
Dynamically Reconfigurable Online Self-organising Fuzzy Neural

Network with Variable Number of Inputs for Smart Home
Application

Anjan Kumar Ray, Gang Leng, T.M. McGinnity, Sonya Coleman, Liam Maguire
Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, BT48 7JL, U.K.

{ak.ray, g.leng, tm.mcginnity, sa.coleman, lp.maguire}@ulster.ac.uk

Keywords: Self-organising System, Fuzzy Logic, Neural Network, Cognitive Reasoning

Abstract: A self-organising fuzzy-neural network (SOFNN) adapts its structure based on variations of the input data.

Conventionally in such self-organising networks, the number of inputs providing the data is fixed. In this

paper, we consider the situation where the number of inputs to a network changes dynamically during its

online operation. We extend our existing work on a SOFNN such that the SOFNN can self-organise its

structure based not only on its input data, but also according to the changes in the number of its inputs. We

apply the approach to a smart home application, where there are certain situations when some of the existing

events may be removed or new events emerge, and illustrate that our approach enhances cognitive reasoning

in a dynamic smart home environment. In this case, the network identifies the removed and/or added events

from the received information over time, and reconfigures its structure dynamically. We present results for

different combinations of training and testing phases of the dynamic reconfigurable SOFNN using a set of

realistic synthesized data. The results show the potential of the proposed method.

1 INTRODUCTION

Activity recognition within a smart home
environment is a challenging research problem.
Researchers are exploring different solutions for
low-level data collection, information processing
and high-level service delivery. The main objectives
of presenting intelligence into a smart home
environment are to identify the importance of events
and automatically activate suitable responses
(Bregman, 2010). Another important aspect of
situation awareness within a smart home is to detect
anomalous events. Jakkula and Cook (2011) used
One Class Support Vector Machines (OCSVM)
techniques to address this issue. Gaddam,
Mukhopadhyay, and Gupta (2011) presented a home
monitoring system based on a cognitive sensor
network for elderly-care applications. Processing of
the sensory information is essential to recognise the
context of the ecology. Wang, Chuang, Lai, and
Wang (2005) proposed CASSHA (Context-Aware
System for Smart Home Applications) for
processing, representation, and coordination of smart
home applications. Youngblood, Cook and Holder
(2005) proposed a home automation model to

understand the needs of inhabitants within the
MavHome project. Lin and Fu (2007) used Bayesian
Networks (BNs) to learn multiple users’ preferences;
these represent relationships among users and
related sensor observations. Zheng, Wang, and
Black (2008) developed a self-adaptive neural
network based on Growing Self-Organizing Maps
(GSOM) to analyse human actions within a smart
home environment. Chen et al. (2009) proposed a
hybrid system, which explored the relationship
between an activity model and a preference model to
provide appropriate services. Roy et al. (2010)
discussed an initial framework of activity
recognition based on possibility theory and
description logic (DL). Mastrogiovanni, Sgorbissa,
and Zaccaria (2010) integrated ontology and logic
based approaches for context representation and
recognition to map numerical data to symbolic
representations. Chen and Nugent (2010) discussed
the concept of semantically enhanced situation
awareness for activity of daily living (ADL)
assistance. This work was extended in Chen,
Nugent, and Wang (2012) with an ontology-based
knowledge-driven approach for activity recognition.
Son, Park, Moon, and Lee (2011) reported a

resource-aware smart home management system.
Alam, Reaz, and Ali (2012) proposed an algorithm,
called sequence prediction via enhanced episode
discovery (SPEED), to predict user activity in smart
homes. Zhang, McClean, and Scotney (2012)
proposed a learning algorithm to understand multi-
inhabitant activity profiles from a limited number of
data from unreliable low-level sensors. Ray, et al.
(2012) described a cognitive reasoning model based
on a SOFNN that analyses events of a smart home
ecology and reasons across those events to
determine situational awareness. The SOFNN is
suitable for dynamic model compactness as it
identifies its structure and parameters of fuzzy
neural networks from the available data. This makes
the approach suitable for a dynamic smart home
environment. The above mentioned approaches have
a common deficiency in that the processes are built
on a fixed number of contexts. However in a smart
home application, situations change over time as
new sensors and/or actuators are introduced or
behaviours of users change. In this work, we address
this problem. We first develop a dynamic online
SOFNN which reorganises its structure based on a
variable number of inputs which changes
dynamically over time. Then we demonstrate the use
of this proposed method for cognitive reasoning for
a smart home environment.
 The remainder of the paper is organised as

follows: section 2 describes the design and

implementation issues of the dynamic SOFNN,

which self-organises its structure depending on the

number of inputs and their values. A brief overview

is presented for neuron addition and pruning

strategies. Section 3 presents the results of the

proposed work. A set of anticipated events and
reasoning outputs are chosen to validate the

proposed idea. The results on structural growth of

the SOFNN and the cognitive reasoning capabilities

under synthesized scenarios with different training

and testing situations are presented. In section 4, we

present the overall conclusions of this work.

2 DYNAMIC ONLINE SOFNN

The SOFNN has a five layer structure as shown in
Figure 1. The current structure, as reported in our
previous work (Ray, 2012) has a fixed number of
inputs. Consider that for the t-th observation (Xt, dt),
we define Xt=[x1t x2t …. xrt] as the input vector, r as
the number of inputs, dt as the desired output
(target), yt as the output of the current network, then
the output in layer 5 is obtained as (Ray, 2012)

Figure 1: The structure of the SOFNN.

∑

∑

−
−

∑

∑

−
−

=

= =

= =

u

k

r

i
ik

iki

u

j

r

i
ij

iji

j

cx

cx
w

Xy

1 1
2

2

1 1
2

2

2

2

)(
exp

2

)(
exp

)(

σ

σ
 (1)

where u is the number of neurons; cij and σij are the
centre and width of the i-th membership function
(MF) in the j-th neuron; w2j is the weighted bias (B)
which is defined for the TS model (Takagi and
Sugeno, 1985) as

ujxaxaaw
rjrjjj

,,2,1;
1102

LL =+++= (2)

 During the training process, the first ellipsoidal
basis function (EBF) neuron is created based on the
first input vector. The number of membership
functions in each EBF neuron is the same as the
number of inputs. Further details on the sliding
window based training process are available in
(Leng, McGinnity and Prasad, 2005) and (Ray,
2012). Figure 2 shows the procedure for adding new
EBF neurons to the existing structure (Ray, 2012)
where threshold for output of neuron is set at 0.1354
(equivalent to 2 standard deviations from mean).
During training, there are some neurons which have
insignificant contributions for the desired output.
These neurons are deleted from the network for
model compactness. The procedure for pruning
insignificant neurons is shown in Figure 3 (Ray,
2012).
 There are some applications e.g. smart homes
where the number of inputs is not fixed. As new
sensors and actuators are added to the system, the
number of inputs will change dynamically.
Moreover, there exists the possibility that some of
the inputs may not be available due to
sensor/actuator failures. One option would be to
consider those inputs as having ‘0’ values. But, a ‘0’
value may have significance in certain cases (e.g.
on/off sensor status). Moreover, if we consider
unavailable inputs within the network, then certain

contributions are reflected within the EBF and
normalised layers. So, a dynamic change of the
number of inputs to the network poses a significant
design constraint but one which needs to be
accommodated in real life.

Figure 2: The process of adding a new EBF neuron.

Figure 3: The process of pruning neurons.

 To address this issue, we propose a dynamic
SOFNN structure, which can handle a variable
number of inputs. We aim to provide a facility to
accommodate dynamical changes in the network
structure, where the number of inputs to the network
changes over time.

2.1 Layer 1: Input Layer

We define Xe as the set of pre-existing inputs to the
network, Xr as the set of existing inputs that are
removed from the network at time t, Xa as the set of
new inputs that are added to the network at time t, Xn

as the new set of inputs in the input layer, and Xc as
the common inputs in Xe and Xn. So, we can present
the above understanding as follows:

{ }
{ }

)(],,,2,1[:),(

],,2,1[:),(

eoer

eroroororor

eepepe

<r, r X X

 X,xidroxidX

rpxidX

⊆

∈==

==

L

L

{ }
{ }
{ }

aren

nec

cckckc

ninin

ealalaalala

XXXX

XXX

rkxidX

mixidX

Xxid,rl)xidX

∪=

∩∈

==

==

∉==

)\(

],,2,1[:),(

],,2,1[:),(

),(],,2,1[:,(

L

L

L

 (3)

where re 	is the number of existing inputs, ro is the

number of removed inputs from the existing inputs,

ra is the number of newly added inputs, rc is the

number of common inputs, id refers to the input id,

and m=re-ro+ra. The network receives the set of

inputs Xn at each sample where an input refers to

corresponding id and its value. The rules to obtain

Xa, Xr, ra, ro are as follows:

1. Check Xe and Xn for common inputs Xc

and rc

a. Find Ixe(k), k=[1 2 … rc] i.e.
index of common inputs in Xe

b. Find Ixn(k), k=[1 2 … rc] i.e.
index of common inputs in Xn

2. Check for inputs that are present in
Xe but excluded in Xn

a. Get Xr and ro
b. Find Ixr(o), o=[1 2 … ro] i.e.

index of removed inputs in Xe

3. Check for inputs that are present in
Xn but not available in Xe

a. Get Xa and ra

b. Find Ixa(l), l=[1 2 … ra] i.e.
index of added inputs in Xn

Depending on the values of ro and ra, the

membership functions (MFs), bias and weighting
matrix will change accordingly.

2.2 Layer 2: EBF Layer

The addition and/or removal of inputs requires
modification of the number of the MFs associated
with each neuron, and their relative organisation
within it. Let’s consider, Ceje, σeje to be the sets of
centres and widths of MFs of the je-th EBF neuron
in the existing structure respectively and Cnj, σjn to
be the sets of centres and widths of MFs of the j-th
EBF neuron in the new structure where je = 1, 2 …
ue, j = 1 2 … un; ue and un represent the number of
EBF neurons in the existing and new structures and
un=ue.. Hence we obtain:

]},,2,1[],,,2,1[:{

]},,2,1[],,,2,1[:{

]},,2,1[],,,2,1[:{

]},,2,1[],,,2,1[:{

nnijnj

nnijnj

eeepjeeje

eeepjeeje

u jmi

u jmicC

u jerp

u jerpcC

LL

LL

LL

LL

===

===

===

===

σσ

σσ
 (4)

As the number of inputs changes in the layer 1, so in
general,

0},,min{,,2,1 > r m}r q

cc

oe

nqjeqje

nqjeqje

L=

≠

≠

σσ (5)

 The update rule for centres and widths of the
MFs are as follows:

1. If m=re and rc=re then no change in

input structure and

cnij=ceij

σnij=σeij

i=[1 2 … m]; j=[1 2 … un]

2. Othewise, follow steps 3 to 5
3. Get Ixe and Ixn of common inputs in

Xe and Xn from layer 1

4. Update MFs of each EBF neurons as
follows:

a = Ixn(k)

b = Ixe(k)

cnaj = cebj

σnaj = σebj

k=[1 2 … rc], j=[1 2 … un]

5. If ra>0 then add new ra number of
MFs to each existing EBF neuron and

update as follows:

c = Ixa(l)

 cncj = xnc

 σncj = chosen predefined value

l= [1 2 … ra], j= [1 2 … un]

 So the new i-th membership function in the j-th

neuron is

()
n

nij

nijni

nij
ujmi

cx
,,2,1;,,2,1;

2
exp

2

2

LL ==

 −
−=

σ
µ

(6)

 Accommodating the changes in the previous
layer, the output of each EBF neuron in layer 2 is
given by

∏ ==
=

m

i
nnijnj

uj
1

,,2,1; Lµφ (7)

 Any change in input number will change the

internal structure of the EBF neurons. Let the current

structure of the je-th EBF neuron be given as in

Figure 4. It shows four MFs corresponding to four
inputs. If input x2 is removed from the network then

the structure of the EBF neuron will change. Figure

5 depicts that the neuron has three MFs and MFs

two and three are related to inputs x3 and x4. When

ro=ra, the total number of inputs to the network does

not change. But the internal structure of the neuron

changes and represents a new EBF neuron. Figure 6

depicts that input x3 is removed and input x5 is

added. Although the neuron has four MFs, they are

different as compared to the MFs in Figure 4. Here

the new MFs three and four correspond to the inputs
x4 and x5 respectively.

Figure 4: Structure of an existing EBF neuron with four
inputs and four membership functions corresponding to
each input.

Figure 5: Modified MFs as per change in the number of
inputs (input number two is removed).

Figure 6: Modified MFs as per change in the number of
inputs (input three is removed and input 5 is added).

2.3 Layer 3: Normalised Layer

The number of neurons in this layer is the same as
layer 2. The new output of the j-th neuron in this
layer will reflect the changes in inputs to the
network and is given by

nnu

nk
nk

nj

nj
uj ,,2,1;

1

L=
∑

=

=

φ

φ
ψ (8)

2.4 Layer 4: Weighted Layer

The output of this layer depends on the outputs of
layer 3 and the weighted bias. Let, the existing bias
vector and parameter vector be given respectively by

Be = [1 xe1 xe2 … xere]
T

Aeje = [aeje0 aeje1 aeje2 … aejere]; ∀je = 1 2 … ue (9)

 So, the existing weighted bias is

weje = AejeBe = aeje0 + aeje1xe1 + aeje2xe2 + … + aejerexere

(10)

 As the inputs change in number as well as
positions within the input set, the bias and parameter
vectors are also changed. Let, the new bias and
parameter vectors be given by

Bn = [1 xn1 xn2 … xnm]T
Anj = [anj0 anj1 anj2 … anjm]; ∀j=1 2 … un (11)

The update for Bn is straightforward according to

the received inputs. The update rule for Anj is as
follows:

1. If m=re and rc=re then

Anj=Aej, j=[1 2 … un]

2. Othewise, follow steps 3 to 5
3. Get Ixe and Ixn of common inputs in

Xe and Xn from layer 1

4. Update Anj as follows:
g = Ixn(k)+1

h = Ixe(k)+1

anj0 = aej0

anjg = aejh
k=[1 2 … rc], j=[1 2 … un]

5. If ra>0 then add new ra number of
elements in Anj as follows:

c = Ixa(l)+1

 anjc = 0
 l= [1 2 … ra], j= [1 2 … un]

 The above steps are referred to as the
initialisation of new parameters. The weighted bias
of the new structure is given by

nmnjmnnjnjnnjnj
xaxaaBAw +++== L

110
 (12)

 The output of each neuron in this layer is given by

njnjnj
wf ψ= (13)

2.5 Layer 5: Output Layer

The output of this layer is a summation of the
overall outputs from layer 4 and is given by

∑=
=

nu

j
njn

fXy
1

)((14)

 This will restructure the existing network to
adapt to the changes in the number of inputs. This
will produce an initial network structure which can
accommodate a dynamic change in inputs.

3 RESULTS

To validate our proposed system, we consider a

smart home situation with different sensors and

actuators. Different events that are obtained from

sensory data within the environment reflect the

activities of a user. The developed SOFNN is used

to extract high level understanding from these events

related to the user activities. We consider a set of 19

initial event inputs and 10 reasoning outputs for this

situation. The chosen inputs and reasoning outputs

are shown in Table 1 and Table 2 respectively.

Values of inputs and outputs represent confidence

levels between 0 and 1. We synthesize 4500 data

samples. The dataset ensures a richness of variability

with sufficient complexity to exercise the reasoning

capabilities of the system. First, we consider training

results for 3 different cases with sliding window of

300 data samples. In the first case the network is

trained with 19 inputs. Then we consider the

network with deletion of an input event (from 19 to

18 inputs) after 900 samples (the visitor detection

event is removed). In case 3, the number of inputs

changes from 19 to 20 after 900 samples. The

objective is to observe the online adaptation as a

result of the change in the number of inputs. Figure

7 shows the neuronal structure for the 3 cases when

the network reasons across the ‘user relaxing’

situation. It is observed that the network produces

different structures according to addition and

pruning of neurons. The overall neuronal structures

of the network for these cases are shown in Figure 8

and Table 3. The network has 17, 22, and 23 neurons

for these cases respectively. From these results, it is

clear that the proposed network is capable of

handling changes in its input numbers. Table 4 shows

the root mean square errors (RMSE) during training

to obtain the expected reasoning outputs.

Figure 7: Change of the number of EBF neurons for the
‘user relaxing’ situation for different training cases: (a)
network with 19 inputs; (b) network with deletion of an

input (from 19 to 18 inputs) after 900 samples; (c) network
with addition of an input (from 19 to 20 inputs) after 900
samples.

Table 1: The event inputs for the smart home application.

Synthesized input ids Events

1 User in room 1

2 User in room 2

3 User in room 3

4 Visitor detection

5 Phone event

6 Doorbell event

7 Dripping event

8 Music event

9 Fire alarm

10 Microwave usage

11 Dishwasher usage

12 TV usage

13 Cleaning operation

14 Cooking

15 Use of oven

16 Smoke detection

17 Room temperature

18 Burglary alarm

19 Front door usage

 Table 2: The target outputs for SOFNN reasoning.

Output ids Reasoning outputs

1 User exercise

2 User relaxing

3 User in kitchen

4 Bring phone

5 Open door

6 Cooking activity

7 Fire alert situation

8 Burglary alert situation

9 Dripping alert situation

10 Cleaning situation

Figure 8: Change of the number of EBF neurons for the
overall network for different training cases: (a) network
with 19 inputs; (b) network with deletion of an input event
(from 19 to 18 inputs) after 900 samples; (c) network with
addition of an input event (from 19 to 20 inputs) after 900

samples.

Table 3: Total number of EBF neurons for the reasoning
outputs in different training cases.

Reasoning outputs Case 1 Case 2 Case 3

User Exercise 1 1 1

User Relaxing 4 6 6

User in Kitchen 1 1 1

Bring Phone 1 1 1

Open Door 1 2 1

Cooking Activity 2 2 2

Fire Alert Situation 2 2 2

Burglary Alert
Situation

1 2 2

Dripping Alert
Situation

1 1 2

Cleaning Situation 3 4 5

Total Neurons 17 22 23

 Next, we consider different testing situations
using a trained network with 4500 data samples for
19 inputs. We show testing results with 300 data
samples (4201 to 4500) for 3 cases. In case 1, we

500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

User relaxing

(a)

500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

(b)

T
o

ta
l

n
u

m
b

er
 o

f
E

B
F

 n
e
u

ro
n
s

500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

(c)

Number of samples

500 1000 1500 2000 2500 3000 3500 4000 4500

10

20

30
Self-organisation of the network

(a)

500 1000 1500 2000 2500 3000 3500 4000 4500

10

20

30

(b)

T
o

ta
l

n
u

m
b
e
r

o
f

E
B

F
 n

e
u
ro

n
s

500 1000 1500 2000 2500 3000 3500 4000 4500

10

20

30

(c)

Number of samples

 Table 4: RMSE of different training cases.

Reasoning outputs Case 1 Case 2 Case 3

User Exercise 0.0828 0.0810 0.0817

User Relaxing 0.0482 0.0421 0.0423

User in Kitchen 0.0658 0.0649 0.0650

Bring Phone 0.0667 0.0661 0.0656

Open Door 0.0531 0.0668 0.0521

Cooking Activity 0.0621 0.0611 0.0579

Fire Alert Situation 0.0319 0.0292 0.0311

Burglary Alert
Situation

0.0812 0.0693 0.0698

Dripping Alert

Situation

0.0842 0.0832 0.0799

Cleaning Situation 0.0454 0.0590 0.0547

Figure 9: Set 1 of reasoning outputs during testing with 19
inputs and 18 inputs (TV event removed).

Figure 10: Set 2 of reasoning outputs during testing with

19 inputs and 18 inputs (TV event removed).

consider 19 inputs. In case 2, we consider 18 inputs
where input id 12 (TV usage) is dropped. In case 3,
we consider deletion of input id 4 (Visitor
Detection). Figure 9 and Figure 10 show the
reasoning outputs from the network when there are

Figure 11: Set 1 of reasoning outputs during testing with
19 inputs and 18 inputs (Visitor detection event removed).

Figure 12: Set 2 of reasoning outputs during testing with
19 inputs and 18 inputs (Visitor detection event removed).

Table 5: RMSEs of different testing cases.

Reasoning outputs Case 1 Case 2 Case 3

User Exercise 0.0681 0.0697 0.0716

User Relaxing 0.0527 0.2260 0.0513

User in Kitchen 0.0671 0.0730 0.0671

Bring Phone 0.0662 0.0666 0.0699

Open Door 0.0529 0.0556 0.2062

Cooking Activity 0.0671 0.0733 0.0674

Fire Alert Situation 0.0345 0.0515 0.0372

Burglary Alert Situation 0.0613 0.0652 0.0619

Dripping Alert Situation 0.0844 0.0846 0.0835

Cleaning Situation 0.0283 0.0396 0.0282

19 inputs (case 1) and 18 inputs (case 2). It is
observed in Figure 9 that the confidence level of
“user relaxing” is reduced when the TV usage event
is removed. The network identifies all other
reasoning outputs as expected. Figure 11 and Figure
12 show the reasoning outputs from the network
when there are 19 inputs (case 1) and 18 inputs (case
3). It is observed in Figure 12 that the confidence

level of the “open door” situation is reduced as the
“visitor detection” event is dropped from the input
set. The network identifies all other reasoning
outputs as expected. The RMSEs for these testing
cases are shown in Table 5. It is observed that the
RMSEs for the “user relaxing” in case 2 and “open
door situation” in case 3 have higher values.

4 CONCLUSIONS

This paper presents a dynamically reconfigurable

online SOFNN for application in a robot ecology

environment. In this work we address the situation

when the number of inputs varies over time. We

then implemented and utilized this network to

extract knowledge from realistic events occurring

within a smart home environment. A set of realistic

synthesized training and testing data have been
employed to observe different scenarios. We show

the structural modifications of the network when the

number of inputs changes for the network during the

training phase. We also show the impact of

removing event inputs from the network during

different testing phases. The results show that the

network has the ability to adapt to the dynamics of

the environment and show its cognitive capability.

ACKNOWLEDGEMENTS

This work is partially supported by the EU FP7

RUBICON project (contract no. 269914) –

www.fp7rubicon.eu.

REFERENCES

Alam, M. S., Reaz, M. B. I., and Ali, M. A. M., 2012.

SPEED: An inhabitant activity prediction algorithm

for smart homes. IEEE Transactions on Systems,

Man, and Cybernetics—Part A: Systems and

Humans, 42(4), 985-990.

Bregman, D., 2010. Smart home intelligence - the ehome

that learns. International journal of smart home, 4(4).

Chen, L., and Nugent, C. D., 2010. Situation aware

cognitive assistance in smart homes. Journal of

Mobile Multimedia, 6(3), 263-280.

Chen, L., Nugent, C. D., and Wang, H., 2012. A

knowledge-driven approach to activity recognition in

smart homes. IEEE Transactions on Knowledge and

Data Engineering, 24(6), 961-974.

Chen, Y. H., Lu, C. H., Hsu, K. C., Fu, L. C., Yeh, Y. J.,

and Kuo, L. C., 2009. Preference model assisted

activity recognition learning in a smart home

environment. IEEE/RSJ International Conference on

Intelligent Robots and Systems, 4657 - 4662.

Gaddam, A., Mukhopadhyay, S. C., and Gupta, G. S.,

2011. Elder care based on cognitive sensor network.

IEEE Sensors Journal, 11(3).

Jakkula, V., and Cook, D. J., 2011. Detecting anomalous

sensor events in smart home data for enhancing the

living experience. AAAI Workshop, 33-37.

Leng, G., McGinnity, T. M., and Prasad, G., 2005. An

approach for on-line extraction of fuzzy rules using a

self-organising fuzzy neural network. Fuzzy Sets and

Systems, 150(2), 211-243.

Lin, Z. H., and Fu, L. C., 2007. Multi-user preference

model and service provision in a smart home

environment. IEEE International Conference on

Automation Science and Engineering, 759 – 764.

Mastrogiovanni, F., Sgorbissa, A., and Zaccaria, R., 2010.

A cognitive model for recognizing human behaviours

in smart homes. Ann. Telecommunication, 65, 523–

538.

Ray, A. K., Leng, G., McGinnity, T. M., Coleman, S. A.,

and Maguire, L. P., 2012. Development of cognitive

capabilities for smart home using a self-organizing

fuzzy neural network. 10th IFAC Symposium on

Robot Control, Dubrovnik, Croatia, 447-454.

Roy, P. C., Giroux, S., Bouchard, B., and Bouzouane, A.,

Phua, C., Tolstikov, A., and Biswas, J., 2010.

Possibilistic behavior recognition in smart homes for

cognitive assistance, AAAI Workshop, 53-60.

RUBICON project., 2011. EU FP7 project. FP7 challenge

2, cognitive systems and robotics. Available:

http://www.fp7rubicon.eu.

Son, J. Y., Park, J. H., Moon, K. D., and Lee, Y. H., 2011.

Resource-aware smart home management system by

constructing resource relation graph. IEEE

Transactions on Consumer Electronics, 57(3).

Takagi, T., and Sugeno, M., 1985. Fuzzy identification of

systems and its applications to modeling and control.

IEEE Transactions on Systems, Man, and

Cybernetics, 15(1), 116-132.

Wang, W. Y., Chuang, C. C., Lai, Y. S., and Wang, Y. H.,

2005. A context-aware system for smart home

applications. EUC Workshops, LNCS 3823, 298-

305.

Youngblood, G. M., Cook, D. J., and Holder, L. B., 2005.

Managing adaptive versatile environments. Pervasive

and Mobile Computing, 1(4), 373-403.

Zhang, S., McClean, S. I., and Scotney, B. W., 2012.

Probabilistic learning from incomplete data for

recognition of activities of daily living in smart

homes. IEEE Transactions on Information

Technology in Biomedicine, 16(3), 454-462.
Zheng, H., Wang, H., and Black, N., 2008. Human

activity detection in smart home environment with
self-adaptive neural networks. IEEE ICNSC, 1505–
1510.

