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1 Introduction 

Catalysis engineering has played a fundamental role in the chemical and energy industry in the past 
century. It enabled the industrial scale production of commodities and fuels, leading to a rapid progress 
of the society. Nowadays, new challenges have risen, mainly consisting of a sustainable exploitation of 
the raw material and energy consumption. In this view, this urges to develop more environmentally 
friendly and sustainable solutions, which represent a target of utmost significance to meet the Sustainable 
Development Goals posed by the United Nations. 
In this context, the catalysis engineering is surely devoted to the research of new materials [1] aimed at 
activating novel reactions. In addition, the improvement of the currently existing technologies has a high 
significance to increase productivity, selectivity, and energy efficiency of the catalytic processes. To this 
aim, a computational modeling approach has been introduced to provide fundamental insights into the 
catalytic environment and to understand the complex intercoupling between the physical and chemical 
phenomena that influence the overall performances of the system. Indeed, the computational 
investigation can act as in silico experiments that allow for the analysis of systems without the need for 
the prior manufacturing of the reactor units.  

 
Figure 1. Schematic representation of the time and length scales involved in chemical processes. Adapted 
with permission from ref. [2]. 
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A catalytic environment is characterized by phenomena occurring in a wide range of time and length 
scales, as schematized in Figure 1. The description of these phenomena and their interplay is challenging 
from a computational standpoint. In this view, the multiscale modeling approach can be adopted to tackle 
this challenge, by enabling the computational analysis of catalytic systems by accounting for the effects 
of all the phenomena [3,4]. In doing so, it allows for the quantitative investigation of such system by using 
a first-principles description of the phenomena. Accordingly, the different scales present in a catalytic 
environment are described by coupling the Computational Fluid Dynamics (CFD) predictions of the flow 
with the detailed descriptions of the chemical kinetics (i.e., mean fields microkinetics, kinetic Monte Carlo 
-kMC-), developed from the quantum mechanical electronic structural theory.  
To this purpose, this review article aims at the critical discussion of the methods established to integrate 
detailed first-principles kinetic into the macroscale simulations, as presented in the plenary lecture at the 
Annual Meeting 2021 of the German Subject Group on Chemical Reaction Engineering [5]. First, the 
multiscale modeling approaches are presented with respect to fixed and fluidized reactors. Then, the 
numerical approaches available in the literature to perform the coupling between CFD and detailed 
descriptions of the chemical kinetic are discussed for each reactor class. In all the numerical strategies, 
the majority of the computational effort (i.e., 70-90%) is related to the solution of the chemistry, which 
requires expensive calculations and thus represents the bottleneck of the application of these 
approaches. In this context, different speed-up strategies have been developed in the literature to 
overcome such a limitation and they are hereby discussed. Despite the adoption of these techniques, the 
computational effort of the most detailed modeling approaches does not allow for their application for 
investigating industrial scale units or for routinely reactor analysis and design. As such, a hierarchical 
approach has been proposed to improve the accuracy of the medium or low detailed methodology by 
replacing the literature correlations, based on the empirical understanding of the phenomena, with 
correlations derived from data obtained by highly detailed simulations which account for the multiscale 
nature of the system.  
 
2  Coupling CFD with the detailed description of chemical kinetic in catalytic reactors 

In this section, the numerical methodologies for the coupling of CFD and detailed description of the gas-
phase and surface reactivity are presented by separately discussing the approaches proposed for the 
description of fixed bed reactors (Section 2.1) and fluidized reactors (Section 2.2). For each system, the 
governing equations describing the evolution of the non-isothermal reactive flow in the reactor are 
initially discussed. Then, the numerical strategies needed to treat the reaction source terms are 
presented. These numerical strategies have been implemented in different numerical tools. Among them, 
Maestri and co-workers developed the catalyticFoam framework [6], a comprehensive tool for the first-
principles multiscale investigation of catalytic reactors.  
 
2.1 Fixed Bed Reactors 

Catalytic fixed beds are key in the synthesis of many chemicals and intermediates and the abatement of 
pollutants and toxic substances [7–9]. To improve the existing reactor technologies and to develop novel 
processes, the fundamental investigation of the local flow structures present inside the reactor 
environment and their effects on the heat and mass transfer is required [10]. Consequently, since the late 
1990s, the research has started focusing on developing methods to investigate fixed bed reactors by using 
CFD simulations to describe the complex 3D fluid dynamic of these units. In this context, two modeling 
approaches, characterized by a decreasing level of detail in the description of the geometrical complexity, 
have been proposed in the literature, namely, particle resolved [10,11] and porous media [12,13] models.  
 
2.1.1 Particle Resolved Model   

The particle resolved model is the most detailed strategy to investigate fixed bed reactors. Accordingly, 
the analysis of the reactor is performed by accounting for the actual geometry of the bed (Figure 2 (a)). 
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In this view, the geometry of the solid phase must be computationally reconstructed [10,14,15]. Different 
approaches are present in the literature according to the catalytic system that has to be analyzed. In the 
case of packed beds, the virtual reconstruction is performed employing Discrete Element Method [16] 
(DEM) simulations [17–20] using commercial or open-source software packages (e.g., blender®, ligggths®, 
OpenFoam®). Conversely, the virtual reconstruction of a structured reactor can be performed by 
employing Computer-Aided Design (CAD) models in the case of regular structures [15,21–23] whereas 
DEM-based approaches can be used for irregular media, e.g., foams [14,24].  
Then, the computational domain has to be obtained by means of a meshing procedure [10,25–28], which 
requires proper strategies to capture the complex morphology of the considered catalyst shape (e.g., 
bridges or caps in the case of packed bed reactors [25,29]). The meshing procedure also affects the 
phenomena described in the reactor environment. Indeed, only the phenomena with a characteristic 
length higher than the computational cell size can be accounted for in a particle resolved simulation. 
Hence, a fine mesh is needed if all the phenomena have to be properly described. However, the use of a 
fine mesh is often not feasible due to the high computational burden.  In this view, coarse meshes are 
adopted and the governing equations are combined with closure models to account for the effects of the 
smallest scale phenomena (e.g., Reynold-Averaged Navier-Stokes in case of turbulent flow). Nevertheless, 
the computational grids usually adopted in this approach limits its applicability to small portions of the 
reactor environment. Hence, to properly describe and parametrically investigate the properties of 
interest, Representative Elementary Volumes (REV) of the catalytic reactor, sketched in Figure 2 (b), must 
be chosen [15,30,31]. 
The particle resolved model has been used in the literature to describe all the different operating 
conditions present in a catalytic reactor [10,11] (e.g., chemical regime, internal mass and heat transport 
limitations, external mass and heat transport limitation). In particular, two modeling approaches can be 
found in the literature and will be discussed in the following sections. 

 
Figure 2. Schematic representation of the fixed bed reactor and their Representative Elementary 
Volumes (REV) according to the particle resolved model (a)-(b) and the Volume Average Technique for 
porous media (c)-(d).  
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2.1.1.1 Single-region Particle Resolved Model 

A single-region approach can be adopted to describe the fixed beds when the energy and species 
gradients inside the catalyst can be considered negligible. Hence, only the fluid region is meshed, since 
the presence of the catalytic material is introduced in the system as a boundary condition between the 
fluid phase and the solid walls.  
In this approach, the fluid dynamic behavior of the units is predicted by solving the continuity and the 
Navier-Stokes equations (eqs. (1)-(2)) in the fluid phase computational domain.  
𝜕𝜕(𝜌𝜌𝑓𝑓)
𝜕𝜕𝜕𝜕

+ ∇�𝜌𝜌𝑓𝑓𝑼𝑼𝑓𝑓� =  0 (1) 
𝜕𝜕(𝜌𝜌𝑓𝑓𝑼𝑼𝑓𝑓)

𝜕𝜕𝜕𝜕
+ ∇�𝜌𝜌𝑓𝑓𝑼𝑼𝑓𝑓𝑼𝑼𝑓𝑓� =  −∇(𝑝𝑝) + 𝜌𝜌𝑓𝑓𝒈𝒈 + ∇ �μf�∇𝑼𝑼𝑓𝑓 + ∇𝑼𝑼𝑓𝑓𝑇𝑇� −
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μf�∇𝑼𝑼𝑓𝑓�𝑰𝑰� 

  (2) 

 
Moreover, the balance equations describing the evolution of the species (eq. (3)) and energy (eq. (4)) in 
the fluid have to be accounted for to describe non-isothermal reactive flows [6]. 
𝜕𝜕(𝜌𝜌𝑓𝑓𝜔𝜔𝑗𝑗,𝑓𝑓)

𝜕𝜕𝜕𝜕
+ ∇�𝜌𝜌𝑓𝑓𝜔𝜔𝑗𝑗,𝑓𝑓𝑼𝑼𝑓𝑓� =  −∇�𝑱𝑱𝑗𝑗� + 𝑅𝑅𝑗𝑗ℎ𝑜𝑜𝑜𝑜   (3) 

𝜌𝜌𝑓𝑓𝑐𝑐�̅�𝑝,𝑓𝑓
𝜕𝜕(𝑇𝑇𝑓𝑓)
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑓𝑓𝑐𝑐�̅�𝑝,𝑓𝑓𝑼𝑼𝒇𝒇𝛻𝛻�𝑇𝑇𝑓𝑓� = −∇(𝒒𝒒𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) + 𝑄𝑄ℎ𝑜𝑜𝑜𝑜   (4) 

In eqs. (3)-(4), proper closures are needed to model the diffusive and conductive fluxes, e.g., Fick (eq. (5)) 
and Fourier (eq. (6)) equations [32], respectively.  
𝑱𝑱𝑗𝑗 = 𝔇𝔇𝑗𝑗𝛻𝛻𝜔𝜔𝑓𝑓,𝑗𝑗 (5) 
𝒒𝒒𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝜆𝜆𝑓𝑓𝛻𝛻𝑇𝑇𝑓𝑓  (6) 

The catalytic material is introduced as boundary condition for the species (eq. (7)) and energy (eq. (8)).  
The heterogeneous reaction rate can be locally expressed as a function of the mean surface molar 
concentrations of fluid phase and adsorbed species, whose amount and variations are reported in eq. (9).   

𝜌𝜌𝑓𝑓𝔇𝔇𝑗𝑗(∇𝜔𝜔𝑗𝑗,𝑓𝑓)�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=
𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐
𝑒𝑒𝑓𝑓𝑓𝑓

𝐴𝐴
𝑅𝑅𝑗𝑗ℎ𝑒𝑒𝑐𝑐 

  (7) 

(𝜆𝜆𝑓𝑓∇𝑇𝑇𝑓𝑓)�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=
𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐
𝑒𝑒𝑓𝑓𝑓𝑓

𝐴𝐴
𝑄𝑄ℎ𝑒𝑒𝑐𝑐 

  (8) 

𝑑𝑑𝜃𝜃𝑘𝑘
𝑑𝑑𝜕𝜕

=
𝑅𝑅𝑘𝑘ℎ𝑒𝑒𝑐𝑐

𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐
   (9) 

This approach is representative of systems operating in chemical regime or fully external mass and heat 
transfer limitations [6,15,31], and it has been successfully used to investigate the fluid dynamic and the 
reactivity of catalytic units working in laminar conditions [10]. The effect of internal transport limitations 
in the catalytic material can be included in this approach by considering an additional parameter (i.e., the 
effectiveness factor) [33–36]. However, this approach has been adopted only for systems with a thin 
catalyst layer [33,34] or with a single catalytic particle [35]. In addition, its combination with literature 
closure models aimed at introducing the effects of the turbulence in the fluid dynamic quantities enables 
also the investigation of turbulent and reactive units. 
 
2.1.1.2 Multi-region Particle Resolved Model 

The investigation of intra-phase mass and heat transfer resistances can be performed by adopting a single-
region approach only for systems which allow for an accurate evaluation of the effectiveness factor. To 
describe in a more general way these phenomena, the characterization of the species and temperature 
distribution inside the pellets and their relation with the properties of the catalyst porous matrix (e.g., 
porosity, tortuosity, pore size distribution) is mandatory. In this context, a multi-region approach has to 
be used to describe the catalytic environment. Accordingly, the solid phase is modeled as a pseudo-
homogeneous phase, thus adopting effective transport properties [37] to account for the internal porous 
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structure of the catalyst. Different closures have been developed in the literature to derive the effective 
transport properties (e.g., ε/τ model, Wakao-Smith model) [33]. They aim at correcting the molecular gas 
diffusivity by accounting characteristic of the catalytic porous matrix. Hence, analysis of the internal 
catalyst structures has been performed to properly quantify these properties [38,39] and effectively adopt 
the aforementioned models.  In doing so, the computational domain is composed of two meshes, one for 
the fluid and a second for the catalytic material, sharing the fluid-solid interface. Proper boundary 
conditions are here imposed to enable the communication between the two domains and, usually, a 
consistent meshing approach is adopted [37].  
In this approach, the fluid phase is solved analogously to the single-region approach (eqs. (1)-(4)). 
However, the governing equations of the solid phase (eqs. (9)-(11)) have to be accounted for the 
description of the species and energy transport in the catalytic particles. In contrast, the Navier-Stokes 
equations are not solved in the solid phase since the absence of a convective flow is assumed. Hence, 
constant pressure and a null fluid velocity characterize the solid phase [37]. 
𝜕𝜕(𝜌𝜌𝑓𝑓,𝑐𝑐𝜔𝜔𝑗𝑗,𝑐𝑐)

𝜕𝜕𝜕𝜕
=  ∇(𝜌𝜌𝑓𝑓,𝑐𝑐𝔇𝔇𝑗𝑗eff∇𝜔𝜔𝑗𝑗,𝑐𝑐) + 𝑅𝑅𝑗𝑗ℎ𝑒𝑒𝑐𝑐 

  (10) 

(𝜌𝜌𝑐𝑐(1 − 𝜅𝜅𝑐𝑐)𝑐𝑐𝑝𝑝,𝑐𝑐 + 𝜌𝜌𝑓𝑓,𝑐𝑐𝜅𝜅𝑐𝑐𝑐𝑐�̅�𝑝,𝑐𝑐)
𝜕𝜕𝑇𝑇𝑐𝑐
𝜕𝜕𝜕𝜕

= ∇(𝜆𝜆𝑓𝑓
𝑒𝑒𝑓𝑓𝑓𝑓∇𝑇𝑇𝑐𝑐) + 𝑄𝑄ℎ𝑒𝑒𝑐𝑐   (11) 

In this approach, the gas-solid boundary condition is key to enable the communication between the two 
regions. In particular, it is important to ensure that the flux of species or energy from the fluid to the 
interface is equal to the flux from the interface to the solid catalyst to avoid an unphysical accumulation 
of energy or species at the gas-solid interface. Moreover, it is also mandatory that the temperature and 
species composition of both the computational domains must be equal at the fluid-solid interface. This 
coupling condition translates into eqs. (12)-(13) (energy boundary condition) and eqs. (14)-(15) (species 
boundary condition) imposed at the interface between the fluid and solid phase. 
−𝜆𝜆𝑓𝑓∇𝑇𝑇𝑓𝑓 = −𝜆𝜆𝑒𝑒𝑓𝑓𝑓𝑓∇𝑇𝑇𝑐𝑐   (12) 

𝑇𝑇𝑓𝑓𝐼𝐼 = 𝑇𝑇𝑐𝑐𝐼𝐼   (13) 

−𝜌𝜌𝑓𝑓𝔇𝔇𝑗𝑗 ∇𝜔𝜔𝑗𝑗,𝑓𝑓 = −𝜌𝜌𝑓𝑓,𝑐𝑐𝔇𝔇𝑗𝑗eff∇𝜔𝜔𝑗𝑗,𝑐𝑐   (14) 

𝜔𝜔𝑗𝑗,𝑓𝑓
𝐼𝐼 = 𝜔𝜔𝑗𝑗,𝑐𝑐

𝐼𝐼    (15) 

This modeling approach has been successfully adopted to analyze reactors with intra-phase mass and heat 
transfer resistances [10,37]. However, this description is obtained with a higher computational cost with 
respect to the single-region one. Indeed, two meshes must be solved and the governing equations of the 
solid phase (eqs. (9)-(11)) are not accounted for only at the fluid-solid interface (single-region approach) 
but they are solved for each solid computational cell, leading to a relevant increment of the computational 
effort. 
 
2.1.2 Porous Media Model 

The application of the particle resolved model is hampered by its computational cost, and thus it can be 
exploited to investigate only a small portion of the reactor (e.g., few hundreds/thousands of particles in 
case of packed beds or unitary cells in the case of cellular materials) [15,30,31]. Consequently, a more 
computational affordable numerical strategy is needed to enable the analysis of industrial-sized units.  
To do so, the Volume-Averaging Technique (VAT), originally introduced by Whitaker [12,13], is employed 
for the description of the solid and the fluid phase and their mutual interactions. A schematic 
representation of the VAT is reported in Figure 2(c)-(d). The purpose of the VAT is to treat a complex fluid-
solid system (Figure 2 (a)) by completely disregarding its geometry, which is accounted for by means of 
simplified engineering correlations for the geometrical and transport properties. In doing so, the 
information related to the three-dimensional and complex morphology of the porous medium (Figure 2 
(a)) is lost, and only the macroscopical effect of the catalyst on the reacting flow are obtained (Figure 2 
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(d)). In this view, similar approaches have been often adopted in the literature to simplify the transport 
phenomena inside complex systems [40,41]. Conversely, the implementation of the VAT in the 
catalyticFoam framework enabled the coupling between the fluid dynamics description with the detailed 
chemical kinetics with a multi-region approach. The solid phase of the catalyst is treated by means of a 
separate computational domain, topologically matching the corresponding fluid phase of the porous 
medium, where the evolution of the mean local average coverage, species and temperature in the catalyst 
is described as a function of the heterogeneous reaction rates. Then, the composition of the fluid phase 
is updated accounting for the fluid-solid inter-phase transport. Additionally, it allows for considering 
multiple porous regions and to account for the effect of different catalysts shape (e.g., particles or 
structured catalysts) on the average fluid dynamic conditions by means of closure models which retain 
micro- and meso-scale information. In this view, closure models can be developed based on the 
fundamental information acquired by means of detailed, particle-resolved approaches. Hence, the VAT 
for porous media is a medium hierarchy model based on the outcomes obtained by the high hierarchy 
approach (i.e., particle resolved).  
The VAT is thus employed to simplify the governing equations which are valid within each phase of the 
porous medium (solid, fluid) to equations that are valid everywhere in the porous medium (Figure 2 (d)) 
[12,13]. To begin with, the method of volume averaging is discussed for the continuity equation and the 
Navier-Stokes equation: 
𝜕𝜕𝜌𝜌�𝑓𝑓
𝜕𝜕𝜕𝜕

+ 𝛻𝛻�𝜌𝜌�𝑓𝑓𝑼𝑼𝒇𝒇� = 0   (16) 

𝜕𝜕(𝜌𝜌�𝑓𝑓𝑼𝑼𝒇𝒇)
𝜕𝜕𝜕𝜕

+ 𝛻𝛻�𝜌𝜌�𝑓𝑓𝑼𝑼𝒇𝒇𝑼𝑼𝒇𝒇� = −𝛻𝛻(�̂�𝑝) + 𝛻𝛻��̂�𝜇𝑓𝑓𝛻𝛻𝑼𝑼𝒇𝒇�+ Π   (17) 

where the accent ˆ denotes the spatially-averaged variables [12,13] and ∏ is a pressure source term. In 
this view, ∏  is a function of the geometry of the considered porous medium and the fluid transport 
properties and velocity, and is given by engineering correlations [42–45]  
The VAT was extended enabling the solution of the Navier-Stokes in the chemical reactor coupled with 
the solution of the chemical species mass balance and the enthalpy balance in the porous medium. To do 
so, the fluid and the solid phases are treated separately as two different regions (fluid region, solid region, 
i.e., multi-region approach). In the fluid region, the species mass balance (eq. (18)) and the energy balance 
(eq. (20)) are required as governing equations, and the species and energy sources are evaluated by 
means of engineering correlations as reported in eqs. (19) and (21) respectively. 
𝜕𝜕(𝜌𝜌�𝜔𝜔�𝑓𝑓,𝑗𝑗)

𝜕𝜕𝜕𝜕
+ 𝛻𝛻�𝜌𝜌�𝜔𝜔�𝑓𝑓,𝑗𝑗𝑼𝑼𝒇𝒇� = 𝛻𝛻�𝔇𝔇𝑗𝑗𝛻𝛻𝜔𝜔�𝑓𝑓,𝑗𝑗� + 𝑆𝑆𝜔𝜔𝑗𝑗

𝑓𝑓→𝑐𝑐   (18) 

𝑆𝑆𝜔𝜔𝑗𝑗
𝑓𝑓→𝑐𝑐 =

𝑆𝑆ℎ𝑗𝑗𝔇𝔇𝑗𝑗
𝐿𝐿𝑐𝑐ℎ𝑐𝑐𝑎𝑎

𝑆𝑆𝑣𝑣�𝜔𝜔�𝑐𝑐,𝑗𝑗 − 𝜔𝜔�𝑓𝑓,𝑗𝑗�   (19) 

𝜌𝜌�𝑓𝑓�̂�𝑐𝑝𝑝,𝑓𝑓
𝜕𝜕(𝑇𝑇�𝑓𝑓)
𝜕𝜕𝜕𝜕

+ 𝜌𝜌�𝑓𝑓�̂�𝑐𝑝𝑝,𝑓𝑓𝑼𝑼𝒇𝒇𝛻𝛻�𝑇𝑇�𝑓𝑓� = 𝛻𝛻��̂�𝜆𝑓𝑓𝛻𝛻𝑇𝑇�𝑓𝑓� +𝛹𝛹𝑓𝑓→𝑐𝑐 
  (20) 

𝛹𝛹𝑓𝑓→𝑐𝑐 =
𝑁𝑁𝑁𝑁 ∙ 𝑘𝑘𝑓𝑓
𝐿𝐿𝑐𝑐ℎ𝑐𝑐𝑎𝑎

𝑆𝑆𝑣𝑣�𝑇𝑇�𝑐𝑐 − 𝑇𝑇�𝑓𝑓�   (21) 

In the solid region, the species mass balance (eq. (22)), the energy balance (eq. (23)), and the evolution of 
surface coverage (eq. (24)) are required as governing equations.  
𝑅𝑅𝑗𝑗�𝜔𝜔�𝑐𝑐,𝑗𝑗� − 𝑆𝑆𝜔𝜔𝑗𝑗

𝑓𝑓→𝑐𝑐 = 0 (22) 

𝜌𝜌𝑐𝑐� 𝑐𝑐𝑝𝑝,𝑐𝑐
𝜕𝜕(𝑇𝑇�𝑐𝑐)
𝜕𝜕𝜕𝜕

= 𝛻𝛻�𝜆𝜆𝑒𝑒𝑓𝑓𝑓𝑓𝛻𝛻𝑇𝑇�𝑐𝑐� − 𝛹𝛹𝑓𝑓→𝑐𝑐 + 𝑄𝑄ℎ𝑒𝑒𝑐𝑐 (23) 

𝜕𝜕𝜃𝜃�𝑘𝑘,𝑐𝑐

𝜕𝜕𝜕𝜕
=
𝑅𝑅𝑘𝑘ℎ𝑒𝑒𝑐𝑐

𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐
 (24) 

It is worth noticing that the accumulation term of the energy balance on the solid (eq. (23)) is considered 
to capture the dynamic evolution of the solid phase temperature. On the contrary, with respect to 
chemistry, eq. (22) is obtained with the assumption that local steady-state conditions are achieved. Thus, 
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the interphase transfer rate of the j-th species is always equal to the reaction rate. In this view, similarly 
to ∏, the Sherwood and Nusselt numbers and the effective thermal conductivity are quantified with 
engineering correlations, which are a function of the geometry of the considered porous medium and the 
fluid transport properties and velocity [15,30,31,42,46]. 
 
2.1.3 Numerical Strategies 

The particle resolved and the porous media models can be equally simulated by means of either steady-
state or transient solvers depending on the target of the investigations. The governing equations that 
characterize both the two approaches represent a set of Partial Differential Equations (PDE) with stiff and 
non-linear terms. Their solution in complex geometries with detailed kinetic mechanisms represents a 
challenging problem [6]. Indeed, the high stiffness and non-linearity of the chemical terms require 
efficient and robust numerical algorithms to be solved. 
A fully segregated approach, efficiently applied to simulate non-reacting flows [10], cannot be used in this 
context since it is not effective to treat stiff and non-linear systems [47]. Similarly, the fully coupled 
solution of these equations [48] cannot be performed since the resulting systems of governing equations 
can be extremally large [6]. Thus, different algorithms based on the segregated approach with specific 
methods for the management of the reaction source terms have been developed in the literature to treat 
these systems achieving an effective methodology for the solution of the numerical problem.  
 
2.1.3.1 Operator Splitting Method 

The Operator Splitting (OS) [49] is a numerical strategy developed to efficiently treat sets of PDEs 
containing non-linear terms. According to this approach, the equations are solved by decoupling their 
constitutive terms to employ the optimal solution strategy for each of them. The OS has been successfully 
used in different research fields (e.g., combustion [50], atmospheric modeling [51]). Consequently, it has 
been also used to couple the detailed description of the homogeneous and heterogeneous chemical 
kinetic with the CFD solution of the complex flow in fixed bed reactors, and thus it represents the main 
approach to treat transient simulations with both single- or multi-region descriptions of the catalytic 
environment. As such, the solution of the governing equation is performed by decoupling the advection 
terms from the one related to the chemistry and by solving them sequentially. 
By considering a generic variable 𝜑𝜑 whose evolution is determined by eq. (25), its solution is obtained in 
three steps according to the Strang algorithm [52]. 
𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

= 𝑀𝑀(𝜕𝜕) + 𝑆𝑆(𝜕𝜕)   (25) 

In the first step, called transport step, only the advective contributions 𝑀𝑀(𝜕𝜕) of the governing equations 
are accounted for the evolution of the thermo-chemical composition of the computational domain (eq. 
(26)). 
𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

= 𝑀𝑀(𝜕𝜕)   (26)  

Consequently, a fully segregated solution of the equation can be accurately performed by adopting linear 
matricial solvers since the resulting set of equations is non-stiff (because the reaction term is ignored). 
This step is solved over one half of the time step, and it is performed to first update the cell composition 
and temperature. The new composition and temperature become the initial conditions for the next sub-
step. 
Then, the reaction terms, ignored in the first step, are considered in the second one, called reaction step 
(eq. (27)). 
𝑑𝑑𝜑𝜑
𝑑𝑑𝜕𝜕

= 𝑆𝑆(𝜕𝜕)   (27) 

In this step, each computational cell is described as a batch reactor and thus, its solution can be obtained 
through an Ordinary Differential Equation (ODE) solver. This is able to accurately manage the stiffness and 
non-linearity of the reaction source terms allowing for the correct description of the dynamic evolution 



 

8 

of the system. This step is solved along the whole simulation time step to provide a second update of the 
thermo-chemical composition over the domain which becomes initial conditions for the final step. 
At last, the final condition on each computational cell is achieved by solving the transport step (eq. (26)) 
similarly to the first one with the exception that the initial conditions correspond to the final state of the 
second step.  
This numerical strategy has been successfully applied in the literature to simulate the dynamic evolution 
of fixed bed reactors. In particular, a packed bed reactor of Raschig rings [6] and a packed bed reactor of 
porous spheres [37] have been successfully simulated using the single-region and the multi-region particle 
resolved model respectively, by adopting a UBI-QEP microkinetic scheme for the combustion of hydrogen 
on Rh [53]. However, it cannot be used if the investigation of the catalytic environment is performed with 
steady-state solvers. 
 
2.1.3.2 Linearization of the Reactive Source Terms 

In the literature, different approaches have been developed to solve the non-isothermal reactive flow by 
means of steady-state solvers. The main approach exploited in the multi-region description of the reactive 
environment involves the linearization of the reaction source terms (LRS). By adopting this approximation, 
the non-linearity of the species and the energy balance equation is neglected. Consequently, the solution 
of those equations can be achieved by adopting a fully segregated approach where the adsorbed species 
are, however, computed through a fully coupled method to guarantee a coverage that is consistent to the 
local bulk phase condition. To do so, a First Order Taylor expansion is adopted in literature to approximate 
the non-linear rates of the gas-phase species related to both homogeneous and heterogeneous reaction 
by neglecting the off-diagonal terms of the Jacobian matrix: 

𝑅𝑅𝑗𝑗
ℎ𝑜𝑜𝑜𝑜/ℎ𝑒𝑒𝑐𝑐 = 𝑅𝑅𝑗𝑗,0

ℎ𝑜𝑜𝑜𝑜/ℎ𝑒𝑒𝑐𝑐 +
𝑑𝑑𝑅𝑅𝑗𝑗

ℎ𝑜𝑜𝑜𝑜/ℎ𝑒𝑒𝑐𝑐

𝑑𝑑𝜔𝜔𝑗𝑗,𝑓𝑓/𝑐𝑐
�
0

(𝜔𝜔𝑗𝑗,𝑓𝑓/𝑐𝑐 − 𝜔𝜔𝑗𝑗,0,𝑓𝑓/𝑐𝑐)   (28) 

In the context of homogeneous reactions, this approach can be efficiently exploited for all the modeling 
approaches previously described (i.e., particle resolved and porous media). Conversely to the 
homogeneous reactions, the LRS can be exploited to solve the heterogeneous chemical kinetic only if a 
multi-region description of the system is adopted (i.e., multi-region particle resolved model, porous media 
model), since a computational domain where the governing equations are discretized is mandatory to 
adopt this numerical strategy. Indeed, it has been successfully adopted to investigate the steady-state 
conditions of a packed bed reactor under steam reforming reacting conditions [54]. 
 
2.1.3.3 Reactive Source Terms as Boundary Condition  

A proper approach is required to achieve the steady-state solution of the solid phase governing equations 
in the single-region approach. In this context, the Reactive Source Terms introduced in the form of 
Boundary condition (RSBC) provides satisfactory results. In addition, this approach can be also adopted to 
describe the transient behavior of fixed bed units with a more affordable computational cost. In contrast 
to the OS approach, the RSBC can be effectively used only in peculiar cases, i.e., systems whose reactivity 
is described by means of poorly stiff kinetics or working in external mass transfer limited regime. 
Accordingly, the update of the adsorbed species is achieved by solving the eq. (9) with an ODE solver. The 
obtained solution in terms of coverages is then exploited to evaluate the heterogeneous reaction source 
terms of the fluid phase species (𝑅𝑅𝑗𝑗ℎ𝑒𝑒𝑐𝑐) required to impose the reactive boundary conditions (eqs. (7)-(8)). 
In doing so, the thermo-chemical composition of the gas phase can be computed with a fully segregated 
approach by considering the reactive boundaries as a material and heat flux. The RSBC has been 
successfully employed for the fundamental investigation of the transport properties of structured 
reactors (e.g., Foam [31] and Periodic Open Cellular Structures -POCS [15]).  
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2.2 Fluidized systems 

Fluidized reactors are units in which the catalytic particles continuously change their position due to the 
interactions between them and with the fluid phase. For these units, the simplified 1D modeling 
approaches [55] are not able to describe the different flow structures (e.g., bubbles, clusters of particles) 
present in the reactor environment. Consequently, CFD approaches are used in the literature to analyze 
the complex 3D fluid dynamics of fluidized reactors. In particular, three different approaches have been 
proposed to predict the fluid dynamic of the multiphase flow: Direct Numerical Simulation (DNS) [56], 
Euler-Lagrange model [57–59], and Euler-Euler model [60,61]. These approaches differ for the level of 
details of the multiphase flow description and consequently, they can be applied to systems of different 
sizes. 
 
2.2.1 Direct Numerical Simulation 

The DNS is a numerical approach that describes in detail all the interactions between the gas and solid 
particles. Hence, the size of the computational cells of the domain must be chosen smaller than the 
particle diameter in this strategy. Each particle is tracked by solving the Newton’s equation of motion. For 
what concerns the CFD solution of the gas phase, instead, the Immersed Boundary Method [56] is used. 
Accordingly, the computational grid is not rebuilt at each time step, despite the solid phase movement. 
Indeed, the surface of each particle is discretized and tracked by means of an ensemble of Lagrangian 
points. By doing so, the pressure and velocity fields are described until the gas-particle interface, and the 
gas-particle forces are directly obtained from the solution of the CFD governing equations, without the 
application of additional closure models. Despite the high level of detail of DNS simulations, the required 
computational cost limits the application of this approach to few hundreds of particles [56]. Thus, the 
Euler-Lagrange and Euler-Euler models are usually adopted for the modeling of the gas-solid flow from 
lab to industrial fluidized beds.  
 
2.2.2 Euler-Lagrange Model 

According to the Euler-Lagrange model, the gas phase is solved by means of CFD governing equations 
(eqs. (29)-(30)) while the evolution of the solid phase is obtained by tracking each particle in the domain 
as a moving material point (eq. (31)) across computational cells, which are 2-5 times bigger than the 
tracked particles [62]. 
𝜕𝜕(𝜀𝜀𝜌𝜌𝑓𝑓)
𝜕𝜕𝜕𝜕

+ ∇�𝜀𝜀𝜌𝜌𝑓𝑓𝑼𝑼𝑓𝑓� =  0   (29) 

𝜕𝜕(𝜀𝜀𝜌𝜌𝑓𝑓𝑼𝑼𝑓𝑓)
𝜕𝜕𝜕𝜕

+ ∇�𝜀𝜀𝜌𝜌𝑓𝑓𝑼𝑼𝑓𝑓𝑼𝑼𝑓𝑓� =  −𝜀𝜀∇(𝑝𝑝) + 𝜀𝜀𝜌𝜌𝑓𝑓𝒈𝒈 + ∇�𝝉𝝉�𝑓𝑓� + 𝑭𝑭𝒇𝒇→𝒔𝒔   (30) 

𝑚𝑚𝑝𝑝
𝑑𝑑𝑼𝑼𝑝𝑝

𝑑𝑑𝜕𝜕
= 𝑚𝑚𝑝𝑝𝒈𝒈 + 𝑭𝑭𝑑𝑑,𝑝𝑝 + 𝑭𝑭𝑏𝑏,𝑝𝑝 + 𝑭𝑭𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐,𝑝𝑝   (31) 

Differently from the DNS, this numerical method has been adopted in literature to investigate reactive 
fluidized units [27,63–66]. A cell-wise solution of the heterogeneous reactivity is usually employed in the 
literature [67]. However, this approach does not account for the presence of possible interphase transport 
limitations. Thus, it does not allow for the multiscale investigation of the reactive environment since it is 
not able to catch all the phenomena occurring in the system. Consequently, the particle tracking approach 
has been extended to treat detailed chemistries by implementing the species and energy governing 
equations for both the fluid and each particle composing the solid phase together with the balance 
equations describing the evolution of the adsorbed species in each solid entity [63]. 
The species and energy balance equations for the fluid phase are reported in eqs. (32)-(33). 
𝜕𝜕(𝜀𝜀𝜌𝜌𝑓𝑓𝜔𝜔𝑗𝑗,𝑓𝑓)

𝜕𝜕𝜕𝜕
+ ∇�𝜀𝜀𝜌𝜌𝑓𝑓𝜔𝜔𝑗𝑗,𝑓𝑓𝑼𝑼𝑓𝑓� =  −∇�𝜀𝜀𝑱𝑱𝑗𝑗� + 𝑅𝑅𝑗𝑗ℎ𝑜𝑜𝑜𝑜 + 𝑆𝑆𝜔𝜔𝑗𝑗

𝑓𝑓→𝑐𝑐   (32) 

𝜀𝜀𝜌𝜌𝑓𝑓𝑐𝑐𝑝𝑝,𝑓𝑓
𝜕𝜕�𝑇𝑇𝑓𝑓�
𝜕𝜕𝜕𝜕

+ 𝜀𝜀𝜌𝜌𝑓𝑓𝑐𝑐𝑝𝑝,𝑓𝑓𝑼𝑼𝑓𝑓∇�𝑇𝑇𝑓𝑓� = −∇(𝜀𝜀𝒒𝒒𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) + 𝛹𝛹𝑓𝑓→𝑐𝑐 + 𝑄𝑄ℎ𝑜𝑜𝑜𝑜   (33) 
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The𝑆𝑆𝜔𝜔𝑗𝑗
𝑓𝑓→𝑐𝑐 and 𝛹𝛹𝑓𝑓→𝑐𝑐 retain the information of the coupling between the fluid and the solid phase and 

their evaluation depends on the modeling assumption adopted to describe the solid phase. In particular, 
according to the Lagrangian approach, 𝑆𝑆𝜔𝜔𝑗𝑗

𝑓𝑓→𝑐𝑐 and 𝛹𝛹𝑓𝑓→𝑐𝑐 are evaluated by summing the terms calculated 
for each solid particle present in the computational cell. 
The species (eq. (34)), the energy (eq. (35)) and the adsorbed species (eq. (36)) balance equations for the 
solid phase, solved for each solid entity present in the system, are hereby reported. 
𝑑𝑑(𝜌𝜌𝑓𝑓,𝑝𝑝𝜅𝜅𝑐𝑐𝜔𝜔𝑗𝑗,𝑝𝑝)

𝑑𝑑𝜕𝜕
=  −𝐾𝐾𝑐𝑐𝑗𝑗𝑆𝑆𝑣𝑣�̅�𝜌�𝜔𝜔𝑗𝑗,𝑝𝑝 − 𝜔𝜔𝑗𝑗,𝑓𝑓�+ 𝑅𝑅𝑗𝑗ℎ𝑒𝑒𝑐𝑐 

  (34) 

(1 − 𝜅𝜅𝑐𝑐)𝜌𝜌𝑝𝑝𝑐𝑐𝑝𝑝,𝑝𝑝
𝑑𝑑𝑇𝑇𝑝𝑝
𝑑𝑑𝜕𝜕

= −ℎ𝑆𝑆𝑣𝑣�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑓𝑓� + 𝑄𝑄ℎ𝑒𝑒𝑐𝑐 (35) 

𝑑𝑑𝜃𝜃𝑘𝑘,𝑝𝑝

𝑑𝑑𝜕𝜕
=
𝑅𝑅𝑘𝑘ℎ𝑒𝑒𝑐𝑐

𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐
    (36) 

The Euler-Lagrange model has been successfully used in the literature to investigate system up to the lab-
scale [27,63–66]. Representative parcel models (i.e., coarse-graining method) [68,69] have been proposed 
to increase the size of the domain (i.e. number of particles). This is achieved by assembling a certain 
number of particles in a computational parcel in order to reduce the solid entities that have to be tracked. 
However, it is not applicable to industrial units, characterized by billions of particles, due to computational 
effort related to the particle tracking. In this view, the Euler-Euler model can be used to describe fluidized 
units till the industrial scale.  
 
2.2.3 Euler-Euler Model 

The Euler-Euler model overcomes the computational burden of the tracking cost, allowing the description 
of industrial scale reactors, by solving the solid phase as a fluid-like phase. Thus, it treats both the fluid 
and the solid phases as a continuum which appear as two interpenetrating fluids, removing the 
dependency of the computational cost on the number of particles present in the system. Consequently, 
the gas phase is solved coherently to the Euler-Lagrange model (eqs. (29)-(30)), while the solid phase loses 
its discrete nature and its fluid dynamics is predicted through the continuity and Navier–Stokes equations 
(eqs. (37)-(38)). 
𝜕𝜕((1 − 𝜀𝜀)𝜌𝜌𝑐𝑐)

𝜕𝜕𝜕𝜕
+ ∇�(1 − 𝜀𝜀)𝜌𝜌𝑐𝑐𝑼𝑼𝑐𝑐� =  0   (37) 

𝜕𝜕((1− 𝜀𝜀)𝜌𝜌𝑐𝑐𝑼𝑼𝑐𝑐)
𝜕𝜕𝜕𝜕

+ ∇((1− 𝜀𝜀)𝜌𝜌𝑐𝑐𝑼𝑼𝑐𝑐𝑼𝑼𝑐𝑐) =  −(1− 𝜀𝜀)∇(𝑝𝑝) + (1− 𝜀𝜀)𝜌𝜌𝑐𝑐𝒈𝒈+ ∇(𝝉𝝉�𝑐𝑐)− 𝑭𝑭𝑓𝑓→𝑐𝑐   (38) 

This involves the adoption of additional closure models needed to describe the fluid properties of the 
solid phase, such as the Kinetic Theory of Granular Flow (KTGF) [60]. The KTGF requires that a statistically 
relevant number of particles is contained inside a computational cell to accurately predict the continuum 
behavior of the solid phase. Thus, a computational grid size ten times larger than the particle diameter is 
usually adopted in this modeling approach [60]. In literature, the Eulerian-Eulerian description has been 
successfully exploited to simulate the fluid dynamic of different kinds of fluidized units [70–73]. Then, it 
was extended to treat also non-isothermal reacting flows [70,74–77]. In doing so, the solution of the 
species and energy balance equations for both the fluid and the solid phases together with the adsorbed 
species balance equations for the solid phase are introduced in the framework.  
Coherently with the Euler-Lagrange model, the species and energy balance equations for the fluid phase 
are formulated as reported in eqs. (32)-(33). However, 𝑆𝑆𝜔𝜔𝑗𝑗 and 𝛹𝛹𝑓𝑓→𝑐𝑐 are evaluated by considering the 
average properties of the solid phase since a fluid-like description of the solid phase is adopted in the 
Euler-Euler model. 
The species and energy balances and the coverage balance equations are expressed as reported in eqs. 
(39)-(41) respectively. 
𝜕𝜕(𝜅𝜅𝑐𝑐(1 − 𝜀𝜀)𝜌𝜌𝑓𝑓,𝑐𝑐𝜔𝜔𝑗𝑗,𝑐𝑐)

𝜕𝜕𝜕𝜕
+ ∇�𝜅𝜅𝑐𝑐(1 − 𝜀𝜀)𝜌𝜌𝑓𝑓,𝑐𝑐𝜔𝜔𝑗𝑗,𝑐𝑐𝑼𝑼𝒔𝒔� = 𝑅𝑅𝑗𝑗ℎ𝑒𝑒𝑐𝑐 − 𝑆𝑆𝜔𝜔𝑗𝑗

𝑓𝑓→𝑐𝑐   (39) 
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(1 − 𝜅𝜅𝑐𝑐)(1 − 𝜀𝜀)𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝,𝑐𝑐
𝜕𝜕(𝑇𝑇𝑐𝑐)
𝜕𝜕𝜕𝜕

+ (1 − 𝜀𝜀)𝜌𝜌𝑐𝑐𝑐𝑐𝑝𝑝,𝑐𝑐𝑼𝑼𝒔𝒔∇(𝑇𝑇𝑐𝑐)

= −∇ ∙ ((1 − 𝜀𝜀)𝒒𝒒𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)−𝛹𝛹𝑓𝑓→𝑐𝑐 + 𝑄𝑄ℎ𝑒𝑒𝑐𝑐 
 (40) 

𝜕𝜕𝜃𝜃𝑘𝑘,𝑐𝑐

𝜕𝜕𝜕𝜕
+ ∇�𝜃𝜃𝑘𝑘,𝑐𝑐𝑼𝑼𝒔𝒔� =

𝑅𝑅𝑘𝑘ℎ𝑒𝑒𝑐𝑐

𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐
   (41) 

In eqs. (39)-(41), there are additional contributions with respect to the Euler-Lagrange formulations (eqs. 
(34)-(36)) which represent the convection of species, temperature, and adsorbed species in the solid 
phase, which are mandatory since the discrete nature of the solid is lost. Additionally, no diffusive 
transport is considered in the solid due to the granular nature of this phase [75–77]. 
 
2.2.4 Numerical Strategies 

In the context of fluidized units, steady-state solvers cannot be used because of their intrinsic dynamic 
evolution, thus, only transient solvers are adopted for their description. Moreover, the multiscale 
description of the reactive flow introduces strong non-linear terms in the energy, species, and adsorbed 
species balance equations related to the homogeneous and heterogeneous reaction source terms. Thus, 
proper numerical strategies have been developed in the literature to solve this set of PDE with non-linear 
terms. A fully coupled approach [48] cannot be adopted also in the case of fluidized units. Consequently, 
different approaches based on the segregated one have been exploited to treat the reactivity in these 
systems. 
 
2.2.4.1 Constant and Linearized Reaction Source Terms 

The most common approach in the literature to include the chemical kinetic in reactive simulations of 
fluidized systems [70,74,75] is the LRS. Coherently with the approach used in steady-state simulations of 
fixed bed reactor, the LRS involves the segregated solution of all the variables by linearizing the 
homogeneous and heterogeneous reactions source terms by means of a first-order Taylor expansion, eq. 
(28). In doing so, very small simulation time steps (i.e., below 10-6 s) are required to catch the transient 
behavior of the reactor, in particular when a detailed description of the chemical kinetic is used [78]. Thus, 
the LRS limits the computational performance of the approach previously described. This approach has 
been improved in literature by substituting the linearized reaction source term with a constant value 
computed by averaging over the time step the rigorous integration of the reaction rates [76]. However, 
also in this case, the segregated solution of the variables requires small time steps to avoid numerical 
errors, leading to a strategy that is still not able to manage the chemical kinetics along with the whole 
dynamic of industrial units. Consequently, different modeling approaches have been developed in the 
literature to increase the efficiency of the multiscale modeling approaches for fluidized units. 
 
2.2.4.2 Multiphase Operator Splitting Method 

The Multiphase Operator Splitting (MOS) [77], schematized in Figure 3, has been developed to overcome 
the issues highlighted in the aforementioned strategies to treat the reactive multiphase flows. 
Accordingly, the governing equations are solved in two sequential steps.  
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Figure 3. Schematic representation of the Multiphase Operator Splitting numerical strategy. Adapted 
with permission from ref. [77]. Copyright 2021 American Chemical Society 

In the first step, the advection terms are considered in the solution of the governing equations of both 
the gas and the solid phase. In doing so, the segregated approach allows for the solution of these PDEs by 
means of a linear matricial solver since the challenging non-linear terms are absent. 
Then, the compositions have been adopted as initial conditions for the second step, where the 
homogeneous and heterogeneous reactions and the interphase transport are accounted for. In doing so, 
each computational cell appears as a multiphase batch reactor that can be efficiently solved using an ODE 
solver since only local terms are present. In particular, the ODE solver can treat the stiffness and non-
linearity of the reaction source terms and it allows for the coupled solution of the fluid and solid phases.  
In doing so, the time splitting of the phenomena proposed by the MOS leads to a solution only slightly 
dependent on the time step [77], since the segregation of the strongly coupled phenomena is not 
performed. Consequently, this numerical approach allows to perform the reactive simulations with the 
same Courant conditions of the non-reactive ones enabling the management of detailed description of 
the chemical kinetic along with the whole dynamic of industrial units by adopting a Eulerian-Eulerian 
description of the multiphase flow. Indeed, it has been efficiently exploited to simulate an industrial 
fluidized bed reactor whose reactivity is described by a complex homo-hetero microkinetic mechanism of 
the OCM processes [79–81].  
 
2.2.4.3 Operator Coupling Method 

By considering a Lagrangian approach, the MOS cannot be adopted since the coupling between the 
computational cell and all the particles thereby contained will result in an extremely large system of 
governing equations. Consequently, in the Euler-Lagrange approach different numerical strategies have 
been developed to treat in a fully segregated way the gas and the solid phases. 
In these strategies, the solution of the fluid phase governing equations can be achieved coherently with 
the approaches described for fixed bed reactors (i.e. LRS or OS).  
Conversely, on the solid phase standpoint, the most rigorous approach that can be adopted to solve eqs. 
(34)-(35) is the Operator Coupling (OC), sketched in the left branch of Figure 4. Accordingly, the thermo-
chemical composition of a solid particle is computed by solving the evolution of the solid phase species 
and temperature coupled with the heterogeneous reactions and the interphase transport (eqs. (34)-(35)). 
To do so, an ODE solver can be adopted to treat the stiffness and non-linearity of the heterogeneous 
reactions as successfully used in the literature [64].  

 
Figure 4. Schematic representation of the Operator Splitting (right branch) and the Operator Coupling 
(left branch) numerical strategies. Adapted with permission from ref. [63]. 
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This numerical strategy can be exploited also in the context of a Eulerian-Eulerian description of the 
multiphase flow. However, the segregated resolution of the two phases usually introduces numerical 
errors when long time steps (i.e., above 5e-6 s) are used. Consequently, the resolution of the reactivity by 
means of the OC can limit the performances of the Euler-Euler model approach hindering the solution of 
detailed chemical kinetics along with the whole dynamic of pilot or industrial units [77]. 
 
2.2.4.4 Operator Splitting Method 

Coherently with the fixed bed reactor, also the OS approach can be applied to solve the governing 
equations of fluidized systems both in the context of Euler-Lagrange [63,64] and Euler-Euler models.  
As for the OC, the OS involves the complete segregation of the fluid and the solid phase, and thus this 
limits the performances of the Euler-Euler model to treat pilot or industrial units. In the context of the 
Eulerian-Lagrangian description of the multiphase flow, the OS can be efficiently applied since the 
segregated solution of the two phases is mandatory. In this view, the OS, schematized in the right branch 
of Figure 4, decouples the reactive terms (𝑅𝑅𝑗𝑗ℎ𝑒𝑒𝑐𝑐, 𝑄𝑄ℎ𝑒𝑒𝑐𝑐) from the species and energy balance equations and 
solves them in three sequential steps (Strang approach [52]). First, the thermo-chemical composition is 
updated by solving only the transport equation (eq. (42)- (43)) over one half of the simulation time step 
by means of a linear matricial solver.  

𝑉𝑉𝑝𝑝
𝑑𝑑(𝜌𝜌𝑓𝑓,𝑝𝑝𝜅𝜅𝑐𝑐𝜔𝜔𝑗𝑗,𝑝𝑝)

𝑑𝑑𝜕𝜕
=  −𝐾𝐾𝑐𝑐𝑗𝑗𝐴𝐴𝑝𝑝�̅�𝜌�𝜔𝜔𝑗𝑗,𝑝𝑝 − 𝜔𝜔𝑗𝑗,𝑓𝑓�   (42) 

(1 − 𝜅𝜅𝑐𝑐)𝜌𝜌𝑝𝑝𝑐𝑐𝑝𝑝,𝑝𝑝𝑉𝑉𝑝𝑝
𝑑𝑑𝑇𝑇𝑝𝑝
𝑑𝑑𝜕𝜕

= −ℎ𝐴𝐴𝑝𝑝�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑓𝑓�   (43) 

Then, the equations accounting for the reactive terms (eqs. (44)-(45)) are solved over the entire time step 
by adopting an ODE solver able to treat the stiffness and non-linearity related to the chemical reaction 
rates.  

𝑉𝑉𝑝𝑝
𝑑𝑑(𝜌𝜌𝑓𝑓,𝑝𝑝𝜅𝜅𝑐𝑐𝜔𝜔𝑗𝑗,𝑝𝑝)

𝑑𝑑𝜕𝜕
=  𝑉𝑉𝑝𝑝𝑅𝑅𝑗𝑗ℎ𝑒𝑒𝑐𝑐   (44) 

(1 − 𝜅𝜅𝑐𝑐)𝜌𝜌𝑝𝑝𝑐𝑐𝑝𝑝,𝑝𝑝𝑉𝑉𝑝𝑝
𝑑𝑑𝑇𝑇𝑝𝑝
𝑑𝑑𝜕𝜕

= 𝑉𝑉𝑝𝑝𝑄𝑄ℎ𝑒𝑒𝑐𝑐 
  (45) 

Finally, the last update of the species is carried out by solving the transport equations over half time step, 
similarly to the first step. 
This strategy has been successfully applied to simulate lab-scale bubbling beds [63] by adopting a 
microkinetic scheme describing the catalytic partial oxidation of methane [82,83] and it provides a 2-fold 
reduction of the computational cost with respect to the OC.  
However, this numerical strategy needs an accurate selection of the simulation time step. Indeed, in order 
to avoid numerical deviations, the simulation time step must be properly set lower than the characteristic 
time of the phenomena [64]. Consequently, this condition requires a reduction of the simulation time 
step usually adopted in literature (e.g., 5e-6 s) if species with a high diffusivity (e.g., hydrogen) are present 
in the system, with consequent increment of the computational effort of the strategy  [64].  
 
3 Speed-up Strategies 

The multiscale description of the chemistry inside the reactor units by means of the previously described 
modeling approaches requires a significant computational cost which has been estimated in around 70-
90% of the overall simulation time [84]. Consequently, speed-up methodologies have been developed in 
the literature to improve the performances of these strategies by reducing the cost related to the detailed 
surface reactivity. In particular, the different strategies can be divided into two distinct approaches: on-
the-fly and pre-computation of the chemical kinetics approaches.  
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3.1 On-the-fly Strategies 

According to the on-the-fly strategies, the chemistry is solved during the simulation and the reduction of 
the computational cost is achieved by diminishing the number of computationally-intensive ODE 
evaluations of the surface chemistry source terms. This reduction can be achieved by exploiting the results 
of prior integrations or by considering the similarities between the systems that must be solved. 
 
3.1.1 In Situ Adaptive Tabulation 

The In Situ Adaptive Tabulation (ISAT), developed by Pope [85], is a storage and retrieval strategy aimed 
at reducing computationally expensive calculations in dynamic simulations. In doing so, during the 
simulation, the ISAT algorithm tabulates the results obtained by the computational demanding ODE 
integrations in order to replace the next ones with an efficient and accurate approximation by the stored 
value. The storage structure is a binary tree that is composed of 2 elements, the nodes, which allow the 
research in the binary tree, and the leaves, which contain all the information needed to approximate the 
integration outcomes. The binary tree is empty at the beginning of the simulations and the leaves are 
added based on the integrations performed by the ODE solver. The information stored in a leaf consists 
of the initial conditions, the integration outcomes, a mapping gradient, that is used to perform the linear 
approximation of the outcomes, and a region of accuracy. This region is defined as the connected region 
containing all the initial conditions providing a local error below a specified tolerance and it is 
approximated with an ellipsoid of accuracy (EOA). The strategy can perform three different actions: 
retrieve, grow and add. Given an initial condition, several search strategies are performed to find the EOA 
of a certain leaf that contains that initial condition. If the EOA is found, the “retrieve” action occurs and 
the outcome is evaluated as a linear approximation of the stored solution. Conversely, the solution of the 
system is obtained by means of the direct ODE integration. The approach then verifies whether it is 
possible to enlarge the EOA of a selected leaf that is close to the initial condition employed for the 
integration (growth attempt). To do so, the solution obtained by direct ODE integration is compared with 
the linear approximation of the outcomes stored in the selected leaf. If the deviation is less than the 
specified tolerance, the “grow” action occurs and the EOA of the selected leaf is grown to also cover the 
new initial conditions. In contrast, the “add” action occurs and a new leaf is added to the binary tree. 
In addition, its application in transient problems requires the introduction of a cleaning procedure inside 
the ISAT algorithm. Indeed, the chemical evolution of the system is linked to a very broad range of 
compositions. During the simulation, a certain composition could not be any more present in the reactor 
environment, and thus, its presence in the binary tree becomes useless and decrease the efficiency of the 
strategy. Consequently, the cleaning procedure aims at removing the leaves of the binary tree 
characterized by a composition that cannot be obtained anymore in the reactor environment. 
The ISAT approach has been efficiently exploited to reduce the computational cost of the reaction step of 
the OS both in fixed bed and fluidized reactors. In fixed bed units, it has been able to provide a 15-fold 
reduction of the whole computational cost in a packed bed composed of 25 spheres (about 96,000 
reactive cells) [84] by adopting a microkinetic scheme for the methane steam reforming process [82]. In 
fluidized systems, a 4-fold reduction of the computational cost has been achieved in a lab-scale fluidized 
bed reactor composed of 10000 catalytic particles [63] whose reactivity is described by means of a 
microkinetic scheme for the methane catalytic partial oxidation process [82,83]. However, the ISAT 
strategy cannot be applied to steady-state solvers [84]. 
 
3.1.2 Agglomeration Approaches 

In addition to the ISAT, a technique based on cell agglomeration [86] has been proposed to treat detailed 
heterogeneous chemistries both in transient and steady-state simulations [18,64]. This approach aims at 
reducing the number of integrations required in a time step or iteration by grouping the computational 
cells having similar operating conditions in bins, as schematized in Figure 5 (a). In doing so, the number of 
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integrations required to solve the system is reduced becoming equal to the number of the bins. Then, the 
resulting composition is mapped back to the cells. 
This strategy has been successfully applied to multi-region simulations of fixed bed reactors. Indeed, it 
enabled a simulation of a packed bed composed of 66 spherical particles (about 0.6 M reactive cells) [18] 
operated with a detailed microkinetic description of the catalytic partial oxidation of methane [82,83] 
with a 14-fold reduction of the computational cost.  

 
Figure 5. Schematic representation of the agglomeration approach adopted in the steady-state 
simulation of fixed bed reactors (a) and in OC simulations of lab-scale fluidized units (b). Adapted with 
permission from ref. [64].  

Then, this speed-up strategy has been extended to treat also dynamic simulations of Euler-Lagrange 
description of fluidized reactors by means of the Operator Coupling approach [64]. In this application, the 
agglomeration algorithm is used to group in bins particles with similar initial conditions (Figure 5 (b)), in 
order to reduce the number of particles that have to be integrated in a time step. By doing so, this strategy 
has provided a 6-fold reduction of the computational cost in a lab-scale fluidized reactor with 104 catalytic 
particles [64] operated with a kinetic description of the CO methanation process [87]. Then, it has allowed 
for the simulation of a lab-scale fluidized unit composed of 1.2 million reactive particles [64]. 
 
3.2 Pre-computation of the Chemical Kinetics 

In addition to the on-the-fly strategies, the reduction of the computational effort of the multiscale CFD 
approaches can be achieved by pre-computing and tabulating the chemical kinetic [88]. In literature, this 
strategy is mainly used for kinetics characterized by a computationally demanding calculation of the rates 
(i.e., high dimension mean-field kinetics, kMC) [89]. This approach requires the computation of a dataset 
beforehand the beginning of the simulation that must be properly tabulated in order to be efficiently used 
during the simulation. In this view, a proper tabulation technique and data generation strategy must be 
selected to efficiently and accurately apply this strategy. 
Concerning the tabulation technique, it is necessary to move from a discrete information of the pre-
computed data to a continuous one. The tabulation algorithm assumes a crucial role since it affects the 
computational efficiency and accuracy of the numerical strategy and consequently, different approaches 
have been proposed in the literature. The simplest one consists of the approximation of the function by 
adopting multidimensional splines [90–95]. Accordingly, a polynomial-like expression is exploited to 
describe the target function. However, their application to functions characterized by abrupt changes in 
catalytic activity is challenging [88].  To overcome such a limitation, a more complex method (e.g., Shepard 
interpolation) has been proposed to improve the prediction of the spline approach. It revealed to provide 
an excellent approximation of the complex reaction rates which characterize kMC simulations [88,96,97]. 
However, the accuracy and efficiency of these two approaches are strongly dependent on the size of the 
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kinetic scheme, and thus their applicability for complex kinetic schemes is hampered [89,93]. In literature, 
the problem related to the efficient treatment of high size datasets both in terms of variables and records 
has been solved by adopting Machine Learning approaches [98]. Thus, these approaches have been 
recently proposed to efficiently tabulate high dimension schemes [99].  
Concerning the data generation, in literature different approaches are present. The simplest approach, 
usually adopted in the context of mean fields models [90,99], consists of evenly distributed or randomly 
located points in each direction of the space. Nonetheless, since no information on the function is 
considered, a large dataset (e.g., hundreds of thousands of records) is often required to achieve an 
accurate prediction. When the generation of these records is computationally demanding (e.g., in the case 
of kMC calculations), this approach requires a very high computational effort to build-up the dataset 
[93,94] which reduces the overall efficiency of the method. In this respect, the definition of the training 
set becomes key to achieve high accuracy with a concomitant reduction of the computational effort. To 
this aim, a dedicated numerical strategy has been proposed to minimize the number of data points 
needed to achieve a target level of accuracy [89] (Figure 6).  

 
Figure 6. Evolution of the dataset adopted in the iterative procedure by means of Random Forest from 
the first iteration (a) to the last one (d). Adapted with permission from ref. [89]. 

To do so, an adaptive procedure able to selectively add points only in the region of the space where the 
approximation of the function is more challenging has been proposed. Accordingly, few points in each 
direction of the space defined by the relevant variables are firstly considered (Figure 6 (a)). Then, the 
importance of each variable is evaluated by taking advantage of the Machine learning features. In doing 
so, it is possible to select for the refinement of the dataset just the variables which mostly influence the 
function. Then, the algorithm adds new points only in the space region where the function shows sharp 
variation of its value (Figure 6 (b)-(c)). Therefore, this approach can minimize the dimension of the dataset 
required to reach a certain accuracy (Figure 6 (d)) and thus the computational effort. 
The pre-computation of the chemical kinetics has been successfully adopted to simulate a fixed bed 
reactor [99] with a complex microkinetic scheme describing ethylene oxidation [100]. In addition, this 
approach has been efficiently used to simulate a structured fixed bed with a complex kMC description of 
the CO oxidation on RuO2(110) [89], becoming the enabling factor to treat chemistries characterized by a 
very computational demanding calculation of the rates. 
However, it could be exploited also to substitute the computationally demanding on-the-fly ODE 
integrations by pre-computing and tabulating their outcomes. 
 
4  Hierarchical approach to Chemical Reaction Engineering 

The CFD multiscale modeling approaches are crucial for the fundamental investigation of the phenomena 
occurring in a catalytic units. However, their computational effort limits the applicability of such 
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approaches, and thus, they are not suitable for routinely analysis and design of the entire catalytic reactor 
(i.e., model predictive control) [101]. Macroscopic 1D or 2D reactor models are required for this purpose. 
Typically, these models are based on empirical parameters and engineering correlations usually obtained 
by means of experimental investigations . The accuracy and reliability of the macroscopic reactor models 
roots on the quality of the lumped parameters employed for the description of the transport properties. 
In case of conventional reactors and catalytic supports, these parameters may be available for some 
specific geometries and range of operative conditions. Hence,  their validity is confined to conditions 
where they have been derived. The situation is even more complex for new designs for which is unlikely 
to have precise engineering correlations and lumped parameters. To overcome such problems, a 
hierarchical approach [30,102], sketched in Figure 7, has been proposed to replace the empirical nature 
of the lumped parameters with the information extracted by the detailed analysis of the system, based 
on first-principles multiscale investigations of the catalytic environment. 

 
Figure 7. Schematic representation of the hierarchical approach. 

According to the hierarchical approach, the detailed simulations of selected number of geometries and 
operating conditions focused on a specific aspect of the full problem (e.g. mass transport, pressure drop) 
is considered on a limited portion of the entire system which is still representative of the phenomena 
under investigation. Based on the CFD results, suitable correlations accounting for the multiscale nature 
of the catalytic environment [15,30,31,102] were developed and adopted to improve the accuracy of the 
macroscopic reactor model (low hierarchy). This approach was successfully applied in the field of fixed 
bed reactors to investigate novel reactor configurations (e.g., micro-channel reactors, Open Cell Foam) 
for which macroscopic models were still not available. In particular, it was proven that the correlations 
developed for micro-channel reactors allow for their investigation through lumped models with only small 
deviations with respect to the detailed approach ones [30,102]. On top of this, the engineering 
correlations derived from the hierarchical approach can also be employed in CFD-based porous media 
models of fixed bed reactors (medium hierarchy). In doing so, it is possible to investigate reactor 
geometries whose description with conventional macroscopic models requires the adoption of too 
simplifying hypothesis with a reasonable computational cost.  
The hierarchical approach can be extended also in the context of fluidized units. Also here, the 
computational effort of the high hierarchy approach to describe fluidized systems (i.e., Euler-Lagrange) 
limits its application to lab-scale units. Hence, the description of pilot or industrial units requires the 
adoption of a Eulerian-Eulerian description or the multiphase flow (medium hierarchy) or macroscopic 
reactor models (low hierarchy). In both cases, these modeling approaches are based on closure models 
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for the description of the unresolved scales and thus the hierarchical approach can be employed to derive 
engineering parameters aiming at improving the description of these systems by employing the 
information gained at the highest resolution into lower hierarchy methods. 
 
5 Conclusions and Future Perspectives 

This work deals with the critical discussion of the multiscale modeling approaches to fundamentally 
investigate heterogeneous catalytic reactors, primarily focusing on the combination between CFD 
modeling approaches and first-principles chemical kinetic. The inherent complexity and wide variety of 
the typical catalytic systems require the development of several methods and strategies to tackle 
challenges related to the treatment of the stiff and non-linear reaction source terms. In this view, the 
chemical reactors have been subdivided in two different categories, i.e., fixed bed and fluidized, and 
different strategies have been reviewed with respect to their ability to describe the characteristic 
phenomena in the reactor configurations. Nonetheless, the main issue related to the usage of these 
strategies is still the computational effort needed to solve the detailed chemical kinetics, as it results in 
the 70-90% of the overall computational cost. To tackle this problem, different speed-up strategies (i.e., 
on-the-fly and pre-computation of the chemical kinetics) have been developed to reduce the 
computational burden of the evaluation of the detailed chemical kinetics. Finally, the hierarchical 
approach, which aims at the improvement of the accuracy of the lumped models for reactor analysis and 
design, was discussed.  
Despite the successful developments reviewed in this paper, different topics are still under investigation 
in the context of the reactive multiscale modeling: 
1. Deeper understanding of the intra-particle phenomena: this topic involves questions related to 
how a detailed description of the catalyst porous matrix can be included in the multiscale modeling 
approach. Hence, scientific research on this topic should provide fundamental insights regarding the 
species and heat transport inside the catalyst porous structures and their relation with the internal 
catalyst properties (e.g., porosity, tortuosity, pore size distribution). 
2. Combination of multiscale modeling with innovative computational methods: the computational 
effort related to the multiscale description of catalytic systems hinders the modeling of large and 
challenging systems. In this view, the application of innovative numerical methods (e.g., machine learning) 
in the context of chemical reaction engineering could overcome these limitations to provide accurate 
predictions with an affordable computational effort. 
3. Extension of the multiscale approach to gas-solid-liquid catalytic systems [103]: scientific research 
on this topic should aim at improving the reactive multiscale modeling approach to account for the 
presence of more than two phases inside the catalytic environment. It should allow for the fundamental 
investigation of relevant applications (e.g., trickle bed or slurry reactors), whose performances are 
strongly related to the interactions between the three phases. 
4. Application of the hierarchical approach to chemical reaction engineering: a larger utilization of 
the hierarchical modeling approach both in the context of fixed and fluidized units should allow for the 
formulation of engineering correlations accounting for the multiscale nature of the catalytic environment. 
As such, medium or low hierarchy models could be improved to provide still accurate predictions but with 
a reduced computational effort with respect to the high hierarchy ones. 
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Symbols used 

𝐴𝐴 Geometrical area 
𝑐𝑐𝑝𝑝 Heat capacity at constant pressure 
𝑐𝑐�̅�𝑝 Average heat capacity at constant pressure 
�̂�𝑐𝑝𝑝 Mean local heat capacity at constant pressure 
𝔇𝔇 Mixture average diffusion coefficient 
𝑭𝑭 Force vector 
𝒈𝒈 Gravity vector 
ℎ Heat transfer coefficient 
𝑰𝑰 Identity matrix 
𝑱𝑱 Diffusion flux 
𝐾𝐾𝑐𝑐 Mass transfer coefficient 
Lchar Characteristic length 
m Mass 
𝑀𝑀 Vector of rate change of a generic variable due to transport process 
Nu Nusselt number 
𝑝𝑝 Pressure 
�̂�𝑝 Mean local pressure 
𝒒𝒒𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 Conduction heat flux 
𝑄𝑄 Heat released by the reactions 
𝑅𝑅 Production rate 
𝑆𝑆 Vector of rate change of a generic variable due to chemical reactions 
Sh Sherwood number 
Sv Specific surface area 
𝑆𝑆𝜔𝜔  Fluid-solid mass transfer 
𝜕𝜕 Time 
𝑇𝑇 Temperature 
𝑇𝑇�  Mean local temperature 
𝑼𝑼 Velocity vector 
𝑉𝑉 Volume 
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Greek letters 

𝛻𝛻 Gradient 
𝜀𝜀 Void fraction 
𝜃𝜃 Adsorbed species site fraction 
𝜃𝜃� Mean local adsorbed species site fraction 
𝜅𝜅 Porosity 
𝜆𝜆 Thermal conductivity 
�̂�𝜆  Mean local thermal conductivity 
𝜇𝜇 Viscosity 
�̂�𝜇  Mean local viscosity 
Π Source term accounting for the pressure drop in the porous medium 
𝜌𝜌 Density 
�̅�𝜌 Average density between the fluid and the solid phase 
𝜌𝜌�  Mean local density 
𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐 Concentration of the active sites on the catalyst surface 
𝝉𝝉� Stress tensor 
𝜑𝜑 Generic Variable 
𝛹𝛹 Fluid-solid heat transfer 
𝜔𝜔 Species mass fraction 
𝜔𝜔�  Mean local species mass fraction 

 
Sub- and Superscrits 

0 Initial conditions 
𝑏𝑏 Buoyancy 
𝑐𝑐𝑐𝑐𝜕𝜕 Catalyst 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Collisions 
𝑑𝑑 Drag 
𝑒𝑒𝑒𝑒𝑒𝑒 Effective 
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