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Abstract: A self-organising fuzzy-neural network (SOFNN) adapts its structure based on variations of the input data. 

Conventionally in such self-organising networks, the number of inputs providing the data is fixed.  In this 

paper, we consider the situation where the number of inputs to a network changes dynamically during its 

online operation. We extend our existing work on a SOFNN such that the SOFNN can self-organise its 

structure based not only on its input data, but also according to the changes in the number of its inputs. We 

apply the approach to a smart home application, where there are certain situations when some of the existing 

events may be removed or new events emerge, and illustrate that our approach enhances cognitive reasoning 

in a dynamic smart home environment. In this case, the network identifies the removed and/or added events 

from the received information over time, and reconfigures its structure dynamically. We present results for 

different combinations of training and testing phases of the dynamic reconfigurable SOFNN using a set of 

realistic synthesized data. The results show the potential of the proposed method.  

1 INTRODUCTION 

Activity recognition within a smart home 
environment is a challenging research problem. 
Researchers are exploring different solutions for 
low-level data collection, information processing 
and high-level service delivery. The main objectives 
of presenting intelligence into a smart home 
environment are to identify the importance of events 
and automatically activate suitable responses 
(Bregman, 2010). Another important aspect of 
situation awareness within a smart home is to detect 
anomalous events.  Jakkula and Cook (2011) used 
One Class Support Vector Machines (OCSVM) 
techniques to address this issue. Gaddam, 
Mukhopadhyay, and Gupta (2011) presented a home 
monitoring system based on a cognitive sensor 
network for elderly-care applications.  Processing of 
the sensory information is essential to recognise the 
context of the ecology. Wang, Chuang, Lai, and 
Wang (2005) proposed CASSHA (Context-Aware 
System for Smart Home Applications) for 
processing, representation, and coordination of smart 
home applications. Youngblood, Cook and Holder 
(2005) proposed a home automation model to 

understand the needs of inhabitants within the 
MavHome project. Lin and Fu (2007) used Bayesian 
Networks (BNs) to learn multiple users’ preferences; 
these represent relationships among users and 
related sensor observations. Zheng, Wang, and 
Black (2008) developed a self-adaptive neural 
network based on Growing Self-Organizing Maps 
(GSOM) to analyse human actions within a smart 
home environment. Chen et al. (2009) proposed a 
hybrid system, which explored the relationship 
between an activity model and a preference model to 
provide appropriate services. Roy et al. (2010) 
discussed an initial framework of activity 
recognition based on possibility theory and 
description logic (DL).  Mastrogiovanni, Sgorbissa, 
and Zaccaria (2010) integrated ontology and logic 
based approaches for context representation and 
recognition to map numerical data to symbolic 
representations. Chen and Nugent (2010) discussed 
the concept of semantically enhanced situation 
awareness for activity of daily living (ADL) 
assistance. This work was extended in Chen, 
Nugent, and Wang (2012) with an ontology-based 
knowledge-driven approach for activity recognition. 
Son, Park, Moon, and Lee (2011) reported a 



 

resource-aware smart home management system. 
Alam, Reaz, and Ali (2012) proposed an algorithm, 
called sequence prediction via enhanced episode 
discovery (SPEED), to predict user activity in smart 
homes. Zhang, McClean, and Scotney (2012) 
proposed a learning algorithm to understand multi-
inhabitant activity profiles from a limited number of 
data from unreliable low-level sensors. Ray, et al. 
(2012) described a cognitive reasoning model based 
on a SOFNN that analyses events of a smart home 
ecology and reasons across those events to 
determine situational awareness. The SOFNN is 
suitable for dynamic model compactness as it 
identifies its structure and parameters of fuzzy 
neural networks from the available data. This makes 
the approach suitable for a dynamic smart home 
environment. The above mentioned approaches have 
a common deficiency in that the processes are built 
on a fixed number of contexts. However in a smart 
home application, situations change over time as 
new sensors and/or actuators are introduced or 
behaviours of users change. In this work, we address 
this problem. We first develop a dynamic online 
SOFNN which reorganises its structure based on a 
variable number of inputs which changes 
dynamically over time. Then we demonstrate the use 
of this proposed method for cognitive reasoning for 
a smart home environment.     
     The remainder of the paper is organised as 

follows: section 2 describes the design and 

implementation issues of the dynamic SOFNN, 

which self-organises its structure depending on the 

number of inputs and their values. A brief overview 

is presented for neuron addition and pruning 

strategies. Section 3 presents the results of the 

proposed work. A set of anticipated events and 
reasoning outputs are chosen to validate the 

proposed idea. The results on structural growth of 

the SOFNN and the cognitive reasoning capabilities 

under synthesized scenarios with different training 

and testing situations are presented.  In section 4, we 

present the overall conclusions of this work. 

2 DYNAMIC ONLINE SOFNN 

The SOFNN has a five layer structure as shown in 
Figure 1. The current structure, as reported in our 
previous work (Ray, 2012) has a fixed number of 
inputs. Consider that for the t-th observation (Xt, dt), 
we define Xt=[x1t x2t …. xrt] as the input vector, r as 
the number of inputs, dt as the desired output 
(target), yt as the output of the current network, then 
the output in layer 5 is obtained as (Ray, 2012) 

 

Figure 1: The structure of the SOFNN. 
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where u is the number of neurons; cij and σij are the 
centre and width of the i-th membership function 
(MF) in the j-th neuron; w2j is the weighted bias (B) 
which is defined for the TS model (Takagi and 
Sugeno, 1985) as 
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      During the training process, the first ellipsoidal 
basis function (EBF) neuron is created based on the 
first input vector. The number of membership 
functions in each EBF neuron is the same as the 
number of inputs. Further details on the sliding 
window based training process are available in 
(Leng, McGinnity and Prasad, 2005) and (Ray, 
2012). Figure 2 shows the procedure for adding new 
EBF neurons to the existing structure (Ray, 2012) 
where threshold for output of neuron is set at 0.1354 
(equivalent to 2 standard deviations from mean). 
During training, there are some neurons which have 
insignificant contributions for the desired output. 
These neurons are deleted from the network for 
model compactness. The procedure for pruning 
insignificant neurons is shown in Figure 3 (Ray, 
2012). 
      There are some applications e.g. smart homes 
where the number of inputs is not fixed. As new 
sensors and actuators are added to the system, the 
number of inputs will change dynamically. 
Moreover, there exists the possibility that some of 
the inputs may not be available due to 
sensor/actuator failures. One option would be to 
consider those inputs as having ‘0’ values. But, a ‘0’ 
value may have significance in certain cases (e.g. 
on/off sensor status). Moreover, if we consider 
unavailable inputs within the network, then certain 



 

contributions are reflected within the EBF and 
normalised layers. So, a dynamic change of the 
number of inputs to the network poses a significant 
design constraint but one which needs to be 
accommodated in real life. 
 

 

Figure 2: The process of adding a new EBF neuron. 

 

Figure 3: The process of pruning neurons. 

     To address this issue, we propose a dynamic 
SOFNN structure, which can handle a variable 
number of inputs. We aim to provide a facility to 
accommodate dynamical changes in the network 
structure, where the number of inputs to the network 
changes over time. 

2.1 Layer 1: Input Layer 

We define Xe as the set of pre-existing inputs to the 
network, Xr as the set of existing inputs that are 
removed from the network at time t, Xa as the set of 
new inputs that are added to the network at time t, Xn  

as  the new set of inputs in the input layer, and Xc as  
the common inputs in Xe and Xn. So, we can present 
the above understanding as follows: 
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where re 	is the number of existing inputs, ro is the  

number of removed inputs from the existing inputs, 

ra is the number of newly added inputs, rc is the 

number of common inputs, id refers to the input id, 

and m=re-ro+ra. The network receives the set of 

inputs Xn at each sample where an input refers to 

corresponding id and its value. The rules to obtain 

Xa, Xr, ra, ro are as follows: 
 
1. Check Xe and Xn for common inputs Xc 

and rc 

a. Find Ixe(k), k=[1 2 … rc] i.e. 
index of common inputs in Xe  

b. Find Ixn(k), k=[1 2 … rc]  i.e. 
index of common inputs in Xn 

2. Check for inputs that are present in 
Xe but excluded in Xn 

a. Get Xr and ro 
b. Find Ixr(o), o=[1 2 … ro]  i.e. 

index of removed inputs in Xe 

3. Check for inputs that are present in 
Xn but not available in Xe 

a. Get Xa and ra 

b. Find Ixa(l), l=[1 2 … ra]  i.e. 
index of added inputs in Xn 

   
Depending on the values of ro and ra, the 

membership functions (MFs), bias and weighting 
matrix will change accordingly.  

2.2 Layer 2: EBF Layer 

The addition and/or removal of inputs requires 
modification of the number of the MFs associated 
with each neuron, and their relative organisation 
within it. Let’s consider, Ceje, σeje to be the sets of 
centres and widths of MFs of the je-th EBF neuron 
in the existing structure respectively and Cnj, σjn to 
be the sets of centres and widths of MFs of the j-th 
EBF neuron in the new structure where je = 1, 2 … 
ue, j = 1 2 … un;  ue and un represent the number of 
EBF neurons in the existing and new structures and 
un=ue.. Hence we obtain: 
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As the number of inputs changes in the layer 1, so in 
general, 
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      The update rule for centres and widths of the 
MFs are as follows: 

 
1. If m=re and rc=re then no change in 

input structure and 

cnij=ceij  

σnij=σeij  

i=[1 2 … m]; j=[1 2 … un] 

2. Othewise, follow steps 3 to 5 
3. Get Ixe and Ixn of common inputs in 

Xe and Xn from layer 1  

4. Update MFs of each EBF neurons as 
follows:  

a = Ixn(k) 

b = Ixe(k) 

cnaj = cebj  

σnaj = σebj  

k=[1 2 … rc], j=[1 2 … un] 

5. If ra>0 then add new ra number of 
MFs to each existing EBF neuron and 

update as follows:  

c = Ixa(l) 

   cncj = xnc  

   σncj = chosen predefined value       

l= [1 2 … ra], j= [1 2 … un] 

 

      So the new i-th membership function in the j-th 

neuron is 
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       Accommodating the changes in the previous 
layer, the output of each EBF neuron in layer 2 is 
given by 
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      Any change in input number will change the 

internal structure of the EBF neurons. Let the current 

structure of the je-th EBF neuron be given as in 

Figure 4. It shows four MFs corresponding to four 
inputs. If input x2 is removed from the network then 

the structure of the EBF neuron will change. Figure 

5 depicts that the neuron has three MFs and MFs 

two and three are related to inputs x3 and x4. When 

ro=ra, the total number of inputs to the network does 

not change. But the internal structure of the neuron 

changes and represents a new EBF neuron. Figure 6 

depicts that input x3 is removed and input x5 is 

added. Although the neuron has four MFs, they are 

different as compared to the MFs in Figure 4. Here 

the new MFs three and four correspond to the inputs 
x4 and x5 respectively.  

 

Figure 4: Structure of an existing EBF neuron with four 
inputs and four membership functions corresponding to 
each input. 

 

Figure 5: Modified MFs as per change in the number of 
inputs (input number two is removed). 

 

Figure 6: Modified MFs as per change in the number of 
inputs (input three is removed and input 5 is added). 



 

2.3   Layer 3: Normalised Layer 

The number of neurons in this layer is the same as 
layer 2. The new output of the j-th neuron in this 
layer will reflect the changes in inputs to the 
network and is given by 
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2.4 Layer 4: Weighted Layer 

The output of this layer depends on the outputs of 
layer 3 and the weighted bias. Let, the existing bias 
vector and parameter vector be given respectively by 
 

Be   = [1 xe1 xe2 … xere]
T 

Aeje = [aeje0 aeje1 aeje2 … aejere]; ∀je = 1 2 … ue   (9) 
 

     So, the existing weighted bias is  
 

weje = AejeBe = aeje0 + aeje1xe1 + aeje2xe2 + … + aejerexere  

(10) 
      
      As the inputs change in number as well as 
positions within the input set, the bias and parameter 
vectors are also changed. Let, the new bias and 
parameter vectors be given by 

 
Bn  = [1 xn1 xn2 … xnm]T 
Anj = [anj0 anj1 anj2 … anjm]; ∀j=1 2 … un         (11) 
 
The update for Bn is straightforward according to 

the received inputs. The update rule for Anj is as 
follows: 

 
1. If m=re and rc=re then  

Anj=Aej,  j=[1 2 … un] 

2. Othewise, follow steps 3 to 5 
3. Get Ixe and Ixn of common inputs in 

Xe and Xn from layer 1  

4. Update Anj as follows:  
g = Ixn(k)+1 

h = Ixe(k)+1 

anj0 = aej0  

anjg = aejh  
k=[1 2 … rc], j=[1 2 … un] 

5. If ra>0 then add new ra number of 
elements in Anj as follows:  

c = Ixa(l)+1 

   anjc = 0  
   l= [1 2 … ra], j= [1 2 … un] 

 

      The above steps are referred to as the 
initialisation of new parameters. The weighted bias 
of the new structure is given by 
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    The output of each neuron in this layer is given by 
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2.5 Layer 5: Output Layer 

The output of this layer is a summation of the 
overall outputs from layer 4 and is given by 
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      This will restructure the existing network to 
adapt to the changes in the number of inputs. This 
will produce an initial network structure which can 
accommodate a dynamic change in inputs.  

3 RESULTS 

To validate our proposed system, we consider a 

smart home situation with different sensors and 

actuators. Different events that are obtained from 

sensory data within the environment reflect the 

activities of a user. The developed SOFNN is used 

to extract high level understanding from these events 

related to the user activities. We consider a set of 19 

initial event inputs and 10 reasoning outputs for this 

situation. The chosen inputs and reasoning outputs 

are shown in Table 1 and Table 2 respectively. 

Values of inputs and outputs represent confidence 

levels between 0 and 1. We synthesize 4500 data 

samples. The dataset ensures a richness of variability 

with sufficient complexity to exercise the reasoning 

capabilities of the system. First, we consider training 

results for 3 different cases with sliding window of 

300 data samples. In the first case the network is 

trained with 19 inputs. Then we consider the 

network with deletion of an input event (from 19 to 

18 inputs) after 900 samples (the visitor detection 

event is removed). In case 3, the number of inputs 

changes from 19 to 20 after 900 samples. The 

objective is to observe the online adaptation as a 

result of the change in the number of inputs. Figure 

7 shows the neuronal structure for the 3 cases when 



 

the network reasons across the ‘user relaxing’ 

situation. It is observed that the network produces 

different structures according to addition and 

pruning of neurons. The overall neuronal structures 

of the network for these cases are shown in Figure 8 

and Table 3. The network has 17, 22, and 23 neurons 

for these cases respectively. From these results, it is 

clear that the proposed network is capable of 

handling changes in its input numbers. Table 4 shows 

the root mean square errors (RMSE) during training 

to obtain the expected reasoning outputs. 
      

 

Figure 7: Change of the number of EBF neurons for the 
‘user relaxing’ situation for different training cases: (a) 
network with 19 inputs; (b) network with deletion of an 

input (from 19 to 18 inputs) after 900 samples; (c) network 
with addition of an input (from 19 to 20 inputs) after 900 
samples.  

Table 1: The event inputs for the smart home application. 

Synthesized input ids Events 

1 User in room 1 

2 User in room 2 

3 User in room 3 

4 Visitor detection 

5 Phone event 

6 Doorbell event 

7 Dripping event 

8 Music event 

9 Fire alarm 

10 Microwave usage 

11 Dishwasher usage 

12 TV usage 

13 Cleaning operation 

14 Cooking 

15 Use of oven 

16 Smoke detection 

17 Room temperature 

18 Burglary alarm 

19 Front door usage 

   Table 2: The target outputs for SOFNN reasoning. 

Output ids Reasoning outputs 

1 User exercise 

2 User relaxing 

3 User in kitchen 

4 Bring phone 

5 Open door 

6 Cooking activity 

7 Fire alert situation 

8 Burglary alert situation 

9 Dripping alert situation 

10 Cleaning situation 

 

  

Figure 8: Change of the number of EBF neurons for the 
overall network for different training cases: (a) network 
with 19 inputs; (b) network with deletion of an input event 
(from 19 to 18 inputs) after 900 samples; (c) network with 
addition of an input event (from 19 to 20 inputs) after 900 

samples. 

Table 3: Total number of EBF neurons for the reasoning 
outputs in different training cases.  

Reasoning outputs Case 1 Case 2 Case 3 

User Exercise 1 1 1 

User Relaxing 4 6 6 

User in Kitchen 1 1 1 

Bring Phone 1 1 1 

Open Door 1 2 1 

Cooking Activity 2 2 2 

Fire Alert Situation 2 2 2 

Burglary Alert 
Situation 

1 2 2 

Dripping Alert 
Situation 

1 1 2 

Cleaning Situation 3 4 5 

Total Neurons 17 22 23 

      
     Next, we consider different testing situations 
using a trained network with 4500 data samples for 
19 inputs. We show testing results with 300 data 
samples (4201 to 4500) for 3 cases. In case 1, we  
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 Table 4: RMSE of different training cases. 

Reasoning outputs Case 1 Case 2 Case 3 

User Exercise 0.0828 0.0810 0.0817 

User Relaxing 0.0482 0.0421 0.0423 

User in Kitchen 0.0658 0.0649 0.0650 

Bring Phone 0.0667 0.0661 0.0656 

Open Door 0.0531 0.0668 0.0521 

Cooking Activity 0.0621 0.0611 0.0579 

Fire Alert Situation 0.0319 0.0292 0.0311 

Burglary Alert 
Situation 

0.0812 0.0693 0.0698 

Dripping Alert 

Situation 

0.0842 0.0832 0.0799 

Cleaning Situation 0.0454 0.0590 0.0547 

 

Figure 9: Set 1 of reasoning outputs during testing with 19 
inputs and 18 inputs (TV event removed). 

 

Figure 10: Set 2 of reasoning outputs during testing with 

19 inputs and 18 inputs (TV event removed). 

consider 19 inputs. In case 2, we consider 18 inputs 
where input id 12 (TV usage) is dropped. In case 3, 
we consider deletion of input id 4 (Visitor 
Detection). Figure 9 and Figure 10 show the 
reasoning outputs from the network when there are  

 

Figure 11: Set 1 of reasoning outputs during testing with 
19 inputs and 18 inputs (Visitor detection event removed). 

 

Figure 12: Set 2 of reasoning outputs during testing with 
19 inputs and 18 inputs (Visitor detection event removed). 

Table 5: RMSEs of different testing cases. 

Reasoning outputs Case 1 Case 2 Case 3 

User Exercise 0.0681 0.0697 0.0716 

User Relaxing 0.0527 0.2260 0.0513 

User in Kitchen 0.0671 0.0730 0.0671 

Bring Phone 0.0662 0.0666 0.0699 

Open Door 0.0529 0.0556 0.2062 

Cooking Activity 0.0671 0.0733 0.0674 

Fire Alert Situation 0.0345 0.0515 0.0372 

Burglary Alert Situation 0.0613 0.0652 0.0619 

Dripping Alert Situation 0.0844 0.0846 0.0835 

Cleaning Situation 0.0283 0.0396 0.0282 

 
19 inputs (case 1) and 18 inputs (case 2). It is 
observed in Figure 9 that the confidence level of 
“user relaxing” is reduced when the TV usage event 
is removed. The network identifies all other 
reasoning outputs as expected. Figure 11 and Figure 
12 show the reasoning outputs from the network 
when there are 19 inputs (case 1) and 18 inputs (case 
3). It is observed in Figure 12 that the confidence 



 

level of the “open door” situation is reduced as the 
“visitor detection” event is dropped from the input 
set. The network identifies all other reasoning 
outputs as expected. The RMSEs for these testing 
cases are shown in Table 5. It is observed that the 
RMSEs for the “user relaxing” in case 2 and “open 
door situation” in case 3 have higher values. 

4 CONCLUSIONS 

This paper presents a dynamically reconfigurable 

online SOFNN for application in a robot ecology 

environment. In this work we address the situation 

when the number of inputs varies over time. We 

then implemented and utilized this network to 

extract knowledge from realistic events occurring 

within a smart home environment. A set of realistic 

synthesized training and testing data have been 
employed to observe different scenarios. We show 

the structural modifications of the network when the 

number of inputs changes for the network during the 

training phase. We also show the impact of 

removing event inputs from the network during 

different testing phases. The results show that the 

network has the ability to adapt to the dynamics of 

the environment and show its cognitive capability.  
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