Dynamically Reconfigurable Online Self-organising Fuzzy Neural Network with Variable Number of Inputs for Smart Home Application

Anjan Kumar Ray, Gang Leng, T.M. McGinnity, Sonya Coleman, Liam Maguire
Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, BT48 7JL, U.K.
{ak.ray, g.leng, tm.mcginnity, sa.coleman, lp.maguire}@ulster.ac.uk

Keywords: Self-organising System, Fuzzy Logic, Neural Network, Cognitive Reasoning

Abstract: A self-organising fuzzy-neural network (SOFNN) adapts its structure based on variations of the input data. Conventionally in such self-organising networks, the number of inputs providing the data is fixed. In this paper, we consider the situation where the number of inputs to a network changes dynamically during its online operation. We extend our existing work on a SOFNN such that the SOFNN can self-organise its structure not only on its input data, but also according to the changes in the number of its inputs. We apply the approach to a smart home application, where there are certain situations when some of the existing events may be removed or new events emerge, and illustrate that our approach enhances cognitive reasoning in a dynamic smart home environment. In this case, the network identifies the removed and/or added events from the received information over time, and reconfigures its structure dynamically. We present results for different combinations of training and testing phases of the dynamic reconfigurable SOFNN using a set of realistic synthesized data. The results show the potential of the proposed method.

1 INTRODUCTION

Activity recognition within a smart home environment is a challenging research problem. Researchers are exploring different solutions for low-level data collection, information processing and high-level service delivery. The main objectives of presenting intelligence into a smart home environment are to identify the importance of events and automatically activate suitable responses (Bregman, 2010). Another important aspect of situation awareness within a smart home is to detect anomalous events. Jakkula and Cook (2011) used One Class Support Vector Machines (OCSVM) techniques to address this issue. Gaddam, Mukhopadhyay, and Gupta (2011) presented a home monitoring system based on a cognitive sensor network for elderly-care applications. Processing of the sensory information is essential to recognise the context of the ecology. Wang, Chuang, Lai, and Wang (2005) proposed CASSHA (Context-Aware System for Smart Home Applications) for processing, representation, and coordination of smart home applications. Youngblood, Cook and Holder (2005) proposed a home automation model to understand the needs of inhabitants within the MavHome project. Lin and Fu (2007) used Bayesian Networks (BNs) to learn multiple users’ preferences; these represent relationships among users and related sensor observations. Zheng, Wang, and Black (2008) developed a self-adaptive neural network based on Growing Self-Organizing Maps (GSOM) to analyse human actions within a smart home environment. Chen et al. (2009) proposed a hybrid system, which explored the relationship between an activity model and a preference model to provide appropriate services. Roy et al. (2010) discussed an initial framework of activity recognition based on possibility theory and description logic (DL). Mastrogiavanni, Sgorbissa, and Zaccaria (2010) integrated ontology and logic based approaches for context representation and recognition to map numerical data to symbolic representations. Chen and Nugent (2010) discussed the concept of semantically enhanced situation awareness for activity of daily living (ADL) assistance. This work was extended in Chen, Nugent, and Wang (2012) with an ontology-based knowledge-driven approach for activity recognition. Son, Park, Moon, and Lee (2011) reported a
resource-aware smart home management system. Alam, Reaz, and Ali (2012) proposed an algorithm, called sequence prediction via enhanced episode discovery (SPEED), to predict user activity in smart homes. Zhang, McClean, and Scotney (2012) proposed a learning algorithm to understand multi-inhabitant activity profiles from a limited number of data from unreliable low-level sensors. Ray, et al. (2012) described a cognitive reasoning model based on a SOFNN that analyses events of a smart home ecology and reasons across those events to determine situational awareness. The SOFNN is suitable for dynamic model compactness as it identifies its structure and parameters of fuzzy neural networks from the available data. This makes the approach suitable for a dynamic smart home environment. The above mentioned approaches have a common deficiency in that the processes are built on a fixed number of contexts. However in a smart home application, situations change over time as new sensors and/or actuators are introduced or behaviours of users change. In this work, we address this problem. We first develop a dynamic online SOFNN which reorganises its structure based on a variable number of inputs which changes dynamically over time. Then we demonstrate the use of this proposed method for cognitive reasoning for a smart home environment.

The remainder of the paper is organised as follows: section 2 describes the design and implementation issues of the dynamic SOFNN, which self-organises its structure depending on the number of inputs and their values. A brief overview is presented for neuron addition and pruning strategies. Section 3 presents the results of the proposed work. A set of anticipated events and reasoning outputs are chosen to validate the proposed idea. The results on structural growth of the SOFNN and the cognitive reasoning capabilities under synthesized scenarios with different training and testing situations are presented. In section 4, we present the overall conclusions of this work.

2 DYNAMIC ONLINE SOFNN

The SOFNN has a five layer structure as shown in Figure 1. The current structure, as reported in our previous work (Ray, 2012) has a fixed number of inputs. Consider that for the t-th observation \(X_t=[x_{t1}, x_{t2}, \ldots, x_{tr}]\) as the input vector, \(r\) as the number of inputs, \(d_t\) as the desired output (target), \(y\) as the output of the current network, then the output in layer 5 is obtained as (Ray, 2012)

\[
y(X) = \frac{\sum_{j=1}^{u} w_{2j} \exp \left(-\frac{1}{2} \left(\frac{x - c_j}{\sigma_j} \right)^2 \right)}{\sum_{j=1}^{u} \exp \left(-\frac{1}{2} \left(\frac{x - c_j}{\sigma_j} \right)^2 \right)}
\]

where \(u\) is the number of neurons; \(c_j\) and \(\sigma_j\) are the centre and width of the \(i\)-th membership function (MF) in the \(j\)-th neuron; \(w_{2j}\) is the weighted bias (B) which is defined for the TS model (Takagi and Sugeno, 1985) as

\[
w_{2j} = a_{jo} + a_{j1}x_1 + \cdots + a_{jn}x_n; \quad j=1,2,\cdots,u
\]

During the training process, the first ellipsoidal basis function (EBF) neuron is created based on the first input vector. The number of membership functions in each EBF neuron is the same as the number of inputs. Further details on the sliding window based training process are available in (Leng, McGinnity and Prasad, 2005) and (Ray, 2012). Figure 2 shows the procedure for adding new EBF neurons to the existing structure (Ray, 2012) where threshold for output of neuron is set at 0.1354 (equivalent to 2 standard deviations from mean). During training, there are some neurons which have insignificant contributions for the desired output. These neurons are deleted from the network for model compactness. The procedure for pruning insignificant neurons is shown in Figure 3 (Ray, 2012).

There are some applications e.g. smart homes where the number of inputs is not fixed. As new sensors and actuators are added to the system, the number of inputs will change dynamically. Moreover, there exists the possibility that some of the inputs may not be available due to sensor/actuator failures. One option would be to consider those inputs as having ‘0’ values. But, a ‘0’ value may have significance in certain cases (e.g. on/off sensor status). Moreover, if we consider unavailable inputs within the network, then certain
contributions are reflected within the EBF and normalised layers. So, a dynamic change of the number of inputs to the network poses a significant design constraint but one which needs to be accommodated in real life.

Figure 2: The process of adding a new EBF neuron.

To address this issue, we propose a dynamic SOFNN structure, which can handle a variable number of inputs. We aim to provide a facility to accommodate dynamical changes in the network structure, where the number of inputs to the network changes over time.

2.1 Layer 1: Input Layer

We define X_e as the set of pre-existing inputs to the network, X_n as the set of existing inputs that are removed from the network at time t, X_a as the set of new inputs that are added to the network at time t, X_c as the common inputs in X_e and X_n, and X_n as the new set of inputs in the input layer, and X_c as the common inputs. So, we can present the above understanding as follows:

$$X_\text{e} = \{(id_o,x_o) : p = [1,2,\ldots,r_e]\}$$

$$X_\text{n} = \{(id_o,x_o) : o = [1,2,\ldots,r_o], (id_o,x_o) \in X_\text{e}\}$$

$$X_\text{c} \subseteq X_\text{e}, r_c < r_e$$

$$X_\text{s} = \{(id_o,x_o) : l = [1,2,\ldots,r_l], (id_o,x_o) \notin X_\text{e}\}$$

$$X_\text{s} = \{(id_o,x_o) : i = [1,2,\ldots,m]\}$$

$$X_\text{e} \subseteq X_\text{e} \cap X_\text{s}$$

$$X_\text{s} = (X_\text{e} \backslash X_\text{s}) \cup X_\text{a}$$

where r_e is the number of existing inputs, r_o is the number of removed inputs from the existing inputs, r_a is the number of newly added inputs, r_c is the number of common inputs, id refers to the input id, and $m=r_e-r_o+r_a$. The network receives the sets of inputs X_a at each sample where an input refers to corresponding id and its value. The rules to obtain $X_\text{n}, X_\text{a}, r_o, r_a$ are as follows:

1. Check X_e and X_n for common inputs X_c and r_c
 a. Find $I_{x_e}(k)$, $k=[1,2,\ldots,r_c]$ i.e. index of common inputs in X_e
 b. Find $I_{x_n}(k)$, $k=[1,2,\ldots,r_c]$ i.e. index of common inputs in X_n

2. Check for inputs that are present in X_e but excluded in X_n
 a. Get X_e and r_a
 b. Find $I_{x_e}(o)$, $o=[1,2,\ldots,r_o]$ i.e. index of removed inputs in X_e

3. Check for inputs that are present in X_n but not available in X_e
 a. Get X_e and r_a
 b. Find $I_{x_e}(l)$, $l=[1,2,\ldots,r_a]$ i.e. index of added inputs in X_n

Depending on the values of r_r and r_o, the membership functions (MFs), bias and weighting matrix will change accordingly.

2.2 Layer 2: EBF Layer

The addition and/or removal of inputs requires modification of the number of the MFs associated with each neuron, and their relative organisation within it. Let’s consider, C_{je}, σ_{je} to be the sets of centres and widths of MFs of the je-th EBF neuron in the existing structure respectively and C_{jn}, σ_{jn} to be the sets of centres and widths of MFs of the jn-th EBF neuron in the new structure where $j=1,2,\ldots u_e, j=1,2,\ldots u_n$: u_e and u_n represent the number of EBF neurons in the existing and new structures and $u_e=u_n$. Hence we obtain:
The update rule for centres and widths of the MFs are as follows:

1. If \(m=r_a \) and \(r_a=r_e \) then no change in input structure and

 \[
 c_{naj} = c_{eaj}, \quad \sigma_{naj} = \sigma_{eaj}
 \]

 \(i=[1,2,...,r_a], j=[1,2,...,u_n] \)

2. Otherwise, follow steps 3 to 5

3. Get \(I_{xe} \) and \(I_{xn} \) of common inputs in \(X_e \) and \(X_n \) from layer 1

4. Update MFs of each EBF neurons as follows:

 \[
 a = I_{xn}(k), \quad b = I_{xe}(k), \quad c_{naj} = c_{eaj}, \quad \sigma_{naj} = \sigma_{eaj}
 \]

 \(k=[1,2,...,r_c], j=[1,2,...,u_n] \)

5. If \(r_o>0 \) then add new \(r_o \) number of MFs to each existing EBF neuron and update as follows:

 \[
 c = I_{xa}(l), \quad c_{naj} = x_{nc}, \quad \sigma_{naj} = \text{chosen predefined value}
 \]

 \(l=[1,2,...,r_o], j=[1,2,...,u_n] \)

So the new \(i \)-th membership function in the \(j \)-th neuron is

\[
\mu_{naj} = \exp \left[-\frac{(x_i - c_{naj})^2}{2\sigma_{naj}^2} \right], \quad i=1,2,...,m, \quad j=1,2,...,u_n
\]

(6)

Accommodating the changes in the previous layer, the output of each EBF neuron in layer 2 is given by

\[
\phi_{nj} = \prod_{i=1}^{r_o} \mu_{naj}, \quad j=1,2,...,u_n
\]

(7)
2.3 Layer 3: Normalised Layer

The number of neurons in this layer is the same as layer 2. The new output of the \(j \)-th neuron in this layer will reflect the changes in inputs to the network and is given by

\[
\psi_{n_j} = \frac{\phi_{n_j}}{\sum_{i_{k_{nl}}=1}^{u_s} \phi_{n_i}}; \quad j=1,2,\ldots,u_s
\]

(8)

2.4 Layer 4: Weighted Layer

The output of this layer depends on the outputs of layer 3 and the weighted bias. Let, the existing bias vector and parameter vector be given respectively by

\[
B_e = [x_{e1}, x_{e2}, \ldots, x_{ere}]^T \\
A_{ej} = [a_{ej0}, a_{ej1}, a_{ej2}, \ldots, a_{ejere}] \quad \forall je = 1, 2, \ldots, u_e
\]

(9)

So, the existing weighted bias is

\[
w_{ej} = A_{ej}B_e = a_{ej0} + a_{ej1}x_{e1} + a_{ej2}x_{e2} + \ldots + a_{ejere}x_{ere}
\]

(10)

As the inputs change in number as well as positions within the input set, the bias and parameter vectors are also changed. Let, the new bias and parameter vectors be given by

\[
B_n = [x_{n1}, x_{n2}, \ldots, x_{nem}]^T \\
A_{nj} = [a_{nj0}, a_{nj1}, a_{nj2}, \ldots, a_{njem}] \quad \forall j=1, 2, \ldots, u_n
\]

(11)

The update for \(B_e \) is straightforward according to the received inputs. The update rule for \(A_{nj} \) is as follows:

1. If \(m=r_s \) and \(r_n=r_s \) then \(A_{nj} = A_{ej} \), \(j=1, 2, \ldots, u_n \)
2. Otherwise, follow steps 3 to 5
3. Get \(I_{en} \) and \(I_{en} \) of common inputs in \(X_e \) and \(X_n \) from layer 1
4. Update \(A_{nj} \) as follows:
 \[g = I_{en}(k) \]
 \[h = I_{en}(k) \]
 \[a_{nj0} = a_{nj0} \]
 \[a_{nj} = a_{nj} \]
 \[k=[1, 2, \ldots, r_s], \quad j=[1, 2, \ldots, u_n] \]
5. If \(r_n>0 \) then add new \(r_n \) number of elements in \(A_{nj} \) as follows:
 \[c = I_{es}(l) + 1 \]
 \[a_{nj} = 0 \]
 \[j=[1, 2, \ldots, r_n], \quad j=[1, 2, \ldots, u_n] \]

The above steps are referred to as the initialisation of new parameters. The weighted bias of the new structure is given by

\[
w_n = A_nB_n = a_{n0} + a_{n1}x_{e1} + \ldots + a_{nere}x_{ere}
\]

(12)

The output of each neuron in this layer is given by

\[
f_{n_j} = w_n\psi_{n_j}
\]

(13)

2.5 Layer 5: Output Layer

The output of this layer is a summation of the overall outputs from layer 4 and is given by

\[
y(X_n) = \sum_{j=1}^{u_n} f_{n_j}
\]

(14)

This will restructure the existing network to adapt to the changes in the number of inputs. This will produce an initial network structure which can accommodate a dynamic change in inputs.

3 RESULTS

To validate our proposed system, we consider a smart home situation with different sensors and actuators. Different events that are obtained from sensory data within the environment reflect the activities of a user. The developed SOFNN is used to extract high level understanding from these events related to the user activities. We consider a set of 19 initial event inputs and 10 reasoning outputs for this situation. The chosen inputs and reasoning outputs are shown in Table 1 and Table 2 respectively. Values of inputs and outputs represent confidence levels between 0 and 1. We synthesize 4500 data samples. The dataset ensures a richness of variability with sufficient complexity to exercise the reasoning capabilities of the system. First, we consider training results for 3 different cases with sliding window of 300 data samples. In the first case the network is trained with 19 inputs. Then we consider the network with deletion of an input event (from 19 to 18 inputs) after 900 samples (the visitor detection event is removed). In case 3, the number of inputs changes from 19 to 20 after 900 samples. The objective is to observe the online adaptation as a result of the change in the number of inputs. Figure 7 shows the neuronal structure for the 3 cases when...
the network reasons across the ‘user relaxing’ situation. It is observed that the network produces different structures according to addition and pruning of neurons. The overall neuronal structures of the network for these cases are shown in Figure 8 and Table 3. The network has 17, 22, and 23 neurons for these cases respectively. From these results, it is clear that the proposed network is capable of handling changes in its input numbers. Table 4 shows the root mean square errors (RMSE) during training to obtain the expected reasoning outputs.

Table 1: The event inputs for the smart home application.

<table>
<thead>
<tr>
<th>Synthesized input ids</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>User in room 1</td>
</tr>
<tr>
<td>2</td>
<td>User in room 2</td>
</tr>
<tr>
<td>3</td>
<td>User in room 3</td>
</tr>
<tr>
<td>4</td>
<td>Visitor detection</td>
</tr>
<tr>
<td>5</td>
<td>Phone event</td>
</tr>
<tr>
<td>6</td>
<td>Doorbell event</td>
</tr>
<tr>
<td>7</td>
<td>Dripping event</td>
</tr>
<tr>
<td>8</td>
<td>Music event</td>
</tr>
<tr>
<td>9</td>
<td>Fire alarm</td>
</tr>
<tr>
<td>10</td>
<td>Microwave usage</td>
</tr>
<tr>
<td>11</td>
<td>Dishwasher usage</td>
</tr>
<tr>
<td>12</td>
<td>TV usage</td>
</tr>
<tr>
<td>13</td>
<td>Cleaning operation</td>
</tr>
<tr>
<td>14</td>
<td>Cooking</td>
</tr>
<tr>
<td>15</td>
<td>Use of oven</td>
</tr>
<tr>
<td>16</td>
<td>Smoke detection</td>
</tr>
<tr>
<td>17</td>
<td>Room temperature</td>
</tr>
<tr>
<td>18</td>
<td>Burglary alarm</td>
</tr>
<tr>
<td>19</td>
<td>Front door usage</td>
</tr>
</tbody>
</table>

Table 2: The target outputs for SOFNN reasoning.

<table>
<thead>
<tr>
<th>Output ids</th>
<th>Reasoning outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>User exercise</td>
</tr>
<tr>
<td>2</td>
<td>User relaxing</td>
</tr>
<tr>
<td>3</td>
<td>User in kitchen</td>
</tr>
<tr>
<td>4</td>
<td>Bring phone</td>
</tr>
<tr>
<td>5</td>
<td>Open door</td>
</tr>
<tr>
<td>6</td>
<td>Cooking activity</td>
</tr>
<tr>
<td>7</td>
<td>Fire alert situation</td>
</tr>
<tr>
<td>8</td>
<td>Burglary alert situation</td>
</tr>
<tr>
<td>9</td>
<td>Dripping alert situation</td>
</tr>
<tr>
<td>10</td>
<td>Cleaning situation</td>
</tr>
</tbody>
</table>

Table 3: Total number of EBF neurons for the reasoning outputs in different training cases.

<table>
<thead>
<tr>
<th>Reasoning outputs</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Exercise</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>User Relaxing</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>User in Kitchen</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bring Phone</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Open Door</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cooking Activity</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fire Alert Situation</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Burglary Alert Situation</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Dripping Alert Situation</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cleaning Situation</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Total Neurons</td>
<td>17</td>
<td>22</td>
<td>23</td>
</tr>
</tbody>
</table>

Next, we consider different testing situations using a trained network with 4500 data samples for 19 inputs. We show testing results with 300 data samples (4201 to 4500) for 3 cases. In case 1, we
Table 4: RMSE of different training cases.

<table>
<thead>
<tr>
<th>Reasoning outputs</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Exercise</td>
<td>0.0828</td>
<td>0.0810</td>
<td>0.0817</td>
</tr>
<tr>
<td>User Relaxing</td>
<td>0.0482</td>
<td>0.0421</td>
<td>0.0423</td>
</tr>
<tr>
<td>User in Kitchen</td>
<td>0.0658</td>
<td>0.0649</td>
<td>0.0650</td>
</tr>
<tr>
<td>Bring Phone</td>
<td>0.0667</td>
<td>0.0661</td>
<td>0.0656</td>
</tr>
<tr>
<td>Open Door</td>
<td>0.0531</td>
<td>0.0668</td>
<td>0.0521</td>
</tr>
<tr>
<td>Cooking Activity</td>
<td>0.0621</td>
<td>0.0611</td>
<td>0.0579</td>
</tr>
<tr>
<td>Fire Alert Situation</td>
<td>0.0319</td>
<td>0.0292</td>
<td>0.0311</td>
</tr>
<tr>
<td>Burglary Alert Situation</td>
<td>0.0812</td>
<td>0.0693</td>
<td>0.0698</td>
</tr>
<tr>
<td>Dripping Alert Situation</td>
<td>0.0842</td>
<td>0.0832</td>
<td>0.0799</td>
</tr>
<tr>
<td>Cleaning Situation</td>
<td>0.0454</td>
<td>0.0590</td>
<td>0.0547</td>
</tr>
</tbody>
</table>

Figure 9: Set 1 of reasoning outputs during testing with 19 inputs and 18 inputs (TV event removed).

Figure 10: Set 2 of reasoning outputs during testing with 19 inputs and 18 inputs (TV event removed).

Figure 11: Set 1 of reasoning outputs during testing with 19 inputs and 18 inputs (Visitor detection event removed).

Figure 12: Set 2 of reasoning outputs during testing with 19 inputs and 18 inputs (Visitor detection event removed).

Consider 19 inputs. In case 2, we consider 18 inputs where input id 12 (TV usage) is dropped. In case 3, we consider deletion of input id 4 (Visitor Detection). Figure 9 and Figure 10 show the reasoning outputs from the network when there are 19 inputs (case 1) and 18 inputs (case 2). It is observed in Figure 9 that the confidence level of “user relaxing” is reduced when the TV usage event is removed. The network identifies all other reasoning outputs as expected. Figure 11 and Figure 12 show the reasoning outputs from the network when there are 19 inputs (case 1) and 18 inputs (case 3). It is observed in Figure 12 that the confidence...
level of the “open door” situation is reduced as the “visitor detection” event is dropped from the input set. The network identifies all other reasoning outputs as expected. The RMSEs for these testing cases are shown in Table 5. It is observed that the RMSEs for the “user relaxing” in case 2 and “open door situation” in case 3 have higher values.

4 CONCLUSIONS

This paper presents a dynamically reconfigurable online SOFNN for application in a robot ecology environment. In this work we address the situation when the number of inputs varies over time. We then implemented and utilized this network to extract knowledge from realistic events occurring within a smart home environment. A set of realistic synthesized training and testing data have been employed to observe different scenarios. We show the structural modifications of the network when the number of inputs changes for the network during the training phase. We also show the impact of removing event inputs from the network during different testing phases. The results show that the network has the ability to adapt to the dynamics of the environment and show its cognitive capability.

ACKNOWLEDGEMENTS

This work is partially supported by the EU FP7 RUBICON project (contract no. 269914) – www.fp7rubicon.eu.

REFERENCES

