Dataset Open Access

HOWS-CL-25: Household Objects Within Simulation Dataset for Continual Learning

Knauer, Markus; Denninger, Maximilian; Triebel, Rudolph


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">M. Denninger, M. Sundermeyer, D. Winkelbauer, D. Olefir, T. Hodan, ˇ Y. Zidan, M. Elbadrawy, M. Knauer, H. Katam, and A. Lodhi, "Blenderproc: Reducing the reality gap with photorealisitc rendering," Robotics: Science and Systems (RSS), 2020</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., "Shapenet: An information-rich 3d model repository," arXiv:1512.03012, 2015.</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">object classification</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">instance segmentation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">depth estimation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">household objects</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">continual learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">online learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">incremental learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">mobile robot</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">BlenderProc</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Blender</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">synthetic images</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">RGB images</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">segmentation images</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">normal images</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">depth images</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">neural network</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">CNN</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Convolutional neural network</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Cognitive Intelligence CI</subfield>
  </datafield>
  <controlfield tag="005">20221021142648.0</controlfield>
  <controlfield tag="001">7189434</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">23-27 October 2022</subfield>
    <subfield code="g">IROS</subfield>
    <subfield code="a">IEEE/RSJ International Conference on Intelligent Robots and Systems</subfield>
    <subfield code="c">Kyoto, Japan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">German Aerospace Center (DLR), Technical University of Munich (TUM)</subfield>
    <subfield code="0">(orcid)0000-0002-1557-2234</subfield>
    <subfield code="a">Denninger, Maximilian</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">German Aerospace Center (DLR), Technical University of Munich (TUM)</subfield>
    <subfield code="0">(orcid)0000-0002-7975-036X</subfield>
    <subfield code="a">Triebel, Rudolph</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3541694252</subfield>
    <subfield code="z">md5:aabba78db6e41df77ab32a5e61c854ea</subfield>
    <subfield code="u">https://zenodo.org/record/7189434/files/HOWS_CL_25_hdf5_features.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">48318382080</subfield>
    <subfield code="z">md5:b8d06d0cc3d3b7a3fd765e4df6581c58</subfield>
    <subfield code="u">https://zenodo.org/record/7189434/files/HOWS_CL_25.z01</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">48318382080</subfield>
    <subfield code="z">md5:2713e2a018190f7b1a8f56b447c41c1e</subfield>
    <subfield code="u">https://zenodo.org/record/7189434/files/HOWS_CL_25.z02</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">26679186010</subfield>
    <subfield code="z">md5:38004d31db8caa117b8d66c0948494b2</subfield>
    <subfield code="u">https://zenodo.org/record/7189434/files/HOWS_CL_25.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2482</subfield>
    <subfield code="z">md5:c64f61db3aab6520a0e2615981e9d18c</subfield>
    <subfield code="u">https://zenodo.org/record/7189434/files/README.md</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://iros2022.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-10-20</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:7189434</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">German Aerospace Center (DLR)</subfield>
    <subfield code="0">(orcid)0000-0001-8229-9410</subfield>
    <subfield code="a">Knauer, Markus</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">HOWS-CL-25: Household Objects Within Simulation Dataset for Continual Learning</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;HOWS-CL-25 (Household Objects Within Simulation dataset for Continual Learning) is a synthetic dataset especially designed for object classification on mobile robots operating in a changing environment (like a household), where it is important to learn new, never seen objects on the fly.&lt;br&gt;
This dataset can also be used for other learning use-cases, like instance segmentation or depth estimation.&lt;br&gt;
Or where household objects or continual learning are of interest.&lt;/p&gt;

&lt;p&gt;Our dataset contains 150,795 unique synthetic images using 25 different household categories with 925 3D models in total. For each of those categories, we generated about 6000 RGB images. In addition, we also provide a corresponding depth, segmentation, and normal image.&lt;/p&gt;

&lt;p&gt;The dataset was created with BlenderProc [Denninger et al. (2019)], a procedural pipeline to generate images for deep learning.&lt;br&gt;
This tool created a virtual room with randomly textured floors, walls, and a light source with randomly chosen light intensity and color. After that, a 3D model is placed in the resulting room. This object gets customized by randomly assigning materials, including different textures, to achieve a diverse dataset. Moreover, each object might be deformed with a random&lt;br&gt;
displacement texture.&lt;br&gt;
We use 774 3D models from the ShapeNet dataset [A. X. Chang et al. (2015)] and the other models from various internet sites. Please note that we had to manually fix and filter most of the models with Blender before using them in the pipeline!&lt;/p&gt;

&lt;p&gt;For continual learning (CL), we provide two different loading schemes:&lt;br&gt;
- Five sequences with five categories each&lt;br&gt;
- Twelve sequences with three categories in the first and two in the other sequences.&lt;/p&gt;

&lt;p&gt;In addition to the RGB, depth, segmentation, and normal images, we also provide the calculated features of the RGB images (by ResNet50) as used in our RECALL paper.&lt;br&gt;
In those two loading schemes, ten percent of the images are used for validation, where we ensure that an object instance is either in the training or the validation set, not in both. This&amp;nbsp;avoids learning&amp;nbsp;to recognize certain instances by heart.&lt;/p&gt;

&lt;p&gt;We recommend using those loading schemes to compare your approach with others.&lt;/p&gt;

&lt;p&gt;Here we provide three files for download:&lt;br&gt;
- HOWS_CL_25.zip [124GB]: This is the original dataset with the RGB, depth, segmentation, and normal images, as well as the loading schemes. It is divided into three archive parts. To open the dataset, please ensure to download all three parts.&lt;br&gt;
- HOWS_CL_25_hdf5_features.zip [2.5GB]: This only contains the calculated features from the RGB input by a ResNet50 in a .hdf5 file. Download this if you want to use the dataset for learning and/or want to compare your approach to our RECALL approach (where we used the same features).&lt;br&gt;
- README.md: Some additional explanation.&lt;/p&gt;

&lt;p&gt;For further information and code examples, please have a look at our website: https://github.com/DLR-RM/RECALL.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.7054170</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.7189434</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
127
39
views
downloads
All versions This version
Views 12790
Downloads 3935
Data volume 1.2 TB1.1 TB
Unique views 10170
Unique downloads 2018

Share

Cite as