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Abstract—In this paper, we study the localization of ground
users by utilizing unmanned aerial vehicles (UAVs) as aerial
anchors. Specifically, we introduce a novel localization framework
based on Federated Learning (FL) and Reinforcement Learn-
ing (RL). In contrast to the existing literature, our scenario
includes multiple UAVs learning the trajectory in different
environment settings which results in faster convergence of RL
model for minimum localization error. Furthermore, to evaluate
the learned trajectory from the aggregated model, we test the
trained RL agent in an alternative environment which shows
the improvement over the localization error and convergence
speed. Simulation results show that our proposed framework
outperforms a model trained with transfer learning by %30.

Index Terms—Unmanned aerial vehicle (UAV), localization,
received signal strength (RSS), Reinforcement learning (RL),
Federated Learning (FL).

I. INTRODUCTION

In recent years, location-aware services have been recog-

nized as a crucial component for broad applications in wireless

communication. Generally, information regarding the location

of objects can be exploited in different layers, from communi-

cation aided purposes to the application level where location

information is desired to interpret the collected data [1]. For

this purpose, the global positioning system (GPS) grants a

suitable performance for outdoor applications. However, GPS

is known of its expensive cost and vulnerability to jamming.

Thus, alternative localization approaches have become more

attractive for research focus over the past decade. In the

literature, there are several ground anchor based localization

techniques that have been broadly studied [2]. Specifically, the

Received Signal Strength (RSS) technique is favorable because

of its inherent simplicity and low complexity. This simplicity is

due to the fact that RSS can be used without any modification

to current systems, so it is the easiest way forward. Moreover,

RSS based localization can achieve satisfactory performance

in emergency situations [3]. Nonetheless, the variation around

the mean signal power due to shadowing significantly impacts

the reliability of this technique. This is especially important

in urban and high urban environments where the shadowing

effect is more severe and hence the localization accuracy
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drops significantly. To address this issue, unmanned aerial

vehicles (UAVs) deployed as aerial anchors is an emerging

solution in order to localize ground devices. The aerial anchors

potentially are capable of resolving the main drawback of

ground node localization when using RSS technique. In fact,

UAV anchors can combine the benefits of satellites with a

higher link probability of LoS and the advantages of ground

anchors with a short link length and hence higher RSS reso-

lution. Furthermore, UAVs are typically battery-limited which

introduces an important challenge towards their deployment

as aerial anchors. This fact restricts UAVs operational lifetime

and hence reduces the number of measurements that can be

collected during their mission, which can negatively affects the

accuracy of localization. In fact, depending on the hovering

duration, speed of the UAV, and length of the path, the energy

consumption of the UAV varies.

The noteworthy success of Machine Learning (ML) is

mainly associated to two key components – highly powerful

computing and extremely efficient data analytic. However,

such a impressive success in ML essentially relies on whether

or not there are enough data to support ML algorithms so

as to make them work convincingly, in which it becomes

a crucial issue in many ML applications. Because of the

proliferation of UAVs, collecting data through them becomes

much practical and convenient such that a UAV anchor has

gradually been a vast live database abounding with real-time

information, which can be utilized by ML to optimize network

operations and organization. It has become an important issue

to appropriately and effectively use ML techniques based on

data distributed over a massive mobile network. Specifically,

when transporting raw data from all UAVs to a server in

a huge network due to the many issues, such as network

congestion, energy consumption, privacy, security, etc. To

avoid transporting a huge amount of distributed data to a server

for conducting centralized ML and to preserve the privacy of

users, a distributed learning methodology without raw data

transportation, such as federated learning (FL) [4], becomes a

viable solution.

In this paper, we introduce a novel framework for ground

users (GUs) localization in urban environments using UAVs.

Our proposed framework incorporate reinforcement learning

with federated learning which enables us to explore the opti-

mal trajectory of the UAVs for maximum localization accuracy

for different types of propagation environments. First, by for-



mulating the problem we investigate the paths that UAVs take

for for minimum localization error for three environments with

different parameters which impact the path loss and accuracy

of localization. By utilizing federated learning technique we

aggregate these models and finally we test the trained model in

fourth environment. Our results show that the localization error

achieved with same number of training episodes is %30 lower

with trained FL model from three environment as compared

to the model transferred sequentially from first environment

to fourth environment.

The rest of this paper is organized as follows. In Section

II, we introduce the system model and the path loss model

for localization based on RSS. Then, the machine learning

framework for UAVs is introduced in Section III. In Section

IV the simulation results are presented. Finally, the work is

concluded in Section V.

II. SYSTEM MODEL

In this paper, we assume multiple UAVs flying over an urban

area at a fixed altitude h, operating as an aerial anchors to

localize multiple terrestrial users. These devices are equipped

with a wireless communication device which periodically

broadcast a probe request. We resort to utilizing the following

log-normal shadowing pathloss model as it is capable of

modeling wireless environments with acceptable precision [5].

We formulate the path loss as:

L = 20 log(d) + 20 log(
4πf

c
) +Aτ (θ) (1)

where d is the distance between the UAV and ground user,

f and c are respectively the system frequency and speed of

light, and Aτ (θ) is a log-normal distributed random variable

with mean μτ and variance σ2
τ (θ), i.e.,

Aτ (θ) ∼ N (μτ , σ
2
τ (θ)) (2)

where the variance can be defined as:

σ2(θ) = P
2
LoS(θ)σ

2
τ (θ) + [1− P

2
LoS(θ)]σ

2
τ (θ) (3)

where στ (θ) corresponds to the shadowing effect of LoS and

NLoS links between the UAV and the ground user, where

τ = {0, 1} is an indicator that can have value 1 for LoS

link and 0 for NLoS link, and they are expressed as:

στ (θ) = dτ exp(−cτθ
180

π
) (4)

and PLoS(θ) is the probability of having LoS link, which is

written as:

PLoS(θ) =
1

1 + a exp(−b(θ 180
π − a))

(5)

where a, b, cτ , dτ and μτ are environment dependent param-

eters. Thus, the distance between the UAV and the device can

be estimated as follows:

d = 10ζ (6)
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Fig. 1: Federated learning architecture.

ζ =
Pt − Pr−20 log( 4πfc )−Aτ (θ)

20
(7)

where Pr and Pt denote the received and the transmitted

power, respectively.

The position of a GU in 2D coordinates is described as

(xu, yu). Given the projection of UAV on the ground (x, y),
we can estimate the distances ri =

√
(x− xu)2 + (y − yu)2

based on (7). Moreover, the multilateration technique can be

utilized to estimate the user’s position. In multilateration least

squares are used to estimate the position of the user (x̂, ŷ)
according to the estimated distances. In a two-dimensional

space, ni distance measurements from ni dissimilar positions

are calculated to generate ni circles centered at the position

where the measurements are taken with radii equal to the

respective measurements. If the distance measurements are

accurate, the ni circles intersect in one point that establish the

position of the user. Now, given (xi, yi) the ground position

of the UAV at sample point i, and r̂i be the distance from

sample point i to the middle of overlapping circles, then we

can estimate the location (x̂, ŷ) using N number of samples

from the following minimization formula:

(x̂, ŷ) = min
x̂,ŷ

N∑

i=1

√
(xui

− x̂)2 + (yui
− ŷ)2 − ri (8)

III. PROPOSED METHOD

A. Q-Learning

To solve the problem explained in the previous section,

we resort to a reinforcement learning framework based on

double Q-learning. Compared to the existing reinforcement

learning algorithms such as Q-learning that may leads to a

suboptimal trajectory, the double Q-learning algorithm permit

the UAV to find the optimal flying trajectory to minimize the

localization error of all users. Furthermore, in comparison with

the traditional Q-learning algorithm that generally uses one Q-

table to record and update the values coming from different

states and actions [6], the double Q-learning algorithm uses

two Q-tables to separately select and evaluate the actions.

Consequently, the double Q-learning algorithm prevent the



Algorithm 1: Federated averaging with DDQN.

1: Execution on Server:

2: Initialize w0

3: for j = 1 to max rounds do

4: M = set of UAVs

5: for Each UAV in parallel do

6: wk
t+1 = ClientUpdate(k, wt)

7: end for

8: wt+1 =
∑

1
Mwk

t+1

9: end for

10: Return wt+1 to UAVs.

11:

12: Execution on UAV:

13: Construct reward function R
14: Init: UAV position, s, Qi i ∈ [A,B]
15: Repeat

16: if local rounds < max (local rounds)

17: Choose action:

18: a = argmaxaQ
i(s, a) from Qi(i ∈ [A,B])

19: Receive immediate reward

20: Update table Qi

overestimation of Q values. Next, we introduce the compo-

nents of the double Q-learning algorithm. We utilize a RL

framework modeled as a Markov Decision Process (MDP)

to solve the localization problem. Each UAV independently

make decisions with respect to standard MDP representation

as described in the following:

1) State Representation: Each state considers the agent’s

location, represented by the UAV (x, y) coordinates in

the trajectory taken, the localization error and estimated

distances calculated by RSS signals explained in Section

I.

2) Action Space: The action space is defined by movement

directions on the sides of the hexagon as the only

possible velocity vectors plus the action of remaining

in the same place formatted into a 7-tuple.

3) State Transition Model: Considering a deterministic

MDP, there is no randomness in the transitions that

follow the agent’s decisions. Thus, the next state is only

affected by the action that the agent takes.

4) Rewards: The reward function is defined by the average

localization error from the ground users at each step,

r[n] =
Ls

e[n]
(9)

where Ls is desired localization error which is set to

10m and e[n] is the evaluated localization error at time

instant n.

B. Federated learning

In the UAV network proposed in Section II, our aim is

to investigate the performance of FL over the UAV network

that localize ground users via RSS reading, which lead to

Table I: The path loss parameters for: Suburban (1), Urban (2),

Dense Urban (3) and Highrise Urban (4) environments [7].

a b μ1 μ0 d1 d0 c1 c0
env1 4.88 0.43 0.1 21.0 11.25 32.17 0.06 0.03

env2 9.61 0.16 1.0 20.0 10.39 29.6 0.05 0.03

env3 12.08 0.11 1.6 23.0 8.96 35.97 0.04 0.04

env4 14.32 0.08 2.3 34 7.37 37.08 0.03 0.03

Fig. 2: Localization error versus training episodes in env1.

Comparison between FL model and baseline DDQN.

continuous FL between the edge server and the UAVs. Thus,

we propose a FL model over the network in Fig. 1 as follows.

Suppose there are 3 UAVs distributed in the network and their

task is to jointly learn a global model with the edge server

in T training rounds. To characterize the impact of different

environment parameters on localization error, we assume each

UAV is operating in a different environment setting i.e from

sub urban to high urban.

Federated averaging (FedAvg) orchestrates training with a

central server which hosts the shared global model wt, where

t is the communication round. The algorithm initialize by

randomly setting the global model w0. One communication

round of FedAvg can be described in the following: At the

beginning, the server distributes the current global model wt

to all UAVs. After updating their local models wk
t to the

shared model,wk
t ← wt, each UAV partitions its local data into

batches and performs epochs of Stochastic Gradient Decent

(SGD). Finally, UAVs upload their trained local models wk
t+1

to the server, which then generates the new global model wt+1

by computing a weighted sum of all received local models.

Our approach for utilizing FedAvg reinforcement learning for

localization is represented in Algorithm 1.

IV. SIMULATION RESULTS

We assume N GUs uniformly distributed in a circular area

with a radius of 750m, centered at (x, y) = (0, 0). The

values for the path loss model considered in this paper are



0 100 200 300 400 500

Number of training episodes

80

90

100

110

120

130

140

150

L
o
c
a
li
z
a
ti

o
n
 E

rr
o
r 

[m
]

DDQN(TL)

(a) env2

0 100 200 300 400 500

Number of training episodes

70

80

90

100

110

120

130

140

L
o
c
a
li
z
a
ti

o
n
 E

rr
o
r 

[m
]

DDQN(TL)

(b) env3

0 100 200 300 400 500

Number of training episodes

60

80

100

120

140

L
o
c
a
li
z
a
ti

o
n
 E

rr
o
r 

[m
]

DDQN(TL)

DDQN(FL)

(c) env4

Fig. 3: Localization error versus training episodes (a) pre-trained model from env1 transferred and retrained in env2; (b)

pre-trained model from env1 and env2 transferred and retrained in env3; (c) test and comparison of model transferred from

previous environments and FL architecture in env4.

chosen as recommended in [7] for urban environments and are

summarized in Table I. We assume all UAVs are flying at a

fixed altitude and their position is known by GPS, and they can

measure the RSSI from all users in their communication range.

We resort to Python as a programming language to simulate

the operation of our proposed method, and the numerical

results are averaged over ten runs.

Fig. 2 shows the convergence of the proposed FL method.

From Fig. 2 we observe that the FL algorithm required approx-

imately 1300 episodes to reach convergence, which is much

less than the number of episodes required for convergence of

the DDQN. Fig. 2 also shows that the FL algorithm achieves

the localization error of 25m after only 1200 episodes, which

is about %75 lower that the one reached by the DDQN base-

line. This stems from the fact that the FL algorithm has already

trained a set of weights from training in 3 environments and

starts the training process with a pre-trained model.

In Fig. 3, we test the performance of the FL trained

model from 3 urban environment on the 4th environment

with a scenario when Transfer Learning (TL) is applied to

transfer the model RL agent trained in one environment to next

environment. Transfer learning aims at improving the process

of learning new tasks using the experience gained by solving

predecessor problems which are somewhat similar. Fig. 3

shows the results obtained in the scenario when considering

different training options for the DDQN algorithm: in Fig. 3

(a) a training of Ne = 500 is done in the environment 2 on

the basis of pre-trained model in environment 1; followed by

a training of Ne = 500 in the environment 3 based on the

transferred model from environment 2 Fig. 3 (b), and finally

the agent is trained with Ne = 500 episodes in environment

4 based on the pre-trained model from previous environments

and also Ne = 500 episodes is training with FL pre-trained

model from environment 1− 3, Fig. 3 (c). As we can see the

localization error achieved with 500 episodes of training in

the 4th environment with the pre-trained model from transfer

learning is approximately equal to 70m, while with 500
episode, the FL pre-trained model reaches the localization

error of 50m. This result shows that our proposed framework is

efficient in reducing convergence speed by %30 and achieving

better generalization performance in comparison with transfer

learning approach.

V. CONCLUSION

The enhancement in localization accuracy of ground users

when using UAV as base station and relying on RSS tech-

niques has been studied. Specially, we utilized a FL framework

to find an optimal trajectory through training an agent with

RL algorithm which reached convergence faster. This paper

validated the effectiveness of placing anchors at different

position with respect to different environment setting in terms

of both localization error and the required number of episodes

for training an RL agent. Finally, the reported results motivate

inspecting other localization methods, such as angle-of-arrival,

and possibly integrate them with the proposed FL-based

framework for further improvements.
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