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Abstract—In this paper, we design a new UAV-assisted com-
munication system relying on the shortest flight path of the
UAV while maximising the amount of data transmitted to mobile
devices. In the considered system, we assume that UAV does not
have the knowledge of user’s location except their initial position.
We propose a framework which is based on the likelihood of
mobile users presence in a grid with respect to their probability
distribution. Then, a deep reinforcement learning technique is
developed for finding the trajectory to maximize the throughput
in a specific coverage area. Numerical results are presented
to highlight how our technique strike a balance between the
throughput achieved, trajectory, and the complexity.

Index Terms—Mobility, throughput, reinforcement learning,
unmanned aerial vehicles

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have recently captivated
interest as a rapid solution for providing communication
services to ground users [1], [2]. In practice, it is not cost-
effective or even practical to set up terrestrial base stations
(BSs) in temporary hotspots or disaster areas. In contrast, due
to the exceptional flexibility of deployment and maneuverabil-
ity of UAVs, they can be employed in an efficient manner to
serve as aerial BSs [3]. Moreover, the communication link
between users and UAVs has typically high probabilities of
line-of-sight (LoS) air-to-ground (A2G) channels, which can
mitigate signal blockage and shadowing [4] . Wireless net-
works supported by UAVs constitute a promising technology
for enhancing the network performance [5]. The applications
of UAVs in wireless networks span across diverse research
fields, such as wireless sensor networks (WSNs), caching, het-
erogeneous cellular networks, massive multiple-input multiple-
output (MIMO), disaster communications and device-to-device
communications (D2D). In all mentioned scenarios, a critical
aspect for the system’s ability to serve the highest possible
number of users with the best achievable throughput is the
user’s location. Previous works have addressed the problem
of path planning of UAV by neglecting the mobility of users
in to the system model. Whereas fixed location of users may
fulfill certain communication network scenarios, but in real
life applications, one can not oversight the dynamic movement
of users. In [6], the authors studied the joint 3D deployment
and power allocation in a UAV-BS system that maximizes
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the system throughput. They proposed an algorithm which
combined deep deterministic policy gradient with water-filling
to allow the UAV to learn an optimal location in the continuous
state and action spaces. In [7], the authors investigated the
multi-UAV trajectory planning to provide a long-term energy-
efficient content coverage. A multi-UAV trajectory planning
problem was formulated as two related multi-agent cooperative
stochastic games. For obtaining equilibriums of the games, the
authors proposed a Q-learning based decentralized multi-UAV
cooperative RL algorithm. The proposed algorithm enables
UAVs to independently choose their policy and recharging
scheduling. Also, in a decentralized manner, the UAVs share
their learning results with each other over a timevarying com-
munication network. In [8], authors proposed a 3D deployment
based on the quality of experience and they considered the
dynamic movement of ground users into their system model.
They demonstrated that the proposed 3D deployment scheme
based on Q-learning outperforms the K-means algorithm.
However, the authors assumed the UAV has online knowledge
of dynamic movement of ground users which is not always
possible in real life applications.

In this paper, we consider a system model relying on a single
UAV to serve several mobile users. We propose a framework
for finding the trajectory to maximize the achievable system
throughput between all users. In our proposed model, the UAV
is only aware of the initial position of users and needs to
choose actions based on the stochastic model calculated from
the mobility of users. For comparison, we consider a scenario
that UAV is connected through the GPS system and has the
knowledge of user’s location in each time instant.

The paper is organized as follows: the system model and
achievable system throughput are given in section II. In Sec-
tion III, mobility model and stochastic model for localization
of users are proposed. In Section IV, the deep reinforcement
learning algorithm is utilized for obtaining the UAVs’ dynamic
movement when users are roaming. Numerical results are
carried out in Section V. Finally, the paper is concluded in
Section VI.

II. SYSTEM MODEL

Consider a system consisting of a single UAV and U
ground users with dynamic movement in the area and need
to be covered. Let uu = [xu, yu]

T ∈ R2×1 represent the
horizontal coordinate of u-th ground user where u ∈ U .
The 2D Cartesian coordinate of the UAV is presented as



m = [xm, ym]T . In practice, the ground users receive three
different kinds of signals from UAVs including LoS, non-line-
of-sight (NLoS), and multiple reflected signals. These signals
occur with specific probabilities in different environments and
the probability of multiple reflected signal which results multi-
path fading is considerably lower than two other signals. Thus,
their impact at the receiver side is typically ignored. Thus, we
assume that the communication link between ground users and
the UAV is overshadowed by the LoS signals. Based on this
assumption, the channel power gain between u-th user and the
UAV is only a function of their Euclidean distance as below

hu,m = ρ0d
−2
u,m (1)

where ρ0 is a constant shadowing power of the channel at the
reference distance d0 = 1m and du is the Euclidean distance
between u-th user and UAV which can be written as

du =
√
z2m + ‖uu −m‖ (2)

Hence, we have

hu,m(t) =
ρ0

z2m + ‖uu −m‖
(3)

The bit rate at time t for u-th user can be formulated as below

Ru(t) = log2(1 + γu,m(t)) (4)

where γu(t) is the signal-to-noise ratio (SNR) corresponding
to the u-th user at time t, which can be expressed as

γu,m(t) =
Phu,m(t)

σ2
(5)

where P is the UAV transmit power and σ2 is the power of
the additive white Gaussian noise (AWGN) at u-th user. Since
users are mobile, for each user, there are k possible locations
with respect to time. So we have

Pr(xk,yk)
u (t) = z ∀u,∀t, ∀u (6)

Consequently, by utilising the above probability, the achievable
system throughput can be expressed as

R
(xk,yk)
k (t) =

∑
xk,yk

Pr(xk,yk)
u (t)×Rk

u(t) (7)

Since the movement of users affect the system throughput, the
UAV have to travel based on the real-time movement of users
to maximize the throughput for ground users. Thus, to provide
communication services for all ground users, we maximize the
achievable system throughput subject to the location of each
user based on their mobility model. So, we can write

max
xm(t),ym(t)

(∫ T

t=0

U∑
u=1

Rk
u(t)dt

)
(8)

s.t. x1(0), ..., xu(0) = X1(0), ..., Xu(0),∀u (9)
y1(0), ..., yu(0) = Y1(0), ..., Yu(0),∀u (10)

xku(t), y
k
u(t) = Pr(xk,yk)

u (t),∀k, ∀t,∀u (11)
zm(t) = Huav (12)
Ptx(t) = Pm (13)
Vc(t) = Vuav (14)

Fig. 1: Probability distribution of a mobile user based on the
grid model.

where Huav and Vuav are the altitude and velocity of UAV,
while Pc is the value for transmit power from UAV to
ground users. Furthermore, (9) and (10) denote that initial
position of each user is known by the UAV; (11) indicates
that the location of mobile users are estimated based on their
probability distribution, (12),(13) and (14) set the constant
values on altitude, transmit power and velocity of the UAV,
respectively.

III. MOBILITY MODEL AND PROBABILITY DISTRIBUTION
OF USER’S LOCATION

The memoryless mobility models such as Random Walk
allow mobile nodes to move anywhere in the system with
a stochastic random process for speed and direction. Conse-
quently, the mobility patterns are very disordered and may
not be able to reflect the real-time scenarios of mobile ad hoc
networks. In reality, movements of mobile nodes are restricted
by obstacles. Moreover, there is some correlation between the
speed, direction, path, and destination of mobile nodes to meet
their corresponding objectives.

Since our objective is to let the UAV learn the trajectory
based on the mobility of users, the choice of the mobility
model has a major impact on the learned trajectory. If we
consider a model that users change their direction or speed
at each time step, the randomness in the environment is too
chaotic in which, there is no meaningful trajectory to be
learned. Also, border behavior of the environment and how
users react when they reach the border cannot be neglected.
Therefore, we decide to choose a random mobility model
for users that is realistic and practical. The Smooth Random
Mobility describes how the correlation between the speed and
the direction is used to provide the smooth movement patterns
that are more realistic to be used in the real-life scenarios [9].

Now, with the given mobility model, as discussed in previ-
ous section we need to calculate the probability distribution in
(8). There are different approaches for predicting the location
or trajectory of an individual. The interested reader is referred
to the following works, [10], [11] and [12]. Motivated by



the work from [11], we partition the spatial area into a grid
in which each cell has an area of 25 m2 and then counts
the number of times a mobile user has visited each cell
based on the simulation. With this information, we compute a
probability distribution representing the likelihood of visiting
each particular cell at the time instant t.

Algorithm 1: Localization of mobile users
1: Let us initialize U and t = 1 as the user set and

iteration step, respectively.
2: Repeat: For each tc seconds:
3: Search the grid for most probable locations.
4: Choose from the action set between na = 4 possible

locations for each user according to policy derived
from Q to achieve maximum reward.

5: Result: xy-Cartesian coordinates of U .

A. Learning based localization

In this section, we describe the novel technique for localiza-
tion of mobile users. In the considered scenario, we assume
that the initial position of ground users are known to UAV.
In our algorithm, with regard to probability distribution found
by the grid model, the UAV makes the decision based on the
most probable grids which have the highest probabilities. Here,
because of the large action size, we limit the choices of UAV
at each time instant to na = 4 for each user. Also, since it
is not necessary for the UAV to do the estimation at each
time instant, we set a time period Ta in which the UAV will
estimate the locations periodically. The localization algorithm
is described in the following.

IV. REINFORCEMENT LEARNING FOR TRAJECTORY
OPTIMIZATION

In this section, given the location of mobile users, our goal
is to obtain the optimal trajectory of the UAV to maximize
the system throughput. Reinforcement Learning (RL) has a
potential to deal with challenging and realistic models that
include stochastic movements of nodes. In general, RL is a
learning approach that is used for finding the optimal way
of executing a task by letting an entity, named agent, take
actions that affect its state within the acting environment. The
agent improves over time by incorporating the rewards it had
received for its appropriate performance in all episodes [13].
In the Q-learning model, the UAV acts as agent, and the Q-
learning model consists of four parts: states, actions, rewards,
and Q-value. The aim of Q-learning is for attaining a policy
that maximizes the observed rewards over the interaction time
of the agent.

1) State Representation: Each state in the set is described
as: (xu, yu), where (xu, yu) is the horizontal position
of UAV. As the UAV takes a trajectory in a specific
episode, the state space can be defined as xu : 0, 1, ...Xd

, yu : 0, 1, ...Yd, where Xd and Yd are the maximum
coordinate of this particular episode.

Hyperparameter value
optimizer for SGD Adam
learning rate for optimizer 0.0001
discount factor γ 0.99
number of hidden layers 2
number of neurons 256
minibatch size 32
action space size 263
activation function ReLU
replay buffer capacity 106

Table I: Training parameters.

2) Action Space: The action space A is described by all
possible movement directions, the action of remaining
in the same place and 4 possible locations for each of the
mobile users. By assuming that the UAV fly with simple
coordinate turns, the actions related to movement of
UAV is simplified to 7 directions. Combining the actions
from the dynamic movement of UAV and estimation
based on the grid model, the action size will be equal
to 263. More in section IV-A.

3) State Transition Model: Considering a deterministic
MDP, there is no randomness in the transitions that
follow the agent’s decisions. Thus, the next state is only
affected by the action that the agent takes.

4) Rewards: The reward function is defined by the instan-
taneous throughput of users. If the action that the agent
carries out at current time t can improve the throughput,
then the agent receives a positive reward, otherwise, the
agent receives a negative reward.

Due to the size of MDP, we create an RL agent as a
feed-forward neural network (NN), with F input neurons,
Y hidden states each with the same number of neurons Z,
all using rectified linear (ReLU). When receiving the current
state, described with F features as input, the NN agent
outputs its evaluation for all seven actions that can be taken.
However, the use of NNs in RL tasks may fail to converge
especially in problems with stochastic environments, such as
ours. Therefore, we rely on deep RL and using double Q-
learning to solve our problem [14].

For the double-Q-learning RL algorithm, we need to keep
two separate agents with the same properties but with different
weight values wP and wT . As such they will output a different
Q-action function when given the same state. One is used to
choose the actions, called a primary model QP (st, at), while
the other model evaluates the action during the training, called
a target model QT (st, at). Therefore training occurs when
taking a batch of experiences et from the buffer that is used
to update the model as:

Qnew
P = (1− α)Qp + α [rt + (1− dt)γmaxQT (st+1, a)]

(15)
where maxQT (st+1, a) is the action chosen as per the agent,
α is the learning rate which was an input to the Adam opti-
mizer [15], and γ is a discount factor that reduces the impact
of long term rewards. We implement this with soft updates
where instead of waiting several episodes to replace the target
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Fig. 2: Convergence of the proposed algorithm vs. the number
of training episodes.

model with the primary. The target model receives continuous
updates discounted by value τ as in wT = wT (1− τ)+wP τ .

A. Dealing with large action space

In this section, we examine how the agent makes the
decision from the large action space at each time step and how
invalid action masking and normalized probability distribution
are realized to strict the agent for repeatedly taking invalid
actions. It has been shown that invalid action masking scales
better when the space of invalid actions is large and the agent
solves the desired task while invalid action penalty struggles
to explore even the very first reward.

First, let us see how a normalization carry out in to the
discrete action space for when UAV has to decide the location
of users after each tc seconds. For illustration purposes,
consider the 4 probabilities in Fig.1 which correspond to
highest possible locations for one user at time t. Thus, let us
acknowledge an MDP with the action set A = a0, a1, a2, a3
and S = s, s′ where the MDP reaches the state s′ after an
action is taken in the initial state s. Thus we have

P (s′|s, a) = [p(a0|s0), p(a1|s0), p(a2|s0), p(a3|s0)]
= [0.094, 0.3, 0.104, 0.22]

(16)

Now, after normalization enforced, we can write

P (s′|s, a) = [0.13, 0.41, 0.14, 0.3] (17)

Now for states that UAV actions are about the coordinates
of UAV and come from the possible directions described in
section IV, we have to mask the invalid actions which corre-
spond to actions related to estimation of user’s location. Lets
consider our actions space size which is equal to 263. We set
the first 7 actions correspond to actions related to direction of
UAV and other 256 actions related to user’s locations. Suppose
that we have an action set A = a0, ..., a6, ..., a262 in which
each action has same probability. Now let us assume that at
time instants other than tc, the actions [a7, a8, a9, ..., a262] are
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Fig. 3: Trajectory obtained by UAV for the case that four
ground users are roaming.

invalid actions and only the first 7 actions are valid. Invalid
action masking helps to avoid sampling invalid actions by
“masking out” the probabilities corresponding to the invalid
actions. This is usually achieved by replacing the probabilities
of actions to be masked by zero. Let us use Ia which is
stands for this masking process and we can calculate the re-
normalized probability distribution P (s′|s, a) as the following:

P (s′|s, a) = IA ([p0, ..., p6, p7, ..., p262])

= [p′(a0|s0), ..., p′(a6|s0), p′(a7|s0), ..., p′(a262|s0)]
= [0.142, ..., 0.142, 0, ..., 0]

(18)

V. NUMERICAL RESULTS

In this section, we present our numerical results char-
acterising the optimisation problem of UAV-assisted mobile
networks. To highlight the efficiency of our proposed model,
we compare it to a scenario when UAV is connected to GPS
system and has the online knowledge of user’s location. We
use Tensorflow 2.5.0 and the Adam optimiser for training
the neural networks. The training parameters are provided in
Table I. In deployment, a 2D area of 10002 m is considered.
It is assumed that UAV flies at constant altitude and speed
Huav = 100m and Vuav = 20m/s, respectively. The UAV
transmit power is set to Pc = 0.1W and the power of dense
noise is assumed to be −174 dB.

In Fig.2, we plot the expected throughput vs the number of
training episodes. It can be observed that the UAV is capable
of carrying out the actions in an iterative manner and learn
from the mistakes for improving the system throughput. In
this figure, we also compare our approach to a scenario when
the UAV is connected through the GPS system and for the sake
of comparison, we assume that the UAV is aware of the user’s
location at each time instant. As can be seen, the convergence
rate of the proposed approach is much slower than the GPS
approach. This is due to fact that of the large action space and



the stochastic estimation of user’s location, which results to
necessity of more training episodes.

Fig.3 plots the trajectory of a UAV derived from the
proposed approach when ground users move. In this figure,
the trajectory of a UAV is shown for the mission duration
time of 100 s. In this simulation, we assume that the UAV can
move at a constant speed. At each time slot, the UAV choose
a direction from the action space which contains 7 directions,
then the trajectory will maximize the throughput of ground
users. It should be noted that we can adjust the timespan to
improve the accuracy of dynamic movement. This, in turn,
increases the number of required iterations for convergence.
Therefore, a trade-off exists between improving the throughput
of ground users and the running complexity of the proposed
algorithm.

VI. CONCLUSION

In this paper, the DRL technique has been utilized to
optimize the flight trajectory and throughput performance of
UAV-assisted networks. The mobility of users is considered in
to the system model and a novel approach for estimating the
location of mobile users has been studied. A learning-based
algorithm was proposed for solving the problem of maximiz-
ing the system throughput by utilising a prior knowledge of
likelihood of presence in a grid. We designed a DRL based
movement algorithm for obtaining the trajectory of UAV. It
is demonstrated that the proposed approach performs well in
comparison despite the fact of being simple to implement.
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