py),

X

the inequality

< allally (D.25)
1

holds.

Proof. We just verify that R,L("™@Q,, = 0, and omit the proof of the three other
identities. For this, we have just to check that if a(e?™) = 3" a(n)e* ", then
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(¢(m) (62”’/))* a(e*™) can be written as

(1/}(“1)(621'771/)) 21771/ _ Z b(l p2imly

l=—00

for some coefficients (b(!))i=—co,...n- This, of course, holds true because
(w(m)(emﬂ'l/)) :Z?io(d](m)(l))*e—%ﬂ'lu-

In order to be able to use Theorem 5.1.2 in [37], we establish that it exists an
integer no such that ||[P_(L(™)~1R,UM™)||; < L and ||R, (U™)"*P_L™|; <1
for each n > ng and for each m. If a € ¢, we evaluate P_(L(m))_anU(m)a
in the Fourier transform domain, and denote 2™ (€2"™) the function defined
by 2™ (€2™) = Ry m)( 2imyq(e2™), which, of course, can be written as
2™ (e2m) = o 1 z{m (l)e%rl”. The operation of (L(™)~! is equivalent to
the multiplication by (7™ (e?7))*
sociated to a left-sided series. Therefore,

in the Fourier transform domain, which is as-

P (rtm (2m)) " alm (e2im) = P

+oo %
Z (Tf(m)(l)> e—QinUxSIm)(e2i7ru)‘|_

l=n+1

The norm of the right hand side can be bounded as

+oo * too *
P Y (7)) e—%l”x;m(e””)] <|| X (=mm) e |t all
l=n+1 1 l=n+1 1

or equivalently,

| PR < ( Z (™) (1 ) ™)1,

The bound in (D.I7) implies that sup,, [|¢ m)||1 < & and that sup,, |7, < &
for some nice constant x. It is therefore clear that for each v < ¢ and for each m,

we have
—+o0
K2 > S A D A+ S )
l=n+1 l=n+1

We conclude from this that

—+o0
> )< = (D.26)
l=n+1 n
and therefore
HP_(L(m))‘anU(m)H <= (D.27)
1 n

for some nice constant k. It can be shown similarly that

}’Rn(U<m>)*1P,L<m>H1 < H (D.28)
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This implies that it exists an integer ng such that |P_(L™)~'R,UM™)||; < % and
| R, (UT™)=tP_L™)||; < L for each n > ng and for each m. Therefore, Theorem
5.1.2 in [37] implies that for each n > ng and for each m, it holds that 7™ s
invertible and that for each a € Range(Q,,), it holds that ||(T,gm))_1a|\ < am.nllall
where o, is given by

Qo = H(L(m))fl(U(m))flul

w2 (o) (e, + ).

1 b
The bounds in (D.17) imply that for each m and n, @y, ., < « for some nice constant

a. Therefore, H(Tr(Lm))flaH < allal|; for each n > ng, for each m, and for each
a € Range(Q,). If a € Range(Py), (T\™)~la is equal to (T\™)~1Qna. Therefore,
H(Trgm))’laHl < af|@Qnalli < allal|i. This completes the proof of the lemma. O

Lemma [D.2] and Theorem 5.1.3 in [37] imply the following corollary.

Corollary D.1. For each integer m and for each a € Range(Py), it holds that
lim H(T,g’”))—la— (T<m>)—1aH —0. (D.29)

n—-+o0o 1

Proof. (D.25) implies that T.\™ is invertible for each n > ng. We use the obser-
vation that (T\™)~1T\™ = Q,,. Therefore, the operator (T\™)~! — (T(™)~ can
be written as

(L)~ = (@) = () (10 = 10 ) (200) T+ (Qu = D)
We conclude from this and (D.25) that for each n > ng, it holds that

1T a—(T™) ally < a (T =TT ) al i+ (TT)  a=Qu(T™) a1
(D.30)

It is clear that ||(T™)"'a — Q. (T™))~1a|; — 0 when n — +o0o. Moreover, for

each b € Range(P, ), (T™ — T,Sm)) b can be expressed as

(T = T b = = (QuC™ (Qu = Py) b+ (Qu — Pr)CUPyb) . (D.31)

From this, we obtain immediately that for each m, ||(T(™) — T,S’")) b1 — 0 when
n — +oo. Taking b = (T™)~1q leads to (D.29). O

Corollary DI implies that for each m, |[(T\™) =16y — (T™)=150||; converges
towards 0 when n — +o00. Since the matrix representation of T, " in the ba-

incides with the sequence — (1, o™ , a%%), 0,...) whose Fourier transform co-

om 1,n>

incides with Uimqﬁ(m) (e2™). Therefore, the Fourier transform of the £; sequence
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(T(™)) =14, is the limit of -1 +(m) (€2"™) in the ¢; metric. Theorem 5.1.8 in [37] im-

n

plies that for each v < 7o and for each m, ||¢$1m)* — (™|, — 0, and therefore that
||¢$1m)* — 7|l = 0 as n — 400. As it is well known that ¢ — o™ = exp CmT(O),
this discussion leads to the conclusion that for each m,
1
(T 15y = — 7™, (D.32)
0—m

In the following, we establish the following proposition.

Proposition D.1. If v < v, there exist an integer n1 and a nice constant x such
that
_ _ K
sup [[(T{™) 60 — (T™) 1ol < — (D.33)
m>1 n

for each n > n;.

Proof. In order to establish (D.33]), we use (D30) and (D.31) for a = dy and
b= (TM)715) = L 7M. We first evaluate [|(T0™) 715y — Qn(T™) 728 ||1, or
equivalently — ZZ:;H |7 (n)|. In order to check that sup,, =& < +oo, we
notice that (LII) implies that inf,, co(m) > —oo, and that inf,, exp@ > 0.
Therefore, it holds that sup,, = < +0c. The bound in (D.26)) thus implies that for
each n > ng and for each m, it holds that

H(I%nw)fl5o-—(Qn(jwnw)715oH1 < é%

for some nice constant . It remains to control ||(7™) — T,§m>)(T<m>)—150||1. As
sup,, = < oo, it is sufficient to study ||(7™) — T,gm))w(m)ﬂl. For this, we use
([O3T) for b = 7™ and obtain that

| =zima | <o [+ = Qurt ] + [P - @uemat]
(D.34)

The bound in (D.26]) implies that the first term of the right hand side of (D.34)) is

upper bounded by % for some nice constant  for each n and each m. The second

term of the right hand side of (D.34) is given by

=], 5 [fomem)

k=n+1
where it holds that
+00
(c<m>w<m>) (k) = Tk — 1) ™ ().
1=0
Therefore,
S 400 o0

> [(emamY @< 3 Stk - Dl @)

k=n+1 k=n+1 1=0
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We express the right hand side of the above inequality as

+oco  +k “+00
P CICENIESRIOIEESY Z [ (k= D)7 (1)
k=n+11=0 k=n+11l=k+1

or equivalently as

—+oo +oo
> > [ (W)™ ()] + Y > [ ()[|7 ™ (0)].
k=n+1u+v=k,u>0,v>0 k=n+1ut+v=k,u<—1,>0

It is clear that

—+oo

+o00 too
> S @)™ ()] < (Z |w<m><z>|> ST k)] | +
1=0 k=[(

k=n+1u+v=Fk,u>0,0>0 =[(n+1)/2]

+00 +o00
<Z ITm(k)|> Y =™
k=0

I=[(n+1)/2]
and that
—+o00
S0 @< [ 3 ) (zw )
k=n-+1 utv=Fk,u<—1,0>0 k<-1 I=n+1

Using the fact that that sup,, ||rm|lw < +00, we obtain, using the same arguments

as in (D.26), that
sup Z |7 ™) (1)) <5

mln-l—l

for some nice constant k. We have thus shown that

sup [(Py = Qu)C™ x|y < -

and this completes the proof of Proposition [D.1l m|

Proposition [D.J] immediately allows to study the behaviour of ||¢n"~ —
when n — 4-o00.

Corollary D.2. If vy < 7y, it exists an integer ny and a nice constant k for which

(m)x _ -
o — =ty < = (D.35)

for each n > ny and each m.

Proof. qs;m)* — (™) coincides with U;”(Tnm))*léo —o™(T™) =18y, which can also
be written as

B = wm) = g ((T4m) 76 — (1) 7160) + (o3 = o™)(T) 14
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or equivalently as

(m)
B =7 = it ((T{™) 718 = (T0) 760 ) + (o = ™). (D.36)

We notice that o/ = <(T7§m))_160,50>_1 and that o™ = ((T™)~154,80) 1. We

express o," — o' as
1 1
o = om = o™ (= ) =alo™ (T - (7)), o)

m
n

Noting that sup,,, o, < sup,,ro(m) < +oo, we obtain that for each n large

enough and for each m, the inequality
o — ™ < w|[(TE) o — (T0) 1 agl|y <
n

holds for some nice constant . (D.35) thus follows immediately from Proposition

D1 O

We finally complete the proof of Lemma [5.11 (D35) implies that

* IV (9% K
supsup ¢ (¢27) — ) (e27)| < 2

for each n > ng. Using (D19) and S,,,(v) = we obtain that

1
‘71-(771)(821'#1/)'2 )
(m)x*( 2imvy\|12 _ i
Sm (V)| (™) — 1] < (D.37)

=

for each n > ny. We recall that em(u) is equal to

m)* 2imr\ (2 _
em.(v LZS v)lon )P -1

Therefore,
emnv Z S @)l () 1.
We express the right hand side as
nog — 1
- Z ‘S ¢(m 2i7ru)|2_1‘ Z ‘S |¢ (m)=* 217ru)|2_1

nng

and handle the two terms separately. On the one hand, (D.37) implies that
L

1 1
- S m)* 217ru _ 1‘ < e -
Z ‘ V)lon =n L ny
n=ns: n=nsa
Ifv>1, En o -L is a bounded term, and we obtain that
- S, (m)= 2ty |2 _ 1’ < E
supsup - Z } v)|oy )| <7

nn2



January 15, 2021

83

If v =1, the above term is bounded by « 10%, and if 0 < v < 1, it holds that

L

Z % < gL'

n=ns

and that

supsupL Z ’S |¢ m)*( 21771/

n=ns:

R
We finally justify that there exists a nice constant x such that

n21

supsup Z ‘S |¢ m)* 21771/ _1‘ < K.

Indeed, since ngy is a fixed integer, we have just to verify that for each n < ng,
sup,,, sup,, |¢$zm)*(e2i””2| < +o00. For this, we recall that the non normalized poly-

nomials @Slm) and @Slm * verify the relation the well known recursion formula

B (2) = 200" (2) — o™ B[ (2) (D.38)
() = @I (z) — oM 200 (2). (D.39)

Here, (am(n))n>0 are the reflection coefficients sequence associated to autocovari-
ance (7 (n))nez, also called in [37] the Verblunsky coefficients. For each n, it holds
that |aum (n)| < 1. It is obvious that @™ ||y = ||®4™||1. Therefore, (D38) implies
that

19 11 < (1 + lam@DIDT 1 < 20|D5™* 1.

Noting that ||<I>(()m “li = 1, we obtain that ||<I>$zm)*||1 < 2" and that
sup,,, sup,, |<I>£Lm)*(62””)| < 2" Asinf,, , o] > 0, the normalized polynomials verify
sup,,, sup,, |¢,(zm)*(e2i””)| < +o00. This completes the proof of Lemma [5.1]
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