PRIME: A few primitives can boost robustness to Common Corruptions.

Apostolos Modas*, Rahul Rade*, Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli and Pascal Frossard

How to build classifiers that are robust to Common Corruptions?

Usually through very complicated methods.

Is there a simpler and more principled way?

Yes! Data augmentation with max-entropy transformations!

Common Corruptions (CC).

All possible distortions that can occur during acquisition, storage or **processing** of an image.

An ill-posed problem: evaluate on standard benchmarks.

Common Corruptions Benchmark by Hendrycks et al. [1]

PRIME Augmentations.

General model of visual corruptions

Linear combination of compositions of transformation primitives

$$\mathcal{T}_{\boldsymbol{x}} = \left\{ \sum_{i=1}^{n} \lambda_i \ g_1^i \circ \dots \circ g_m^i(\boldsymbol{x}) : \ g_j^i \in \{\omega, \tau, \gamma\}, \lambda_i \in \mathbb{R} \right\}$$

Transformation primitives

 τ : spatial (diffeomorphisms)

 ω : spectral (filtering)

 γ : color (jittering)

Principle of maximum-entropy

 $\max_{\mu} H(\mu) = -\int d\mu(g) \log(\mu(g))$ with $g \sim \mu$

PRImitives of Maximum Entropy

Robustness to Common Corruptions.

Prior Art.

Most common approach: Data Augmentation

AugMix [2]

- unintuitive transformations
- not good on ImageNet

Current **SOTA** on CC: **DA + AugMix**

- very heavy
- hard to adapt to new datasets
- lacks ablation studies

DeepAugment (DA) [3]

- black-box: Im2Im DNNs
- heavy: only offline

SOTA Robustness

- Simpler
- Principled
- Faster than DA

Dataset	Method	Clean $Acc (\uparrow)$	CC Acc (\uparrow)
CIFAR-10	Standard AugMix PRIME	$95.0 \\ 95.2 \\ 94.2$	74.0 88.6 89.8
CIFAR-100	Standard AugMix PRIME	76.7 78.2 78.4	51.9 64.9 68.2
ImageNet	Standard AugMix DA PRIME	76.1 77.5 76.7 77.0	38.1 48.3 52.6 55.0
	DA+AugMix DA+PRIME	$75.8 \\ 75.5$	58.1 59.9

Contribution of Transformations.

Ablation study on ImageNet-100

Trans.	CC	Noise	Blur	Weather	Digital
$\omega \ au \ au$	64.1 53.8 59.9	$60.7 \\ 30.1 \\ 67.4$	55.4 56.2 52.6	66.6 57.6 54.4	$72.9 \\ 65.4 \\ 67.1$
ω + τ ω + γ τ + γ	64.5 67.5 63.3	58.5 77.2 74.7	57.3 55.7 57.4	66.8 65.3 56.2	73.9 74.2 67.8
ω + τ + γ	68.8	78.8	58.3	66.0	74.8

Primitives help individually

Best: combined

Robustness/Accuracy trade-off.

Vary strength of transformation → control trade-off

Sample Complexity.

Off-line: pre-compute augmentations (like DeepAugment)

- +4: similar to on-line PRIME
- No need for on-line
- Off-line augm. on ImageNet-100 0.69 ______ 0.65 ----- On-line 1 2 3 4 5 6 7 8 9 10 Additional augmented datasets
- >4: slow improvement
- Need on-line: easy with PRIME!

How to design a simple but principled augmentation method?

^[1] D. Hendrycks et al. "Benchmarking neural network robustness to common corruptions and perturbations", ICLR 2019.

^[2] D. Hendrycks et al. "AugMix: A simple method to improve robustness and uncertainty under data shift", ICLR 2020.

^[3] D. Hendrycks et al. "The many faces of robustness: A critical analysis of out-of-distribution generalization", ICCV 2021.