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Abstract 

Audio Source Separation concerns the field of study, where the general aim is to isolate 

the sources from an auditory mixture. Deep learning models, which are frequently used 

for audio source separation, have contributed towards significant improvements in recent 

years. However, their black-box nature might lead to unintended effects, such as 

reinforcement of biases, because of the difficulty of understanding their inner workings. 

Thus there has recently been an increasing interest in the development of models that 

provide explanations for their decisions. Given that there is a lack of research in 

interpretability in the audio domain, in this thesis we carry out a series of experiments to 

leverage an existing interpretable model designed for sound classification, to singing 

voice separation. By using the mechanisms provided by the interpretable nature of the 

model as well as by analyzing the model’s predictions through additional interpretable 

methods, we facilitate the masking process for the singing voice separation task.  

The masks generated by the current intrinsic interpretable explanations of the model are 

not suitable for carrying out source separation tasks because of the low resolution of the 

computed saliency masks. However, after analyzing the model with other visual and 

auditory post-hoc explanations, we achieved sharper results in saliency maps, which have 

been used as our masks and have resulted in a significantly improved separation of the 

vocals. We compute the SDR and the SDR improvement (NSDR) for the reconstructed 

vocals estimations, in order to evaluate the separation and discuss the results. Even though 

the results of the evaluation are not in line with the performance of other state-of-the-art 

source separation algorithms, our method offers a novel approach in the field of 

interpretability in the source separation field and the audio domain. 

 

Keywords: singing voice source separation; interpretable deep learning; music source 

separation; explainable deep learning;  
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1. Introduction 

 

Deep learning has contributed towards significant advances in many research fields in 

recent years, but a critical concern is the difficulty to understand how or why deep 

learning models determine their output. This means that in some situations it is hard to 

know whether the model learns what is intended. Because of this, there has been a 

growing interest in designing models that are interpretable in some level of detail, a field 

also known as Interpretable Deep Learning.  

Two recent interpretable models, AttProtos [1] and APNet [2], have been designed for 

audio classification and sound event detection respectively. They incorporate 

interpretable mechanisms which give explanations for their decisions. Using AttProtos as 

our base model, we are examining whether its intrinsic interpretable nature can be used 

to leverage it from audio classification to singing voice source separation. After training 

the model for a classification task, we explore visually and audibly the points of the input 

where the model focuses to calculate its predictions. The saliency maps computed through 

the model’s attention mechanisms, are very localized and the resolution is not ideal for 

source separation tasks. For this reason, we explore different additional post-hoc 

interpretable methods, which could be used for explaining the model’s decision process 

as well as for the separation.  

The visual explanations of the post-hoc and intrinsic interpretable analyses, in the form 

of saliency maps, are used to calculate masks for the vocal estimations which we later 

apply on the input spectrograms of the mixtures, in order to extract the vocal estimation 

signals. The audible results of the source separation experiments for both the intrinsic and 

post-hoc analyses, have shown that the post-hoc results isolate more of the vocal elements 

than the intrinsic results, but in both cases the separation does not seem satisfactory 

enough. After re-constructing all the vocal estimations for all the mixtures of the test set, 

we evaluate the separation using Signal to Distortion Ratio (SDR) and Normalized Signal 

to Distortion Ratio (NSDR) as our evaluation metrics, and we compare and discuss the 

results. 
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2. State of the Art 

 

In this section we will review the main fields of study and their subtopics. Firstly, we 

present the general concept of Audio Source Separation and the most up-to-date 

techniques, terms and approaches related to Music Source Separation (MSS). In the 

second part we describe the conceptual basis of Interpretable Deep Learning, and we 

introduce the interpretability methods which we utilise in our experiments. Finally, we 

explain in detail the related work of Interpretability in the audio domain, specifically the 

architecture of the model which provided the basis for our project. 

 

2.1 Audio Source Separation 

Over the past few decades there has been an increasing interest in the research field of 

audio source separation. The term is used to describe the computational process of 

isolating individual sounds in an auditory mixture of multiple sounds. Instead of dealing 

with mixtures, it is often preferred by researchers to process the isolated source signals 

of a mixture in order to carry out other signal processing tasks. Recovering the 

individual sources can facilitate the enhancement of several tasks within the Music 

Information Retrieval (MIR) field, such as automatic music transcription, musical 

instrument detection, vocal activity detection and many others [3].  

For source separation tasks, the training requires large datasets where apart from the 

music mixtures, the isolated source targets are available in order to be used as ground 

truths [4]. One of the most common uses of source separation is Speech Separation 

where the aim is to separate two or more people talking at the same time. Another 

related research field is Speech Enhancement, which aims to isolate the speech from 

background noise. Advancement in these fields can also contribute towards music 

source separation.  

2.1.1 Music Source Separation Algorithms  

The current state-of-the-art MSS algorithms can be divided in three categories, based on 

the input representation used. They can be used either directly on the waveform of the 

mixture [5], on the magnitude or power spectrogram of the mixture [6, 7, 8] or they can 

be used on both waveform and spectrogram, also referred to as hybrid [9].  
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2.1.1.1 Input Representation 

Most approaches in MSS are using spectrograms generated by the short-time Fourier 

Transform (STFT), instead of operating directly on the waveform. Eventually, all 

source separation models should be able to convert the processed audio back to a 

waveform. In the research carried out in [5], apart from achieving higher results than the 

previous state-of-the-art waveform approaches, it has also been observed that 

spectrogram domain models have an advantage when the content is mostly harmonic 

and fast changing, while for sources without pitch or with strong and emphasized 

attacks, waveform domain models will preserve better the structure of the source signal.  

Spectrogram as Input  

Time-frequency representations are the most common types of input in source 

separation approaches. They are calculated by the STFT, and can be converted back to a 

waveform by computing the inverse short time Fourier Transform (ISTFT). The 

parameters to consider when computing the STFT are:  

• Window Type: the shape of which affects which frequencies get emphasized  

• Window Size: which affects the number of samples included in each window, and also 

the frequency resolution.  

• Hop Size: which determines the distance between two windows, usually set as half of 

the window size.  

The phase of a signal is not explicitly represented in generated spectrograms as it is 

difficult to model it. In source separation the spectrograms usually used are Magnitude 

spectrograms, Power Spectrograms, Log Spectrograms, Mel Spectrograms etc. When 

re-constructing the waveform from the output mask, the phase is needed. Thus one 

approach is to use the phase of the original mixture. Another approach is to estimate the 

phase at the stage of applying the estimated mask to the mixture spectrogram. A 

common way to reconstruct the phase is by using the Griffin-Lin algorithm, which 

attempts to do the task by iterating the computation of STFT and ISTFT [10].  

Waveform as Input  

Demucs [5] is a waveform-to-waveform model, which had outperformed all existing 

state-of-the-art architectures before it in terms of Signal-to-Distortion Ratio (SDR). It 

operates directly on the raw input waveform and for each source it generates a 
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waveform as output. Instead of following masking approaches, it has been inspired by 

models for music synthesis. 

Another recent work in the waveform category, is Wave-U-Net model [13]. It follows 

an approach that aims to tackle limitations that arise in the source separation using 

spectrogram as input, such as the inability of these models to learn to estimate signals 

including phase and having to estimate it or use the phase of the original mixture 

instead. It has achieved state-of-the-art results for waveform domain models. 

Hybrid models 

The hybrid version of Demucs model [9] currently performs the best out of any other 

model in the MSS field. Its architecture is an extended and improved version of the 

original architecture of Demucs. It consists of two parallel branches, one of which 

operates in the time domain and the other on the frequency domain. However, the 

processes behind the hybrid approach are over-engineered and black-boxed. 

2.1.1.2 Evaluation metrics 

The most reported evaluation metric in the field of MSS is the Source-to-Distortion-

Ratio (SDR). It is usually shown as one number which represents the mean of SDR 

values calculated on a whole dataset. For this reason, it’s considered an objective 

summary statistic that could sometimes obscure the whole distribution of calculated 

SDR values [3]. Other frequently reported metrics are Source-to-Artifact-Ratio (SAR), 

which represents the amount of unwanted artifacts in the estimated source and Source-to 

Interference-Ratio (SIR), which could be considered as the amount of other sources that 

can be heard in the estimated source. A metric suggested in [14] is Normalised SDR 

(NSDR) which is commonly reported when evaluating the quality of the separation of 

individual sources [15]. It measures the improvement of the SDR in decibels, between 

the input mixture and the estimated source. 

Another measure is the subjective evaluation of the quality of the separation by the 

human ear, however it is expensive and time-consuming [3], thus it is rarely used. In 

some occasions it is used in order to confirm the objective evaluation results [9]. 
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2.2 Deep Learning and Interpretability 

Most common music source separation approaches use Neural Network-based methods, 

which are also known as Deep Learning or Deep Net methods. In the following sections 

we will explain the fundamentals behind Deep Learning approaches, and the methods 

which are used for interpreting the processes behind the decision making of Deep 

Neural Networks. 

2.2.1 Deep Learning  

Deep Learning is a subfield of machine learning that is concerned with artificial neural 

networks, which are algorithms inspired from the function of the biological learning of 

the brain [8, 16]. In recent years, deep learning has set new standards in many fields of 

computer science, including audio processing. There are many reasons behind this 

growing popularity, such as that it enables computer systems to improve with 

experience and data, and it also enables the computer to build complex concepts out of 

simpler concepts [16]. Furthermore, the existence of more powerful computers, larger 

datasets and techniques to train deeper networks have undoubtedly contributed towards 

the growth of Deep Learning. However, one drawback is the difficulty to interpret the 

internal representations and to explain the outputs. Another challenge is that it requires 

large datasets of labelled data for supervised learning.  

2.2.2 Interpretable models  

Even though Deep Learning has contributed towards significant advances in many 

scientific fields, the black-box nature of Deep Neural Networks makes it hard to 

interpret the process behind the decision-making. Furthermore, it may produce 

unintended effects, such as reinforcement of inequality and bias. The term Interpretable 

Deep Learning concerns a relatively recent research field which aims to create models 

that provide explanations of their decisions in some level of detail, which can be 

interpreted by users.  

There is a lack of research in Interpretable Deep Learning in the audio domain. Thus, 

the approaches towards interpretability applied to AttProtos [1] and APNet [2] have 

been inspired by interpretable image classification tasks. The interpretable nature of the 

models is based on explanations through prototypes and concepts, previously used for 

the classification of images. Interpretability also relies on how the researcher explains 

the reasoning behind complicated classification tasks in the visual domain [2].  
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The methods for interpretability can be divided in categories according to many criteria 

[17]. In this section we will talk about two categories of interpretability methods and the 

relevant architectures and methods we use in our experiments.  

 

2.2.2.1  Intrinsic Interpretability 

In general, intrinsic interpretability can be achieved by restricting the complexity of the 

machine learning model. It can refer to machine learning models that are simplified in 

structure, thus they are considered easier to interpret [17]. The challenge in intrinsically 

interpretable machine learning is to create models that fit the data accurately while 

uncovering the types of patterns that the user would find interpretable [2]. Intrinsic 

interpretability can also be achieved by incorporating specific components in the 

architecture to produce explanations or to facilitate the interpretation of the network 

behaviour.  

APNet 

APNet is an intrinsic interpretable model for audio classification. The architecture of 

APNet allows designers to refine, debug, and improve the model, through prototype or 

channel redundancy, and also through manual editing [2]. APNet is designed to be an 

interpretable deep neural network which allows further analysis to provide insight into 

the inner workings of the network. The explanations produced are in the form of sound 

prototypes. The results have supported the claim that interpretability may help for the 

design of better models, and the performance contradicts the prominent assumption that 

there is an unavoidable trade-off between interpretability and accuracy. However, it is 

not suitable for classification tasks that include multi-label inputs. 

AttProtos 

AttProtos is an interpretable model designed for polyphonic Sound Event Detection. It 

has overcome the limitation of the APNet classifier which was mentioned earlier. It is 

able to detecting various simultaneous sound events. The model incorporates Attention 

Mechanisms which learn to select the part of the input that the model should focus on. It 

generates visual explanations of its predictions, which are faithful to its computations 

instead of being post hoc explanations [1]. The explanations of the network are in the 

form of local prototypes and attention maps and its predictions rely solely on the 
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attention maps.  

 

Figure 1.1: AttProtos model diagram. Figure by Zinemanas et. Al [1] 

 

The model’s architecture can be observed in figure 1.1. The top brunch of the diagram 

represents the auto-encoder, which is the same as the one used in APNet [11]. 𝑋𝑖 ∈

ℝ𝑇 × 𝐹 is the input mel-spectrogram where T is the number of time frames and F is the 

number of frequency bins. The encoder f(∙) extracts useful information from the input, 

and 𝑍𝑖 is a tensor which represents the input in the latent space (𝑍𝑖 = 𝑓(𝑋𝑖)). The shape 

of this tensor is (T, F, C) where C is the number of channels of the encoder’s last 

convolutional layer. Finally, the decoder reconstructs the mel spectrogram.  

Both the encoder and the decoder of the auto-encoder, are formed by three 

convolutional layers with leaky ReLu activations. Additionally, the encoder has two 

max-pooling layers between the convolutions, while the decoder has the corresponding 

unpooling layers. 

The other two branches represent the model’s classifier. 𝑠(∙) is another encoder which 

extracts M attention maps in the latent space Si = 𝑠(𝑋𝑖), where Si is a tensor of shape 

(T, F, M). This encoder is similar to the one in the autoencoder, but with Relu 

activations instead of Leaky Relu, in order to return non-negative output. Each of the 

attention maps is related to one prototype, so the network learns a set of M prototypes. 

The model then tries to reconstruct the latent representation 𝑍𝑖, by multiplying each of 

the attention maps with the corresponding prototype, and then summing all the maps, 
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resulting in �̂�𝑖. Then, by using the decoder 𝑔(∙) of the auto-encoder, the reconstructed 

tensor is projected in the input space and it can be visualised and inspected.  

The bottom branch represents the detection operation which relies only on the attention 

maps for its predictions.  

The model has three defined losses [1]. There is a binary crossentropy loss for learning 

the detection task, a mean squared error loss for preserving the quality in the 

reconstruction in the autoencoder. and a loss for the correct process of reconstruction, 

using the attention maps and prototypes. Additionally, there are two 𝑙1 regularisations, 

one for preventing mixing many prototypes during reconstruction, and one for keeping 

the explanations easy to interpret. 

 

2.2.2.2 Post-Hoc Interpretability 

Post hoc interpretability is based on interpretation methods that are applied after model 

training. Post hoc methods can also be applied to intrinsically interpretable models, and 

they can also be model-agnostic. These methods usually analyse the inner workings of 

models, in order to bring some insight into the reasons behind the predictions. The main 

challenges in post hoc interpretations of large neural networks are the high number of 

parameters and the stacked non-linear operations involved.  

Layer-wise Relevance Propagation  

Layer-wise Relevance Propagation (LRP) is a post-hoc method for interpreting the 

prediction results of convolutional neural networks (CNN). It has been used for many 

applications such as to detect biases in models [18] and datasets [19], but also in the 

audio domain it has been used for speech recognition [20, 21]. The aim of the LRP 

technique is to find the relevance of the input image pixels to the output. To achieve 

that, it carries out a backward propagation from the output layer to the lower layers and 

at each of the layers it computes relevance values according to the selected output class 

and to the input image [22]. There are different rules and parameters that can define the 

way that relevance values are computed and distributed.  

A limitation of most LRP techniques is that they are not class discriminatory, thus they 

return saliency maps for different classes that look almost identical, but differ only in 

the intensity of salience. This means that they recognize the same foreground objects of 

an instance for any class.  
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3 Methodology 

 

In this thesis we use AttProtos as our base model, an intrinsically interpretable model 

which we initially train for sound classification, aiming to retrieve useful information and 

visual explanations of its decision making process. These explanations are provided by 

both Intrinsic and Post-Hoc analyses of the model, which we later transform to masks for 

the voice separation. Our methodology consists of four stages: a) the classification stage 

where AttProtos is trained on MUSDB18Mixtures and the evaluation of its classification 

predictions, b) the Post Hoc and Intrinsic analyses through which we compute the 

estimation masks, c) the reconstruction of the estimated vocals, and d) the evaluation of 

the separation. The classification experiments are carried out using the DCASE-models 

library [23]. The code for the experiments and the annotated data can be found at this 

link1 with an open source license.  

 

3.1 Dataset 

For our experiments, we use is the MUSDB18 dataset [24] as it is designed to facilitate 

source separation tasks. It is made of 150 songs, that sum up to approximately 10 hours 

of total duration. It consists of a train set of 100 songs and a test set of 50 songs. 

Furthermore, for each mixture there are isolated instrument stems for vocals, drums, bass 

and others, as well as a stem of the entire accompaniment without vocals. 

A limitation of MUSDB18 is that the vocal stems have moments of silence, which could 

lead to false labeling during the classification task. In order to prevent this, we detect 

the silences the silence detector of the pydub library [25] and the time stamps are saved 

in files named “silences.json” and “nonsilent.json” for each song. However, to avoid the 

detected time stamps being slightly misaligned with the exact points of silences, we edit 

the times by removing 200ms from the start and end of the silent segments, with the 

 
1 The code and material used in this thesis can be found at this github repository: 

https://github.com/chrisfil/ThesisProject  

https://github.com/chrisfil/ThesisProject
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exception of the first time stamp (t = 0s) and the final time stamp which marks the end 

of the whole song. Using the edited time stamps for silent and non-silent segments in 

the vocal tracks, we split the mixture audios of the whole dataset into chunks of 

mixtures with vocals and without vocals. 

 

 

Figure 3.1: MUSDB18Mixtures dataset 

This resulted in the dataset MUSDB18Mixtures as it is shown in Figure 3.1, with a train 

set consisting of 2703 excerpts, and a test set of 1638 excerpts, each with different 

durations. The label “vocals” is used for mixtures that include vocals, and “no_vocals” 

for mixtures that consist solely of the accompaniment.  

The excerpt names and their corresponding time-stamps are also annotated on csv tables 

for each song of the original dataset, and are provided in this link.2  

Additional segmentation for the isolated vocals stems, is carried out using the same time 

stamps we use for the mixtures. These excerpts are needed as they will be the groundtruth 

signals for the evaluation of the separation task. 

 

 
2 https://zenodo.org/record/7039146#.Yw_ZXexByu4  

https://zenodo.org/record/7039146#.Yw_ZXexByu4
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3.2 Training 

 

Input representation 

For the generation of our masks through the model’s visual explanations, the model has 

to receive a time-frequency input representation such as STFT or Mel Spectrogram. Using 

the Feature Extractor of DCASE-models, we export the Mel Spectrograms in overlapping 

segments for each excerpt. DCASE-models utilizes librosa [26] to calculate the Short 

Time Fourier Transform (STFT), and then transforms it to Mel Spectrogram. Before 

extracting the features, it pre-processes the dataset, converting the data to mono and 

changing the sampling rate if necessary.  

After carrying out various training and evaluation operations with different parameters to 

observe and improve the classification results, we set the window size to 4096 and the 

hop size to 1024, aiming for high frequency resolution. The overlapping windows 

smoothen the STFT along the time axis. We also use constant padding in order to include 

the whole song in the extracted features, and the sample rate is set to 44100 Hz. Each 

segmented frame of the Mel Spectrogram has a duration equal to a sequence time of 2.99s, 

and the sequence hop time has been set to 1.495s, which is half of the duration of the 

sequence. This would later assist for easier and more accurate calculation of the 

overlapped area in samples, to be used for the reconstruction of the signal. 

Training parameters 

The model is trained for 50 epochs at a learning rate of 0,001, using Adam as optimizer. 

The chosen loss weights are [10, 5, 0, 5] and the batch size is set to 96. We use softmax 

activation on our last layer. Because of the post-hoc analysis method requiring minor 

alterations to the original AttProtos model, we named the altered model as AttProtos2 and 

we trained it with the same parameters. More details about the alterations and the reasons 

behind it will be explained in the next section that concerns the analyses. 
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3.3 Analysis of trained model with Interpretable Methods 

 

In this section we will present the details of our analysis methods, our observations, and 

how we improved the model’s prediction results before proceeding to the reconstruction. 

 

3.3.1 Intrinsic Analysis 

Attention Maps 

The attention maps on which AttProtos bases its predictions, can be extracted and plotted 

with the process defined in [1], in order to inspect them. We represent the test set of our 

dataset as {(𝑋𝑖 , 𝑌𝑖)}𝑖=1
𝑁  , where 𝑋𝑖 is the 𝑖th mel-spectrogram, 𝑌𝑖 are the one-hot encoded 

labels and 𝑁 is the number of instances. For each 𝑋𝑖 the model returns a prediction �̃�𝑖. For 

a given class k, the prediction �̃�𝑖 ∈ ℝ1×𝑘 is masked by a unit vector of the same shape, 

which has the same value in the index for the given class 𝑘. Then by calculating the 

gradient we retrieve the points of the previous layer that are more connected to the output 

𝑘. To mask the attention maps by the most important connections to the output k, we 

reshape the gradient, we apply a half-wave rectifier to keep only the positive connections 

and we multiply it by the time averaged attention maps. Then we find the most connected 

prototype by maximizing the energy of the masked attention map and we extract the 

frequency-dependent attention function. Finally, we convert the attention map to the input 

space. To visualize them we multiply them with their corresponding input mel-

spectrogram. 
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Figure 3.2: Example of two input instances masked by the attention maps. In the first column 

there are the mel spectrograms of the two inputs, and the other plots represent the same mel-

spectrograms masked by their attention maps for the given class. 

In figure 3.2 we show the plotted attention maps for two different input instances, 

𝑋821and 𝑋290, both of them with “vocals” as label. In the top row the attention maps 

show that the model concentrates in the middle-range of the mel-scaled frequency to 

make its prediction for the “vocals” class and in the bottom for the “no_vocals”. For the 

other instance it concentrates on the percussive onsets in the high range for the 

“no_vocals”, while for the “vocals” it concentrates around the middle, and it highlights 

some frequencies that appear to be vocals. In both cases the maps are very localized, 

and they don’t seem to isolate any particular elements, but it rather highlights areas with 

different intensities. 
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3.3.2  Post-Hoc Analysis 

Our post-hoc analysis consists of various trial and error operations in order to choose the 

best possible interpretation method. We use the tools provided by the iNNvestigate library 

[25], which allows us to plot and compare various saliency maps using different visual 

interpretation methods.  

In order for our model to be interpreted by iNNvestigate methods, some layers of the 

model have to be altered slightly or replaced. It is complicated for iNNvestigate to 

interpret lambda layers; thus we replace the lambda functions with equivalent reshape 

layers. Furthermore, layers with leakyRelu activations are also not able to be interpreted 

by the library, so they have been changed to Relu activations. AttProtos also includes a 

part of code for the model_encoder_mask, which is detected as a model on its own by 

iNNvestigate and it cannot be analysed. So this had to be incorporated in the main code 

of the model instead. The model with all the modifications is renamed AttProtos2, and it 

is trained using the same extracted features and hyperparameters used for the training of 

the original AttProtos. It is then used as the model we analyse in the post-hoc analysis. 

 

Figure 3.3: An example of Innvestigate tools used for the interpretable analysis of our model. The 

same input is used for analysing the model with lrp.sequential_preset_a in the first row, 

lrp.alpha1_beta0 in the middle, and gradient at the bottom. 
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We experiment with LRP methods, as well as gradient, deep_taylor and others. The 

saliency maps for 4 methods we used for comparison are shown in figure 3.3. The LRP 

methods, which have significantly better resolution than the rest, and the vocals are 

detected in much more detail than in the intrinsic analysis. We decide to continue our 

project experiments with LRPαβ where α = 1 and β = 0, as it offered the sharpest and 

most useful results out of all the methods provided by the tools of the library. 

 

3.3.3  Observations and improvements 

In both analyses, there are some instances where the explanations for the model 

predictions are providing some insight into the issues that arise after training.  

We discover that the model explanations highlight elements of the mel spectrogram which 

did not seem to be related to vocals. This can be justified by the large variety of 

instruments that form the different accompaniment stems in each song, which might have 

misled our model on its predictions and it considers artifacts of other instrument sounds 

as vocals. A lot of the highlighted elements appear as percussive in nature, which means 

that our model might be detecting drum and other percussive elements as vocals, as the 

majority of the mixtures with vocals also include drums. 

 

Figure 3.4: The input data instance X[220], and the LRP saliency maps before and after the 

data was edited. 

For this reason, we repeated the training stage after altering the train set of 

MUSDB18Mixtures, by replacing some of the mixtures with vocals in the “vocals” 
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labeled data, with only isolated vocals. To do that we replaced half of the “vocals” labeled 

mixtures, with their corresponding isolated vocal ground truths, while keeping the same 

naming format. This assisted our model to define better where it should concentrate to 

detect the vocals.  

The new analysis results as they can be seen in Figure 3.4. showed some improvement, 

not only in detecting the vocals but also in returning slightly sharper results.  

 

3.4 Classification Accuracy 

The final classification accuracy for both AttProtos and the altered version AttProtos2 is 

very high as it can be seen in Table 3. The “no_vocals” labeled excerpts have a higher 

prediction accuracy, while the accuracy for “vocals” labeled data decreased compared to 

the accuracy before editing the dataset which was at 85.3% for AttProtos and 83.5% for 

AttProtos2. However, this means that the model may have become slightly more 

discriminative when predicting vocals than before, which backs the results shown by the 

interpretable analyses. 

 

 

Table 3: Class-wise and macro-average accuracy of AttProtos & AttProtos2 trained classifiers. 

 Classification Accuracy 

Model vocals no_vocals Macro-Average 

AttProtos 85.1% 93.3% 88.38% 

AttProtos2 81.0% 95.7% 89.20% 

 

 

3.5 Reconstruction with masks 

Masking is an essential part of how many modern source separation approaches 

approximate sources from a mixture, specifically approaches that use time-frequency 

representation as input.  
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To reconstruct the singing voice we use the maps from the analyses and we convert them 

to masks which are later applied on the input spectrogram before turning them back to 

waveform. 

3.5.1  Computing masks 

Intrinsic masks 

Even though the attention maps from the intrinsic analysis are not capturing the vocal 

elements in detail, we carry out the process of masking and reconstruction for 

investigation and comparison purposes. 

The same process we followed for plotting the attention maps in the intrinsic analysis 

provide the calculated saliency needed for the mask. Given that it returns contrastive 

saliency maps for the two labels, the mask for accompaniment could be used to 

reconstruct the accompaniment source, but as the main focus of this thesis is singing voice 

separation we only us the accompaniment map to apply soft masking when calculating 

the vocals mask. Soft masking is achieved with this equation: 

𝑚𝑎𝑠𝑘𝑣𝑜𝑐 =
𝑆𝑎𝑙𝑣𝑜𝑐

𝑆𝑎𝑙𝑣𝑜𝑐 + 𝑆𝑎𝑙𝑎𝑐𝑐
 

where 𝑆𝑎𝑙𝑣𝑜𝑐  is the computed saliency for the vocals and 𝑆𝑎𝑙𝑎𝑐𝑐  is the computed saliency 

for the accompaniment. To compute the mask for vocals we divide the saliency of vocals 

by the sum of the two saliencies.  

Then to normalise the mask we apply the sigmoid function: 

𝑆(𝑚𝑎𝑠𝑘𝑣𝑜𝑐) =
1

1 + 𝑒−𝑚𝑎𝑠𝑘𝑣𝑜𝑐
 

and then we threshold the values between 0-1: 

𝑚𝑎𝑠𝑘𝑣𝑜𝑐 =  
𝑥𝑖 − min (𝑥𝑖) 

max(𝑥𝑖) − min(𝑥𝑖)
 

The mask is calculated for every segment of the mel-spectrogram input.  

Post-Hoc masks 

For the post hoc analysis masks we use the saliency map we obtain from LRPaβ with a=1 

and β=0. First, we discard the negative values of the saliency map, and then we apply 



30 

 

sigmoid function and thresholding like we did for the intrinsic masks. However, as we 

don’t have the saliency for accompaniment so we don’t apply soft masking. 

 

3.5.2  Reconstructing the estimated vocals 

We carry out 2 different operations to reconstruct the vocal estimations for all the 

mixtures in the test set. One by using the mask calculated with the post-hoc method and 

the other using the intrinsic mask. The reconstruction process is the same for both. 

The phase is needed for reconstructing the estimated signal back to the waveform domain, 

thus for each data instance we export the original phase of the original mixture using the 

feature extractor of DCASE-models.  

For each segment of the input mel-spectrograms 𝑋𝑖, we calculate the mask, and then the 

segment of the mel-spectrogram is converted to a power spectrogram. Then the mask is 

applied on the power spectrogram before we transform it back to a waveform using the 

Inverse Short Time Fourier Transform (ISTFT). We later use overlap add operation to 

connect the segmented signal and we export the reconstructed signal as a wav file.  

A crucial point in reconstructing the estimated signals, is the complete alignment of its 

samples with the original mixture, and of course with the ground truth signal that will be 

used for evaluation. Thus the overlap add operation needs the accurate overlap parameters 

in order to return a correct reconstruction without a single sample being misaligned. To 

make sure that the reconstructions are correct in the time axis, we also investigate whether 

the reconstruction of the original signal without masking, matches exactly the original 

input waveform when we plot them together. If the waves are in sync, then the estimated 

sources are reconstructed correctly. 

 

3.6 Evaluation 

As our method is currently able to estimate only one of the two sources from our audio 

mixtures on a satisfactory level, we only evaluate the system’s performance on the 

separation of the vocals sources. The evaluation metrics we use are Source-to-

Distortion-Ratio (SDR) to evaluate the quality of the separated audio, and Normalized 
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SDR (NSDR) which represents the improvement of SDR from the original mixture to 

the separated signal.  

 

SDR is calculated by the equation: 

 

𝑆𝐷𝑅(𝑆𝑒, 𝑆𝑟) =  10𝑙𝑜𝑔10  [
< 𝑆𝑒 , 𝑆𝑟 >2> 

‖𝑆𝑒‖2 ‖𝑆𝑟‖2 − < 𝑆𝑒 , 𝑆𝑟 >2
], 

 

where 𝑆𝑒 is the estimated signal and 𝑆𝑟 is the reference signal. 

 

NSDR is calculated by subtracting the SDR of the original mixture signal 𝑆𝑚 to the 

reference signal 𝑆𝑟, from the SDR of the estimated signal 𝑆𝑒 to the reference signal 𝑆𝑟. 

 

𝑁𝑆𝐷𝑅(𝑆𝑒 , 𝑆𝑟 , 𝑆𝑚  ) = 𝑆𝐷𝑅(𝑆𝑒 , 𝑆𝑟) − 𝑆𝐷𝑅(𝑆𝑚 , 𝑆𝑟) 

 

For our evaluation we use the museval library [27], that utilises the bss_eval tools which 

are commonly used for evaluating source separation tasks.  

The estimated sources are the vocals that have been reconstructed, while the reference 

sources are the isolated vocal stems which were segmented according to the time stamps 

used to create MUSDB18Mixtures. Thus, the reference sources for “vocals” labelled 

data, include the ground truth isolated vocals, but for “no_vocals” labelled data there is 

silence or very few audible elements. This silence can bring ambiguity into the 

evaluation results, and the tools we use return an error when a reference or estimate 

source is completely silent.  

We overcome this issue by concatenating all the excerpts of the estimated sources, 

reference sources and mixtures, to evaluate the SDR and NSDR on the full songs of the 

original MUSDB18 dataset. By using the full duration of the song for the evaluation, 

there is no signal that includes only silence. We evaluate the performance on the 50 

songs of the test set of the original dataset. 

To evaluate the SDR and NSDR for the whole songs, we use a bool argument in the 

code. The evaluation results for full songs are saved in a csv table, together with the 
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name and the duration of the song. The SDR is computed on frames of 1s, and for each 

song we have an average SDR value. 

The Global NSDR (GNSDR) and Global SDR (GSDR), are computed as the weighted 

averages of NSDR and SDR with the duration of each audio used as the weight. 

 

4. Results and Discussion 

 

4.1     Results 

As it is shown in table 4.1 the GNSDR for the vocals separated with masks of the post-

hoc analysis is 7.01 dB, while for the estimated sources of the intrinsic masks, the 

GNSDR is much lower at 2.63 dB. Similarly the GSDR for the separation with the 

intrinsic masks is really low at -3.55 dB and for the separation with post-hoc masks it is 

0.83dB.  

Table 4.1: Weighted-average GSDR and GNSDR in dB, for the models AttProtos, and  

AttProtos2. 

Model GSDR(dB) GNSDR(dB) 

AttProtos (Intrinsic) -3.55 2.63 

AttProtos2 (Post-Hoc) 0.83 7.01 

 

As the performance of the separation with intrinsic methods is not satisfactory for now, 

we will investigate and discuss the separation results of the separation carried out 

through the post-hoc method. 

In figure 4.1 we show the box-plot representation of the distribution of SDR and NSDR 

values per song. It can be observed that the distribution is relatively smooth apart from 

two outliers which have scored really low SDR and really high NSDR. Most SDR 

values lie between 0 and 2.175 dB, which means that the performance of our system is 

restricted in this range of separation quality. However, it is interesting to investigate 

some of these values and compare the efficiency of the two metrics we use.  
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Figure 4.1: Weighted box-plots on violin-plots for SDR and NSDRevaluation results on full 

songs with Post-Hoc masks. 

 

4.2  Discussion 

In table 4.2 we show the four songs with the highest NSDR values. The songs “PR – 

Happy Daze” and “PR – Oh No” are the outliers that we can also see in the boxplots in 

Figure 4.1. Even though they have the highest NSDRs, their SDRs are some of the 

lowest in the evaluation results. NSDR might not be the best evaluation metric for songs 

like this. It is understood that the improvement of SDR is really high for some cases 

because of how the source to distortion ratio for the original mixture to the reference 

source, is already really low. This means that these mixtures include accompaniments 

with a lot of prominent elements and instruments with particular sound qualities that 

really affect the way the SDR is calculated.  
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Table 4.2: The four songs with the highest NSDR values for the estimated vocals, as well as 

their corresponding SDR values calculated for the original input mixtures and the estimated 

vocals. 

Song 𝑆𝐷𝑅(𝑆𝑚 , 𝑆𝑟) 

(dB) 

𝑆𝐷𝑅(𝑆𝑒 , 𝑆𝑟) 

(dB) 

𝑵𝑺𝑫𝑹 

(dB) 

PR - Happy Daze -70.140 -33.869 36.271 

PR - Oh No -28.506 -2.833 25.673 

Punkdisco - Oral Hygiene -12.789 0.551 13.340 

BKS - Bulldozer -9.999 1.328 11.327 

 

When listening to the mixtures of these outlier cases, it is proven that these songs share 

common elements. They are all electronic songs, with a lot of artificial sounds and 

limited vocals, which are usually repeated along with strong beat patterns. The 

evaluation results for these songs and others with similar qualities are understandable, 

but not as reliable. It is possible that the model finds it difficult to isolate vocals in such 

occasions, where the majority of the song is electronic in nature, or where there are 

intense percussive sounds. 

On the other hand, in table 4.3 we show the four songs with the highest SDR values. 

When listening to these four songs, the accompaniments consist of more acoustic 

sounding instruments, such as guitar, drums, bass and piano. It is then proven that the 

model performs better on songs that are acoustic in nature. When it comes to the NSDR 

values, they are closer to the weighted-average GNSDR. Also comparing the SDR of 

the mixture to reference sources with the SDR for the estimated vocals, the results seem 

more coherent for these songs than for the songs in table 4.2.  

Table 4.3: The four songs with the highest SDR values for the estimated vocals, and their 

corresponding NSDR values. 

Song 𝑆𝐷𝑅(𝑆𝑚 , 𝑆𝑟) 

(dB) 

𝑺𝑫𝑹(𝑺𝒆, 𝑺𝒓) 

(dB) 

𝑁𝑆𝐷𝑅 

(dB) 

Moosmusic - Big Dummy Shake -5.342 2.175 7.517 

BKS - Too Much -3.012 2.188 5.200 

Detsky Sad - Walkie Talkie -2.836 2.227 5.063 

Angels In Amplifiers - I'm Alright -3.418 2.231 5.649 
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Recent works in the field using spectrogram as input, such as D3net [11] and Open-

Unmix [12], have reported state-of-the-art SDR on the MUSDB18 dataset. D3net 

average SDR results are 6.01 dB without using extra training data, and 6.63 dB with 

extra training data. Open-Unmix has reported 5.33 dB as average SDR without extra 

training data and 6.316 dB with extra training data. The difference between the 

performance of those models and our method’s is apparent, however there is room for 

improvement. 

 

4.3    Future Work 

The intrinsic explanations of AttProtos are currently not able to produce sharper results 

with higher resolution, but this is something that could be addressed in the future. In 

that case, this model that is interpretable in nature won’t only give useful insights into 

the prediction process but could play an important part in the separation process. Its 

inner workings can also be used to enhance the separation, or to facilitate the 

computation of better masks. Another improvement in the future can be the use of 

discriminative LRP such as in [28], or other interpretable methods in order to achieve 

the separation for all sources. The evaluation would return more complete and reliable 

results if there are estimated sources for all the sources of the input mixture. 

Furthermore, the input representation could be just the STFT without transforming it to 

Mel Spectrograms, as this affects the quality of the separation. 

 

 

5. Conclusion 

Our evaluation shows that the performance of the method we propose at its current state 

is not in line with the performance of other state-of-the-art models. However, the 

interpretable methods used, the analysis and the investigations have shed light on reasons 

why this happens, and how it can be improved. The new methods examined in this thesis 

could serve as the basis for further research which could assist various tasks in the source 

separation field. 
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