PRIME: A few primitives can boost robustness to Common Corruptions. Apostolos Modas*, Rahul Rade*, Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli and Pascal Frossard How to build classifiers that are robust to Common Corruptions? Usually through very complicated methods. Is there a simpler and more principled way? Yes! Data augmentation with max-entropy transformations! # Common Corruptions (CC). All possible distortions that can occur during acquisition, storage or **processing** of an image. An ill-posed problem: evaluate on standard benchmarks. **Common Corruptions Benchmark** by Hendrycks et al. [1] ### PRIME Augmentations. #### General model of visual corruptions Linear combination of compositions of transformation primitives $$\mathcal{T}_{\boldsymbol{x}} = \left\{ \sum_{i=1}^{n} \lambda_i \ g_1^i \circ \dots \circ g_m^i(\boldsymbol{x}) : \ g_j^i \in \{\omega, \tau, \gamma\}, \lambda_i \in \mathbb{R} \right\}$$ ### **Transformation primitives** τ : spatial (diffeomorphisms) ω : spectral (filtering) γ : color (jittering) # **Principle of maximum-entropy** $\max_{\mu} H(\mu) = -\int d\mu(g) \log(\mu(g))$ with $g \sim \mu$ ## **PRImitives of Maximum Entropy** Robustness to Common Corruptions. # Prior Art. Most common approach: Data Augmentation ### AugMix [2] - unintuitive transformations - not good on ImageNet #### Current **SOTA** on CC: **DA + AugMix** - very heavy - hard to adapt to new datasets - lacks ablation studies ### DeepAugment (DA) [3] - black-box: Im2Im DNNs - heavy: only offline #### **SOTA** Robustness - Simpler - Principled - Faster than DA | Dataset | Method | Clean $Acc (\uparrow)$ | CC Acc (\uparrow) | |-----------|------------------------------------|------------------------------|---| | CIFAR-10 | Standard
AugMix
PRIME | $95.0 \\ 95.2 \\ 94.2$ | 74.0
88.6
89.8 | | CIFAR-100 | Standard
AugMix
PRIME | 76.7
78.2
78.4 | 51.9
64.9
68.2 | | ImageNet | Standard AugMix DA PRIME | 76.1
77.5
76.7
77.0 | 38.1
48.3
52.6
55.0 | | | DA+AugMix
DA+PRIME | $75.8 \\ 75.5$ | 58.1
59.9 | ### Contribution of Transformations. #### Ablation study on ImageNet-100 | Trans. | CC | Noise | Blur | Weather | Digital | |---|----------------------|------------------------|----------------------|----------------------|------------------------| | $\omega \ au \ au$ | 64.1
53.8
59.9 | $60.7 \\ 30.1 \\ 67.4$ | 55.4
56.2
52.6 | 66.6 57.6 54.4 | $72.9 \\ 65.4 \\ 67.1$ | | ω + τ ω + γ τ + γ | 64.5
67.5
63.3 | 58.5
77.2
74.7 | 57.3
55.7
57.4 | 66.8
65.3
56.2 | 73.9
74.2
67.8 | | ω + τ + γ | 68.8 | 78.8 | 58.3 | 66.0 | 74.8 | Primitives help individually **Best**: combined # Robustness/Accuracy trade-off. Vary strength of transformation → control trade-off # Sample Complexity. #### Off-line: pre-compute augmentations (like DeepAugment) - +4: similar to on-line PRIME - No need for on-line - Off-line augm. on ImageNet-100 0.69 ______ 0.65 ----- On-line 1 2 3 4 5 6 7 8 9 10 Additional augmented datasets - >4: slow improvement - Need on-line: easy with PRIME! How to design a simple but principled augmentation method? ^[1] D. Hendrycks et al. "Benchmarking neural network robustness to common corruptions and perturbations", ICLR 2019. ^[2] D. Hendrycks et al. "AugMix: A simple method to improve robustness and uncertainty under data shift", ICLR 2020. ^[3] D. Hendrycks et al. "The many faces of robustness: A critical analysis of out-of-distribution generalization", ICCV 2021.