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ABSTRACT
In the era of big data and big science, workflows have been
proposed as a means to achieve computational reproducibil-
ity. However, sharing the results of a workflow execution is
challenging. Research Objects (ROs) can solve this problem
by packaging the workflow description and the data asso-
ciated with an analysis, together with structured metadata
describing the meaning and relationship between the con-
tained entities. ROs contain the provenance of the generated
results. However, there is a need for a standard of metadata
which should be contained in ROs. Here, we define a taxon-
omy of provenance types based on a use case Bioinformatics
workflow. Subsequently, we assess CWLProv 0.6.0, a stan-
dard for sharing the execution results of CWL workflows
as a RO, for the representation of each of the components
of the taxonomy. Based on the results of this analysis, we
propose a standard for the annotation of input data, as well
as an extension of the provenance graph to enable richer
annotations. We are confident that the work described here
is not only relevant for CWLProv but can also be applied to
other RO specifications (such as theWorkflow Run RO-Crate
profile). A standardized approach to the representation of
workflow executions can serve as the basis for automated
extraction of the collected provenance. Ultimately, this is
one step closer to achieving computational reproducibility.

1 INTRODUCTION
In the era of big data and big science, computational reproducibility
is an important means to verify the validity of scientific conclusions
drawn from raw data. However, across multiple domains of science,
computational reproducibility is often not achieved due to lack of
transparency or code rot [8]. Workflow-centric research objects
have been proposed as a method to improve the transparency of
computational analyses [3]. In addition to the workflow description,
ROs may encapsulate relevant resources such as data and software,
together with structured annotations describing these entities and
their relations to each other. However, which resources should
be contained and how they should be described is still an open
challenge.

Science influences many aspects of our lives. Decisions and poli-
cies are often motivated and defended with an appeal on science.
Because science is so influential on the health and well-being of
entire populations, the ability to assess the validity of scientific
conclusions is extremely important.

Reproducibility is an important scientific principle. It is based
on the conviction that human capacity to discover the rules of
nature is limited [8]. Every scientific conclusion that is made has a
degree of uncertainty associated with it, and belief in its validity is
strengthened if repeated observations produce consistent results.

In this work, we consider a specialized type of reproducibil-
ity known as computational reproducibility. Nowadays, sci-
ence is strongly data-driven. Experiments involving cutting-edge
technologies generate large volumes of data, which can only be
understood through a series of operations and transformations and
subsequent statistical analyses. In contrast to the experiments gen-
erating the data, which always deal with unaccounted sources of
variation, reproducibility of the computational analysis (i.e. obtain-
ing consistent results given the same input data and computational
methods [8]), should in principle be feasible. However, retracing
the path from the raw data to the final results without knowing the
intermediate steps (the provenance of the results) can be extremely
complicated, if not impossible.

Although conceptually possible, a range of studies across
different domains of science have concluded that computa-
tional reproducibility is often not achieved in practice. Some
studies (e.g. [40][42]) observed a lack of availability of data and
code, i.e. insufficient transparency of the research. When scientific
findings are not reported transparently, others do not have the
means to reproduce the analysis. Other studies (e.g. [7]) encoun-
tered a phenomenon colloquially known as code rot [8]. In this
case, the original code can not be executed anymore, or generates
different output than the original analyses due to updates to the
underlying software and its dependencies.

Workflow thinking [19] can help to improve computa-
tional reproducibility. In this method, a (computational) process
is divided into a series of steps, with the output of one step becom-
ing the input of another. Workflows can be visualized as a directed
graph, where the nodes are the operations and the edges the data
flows between them.

Figure 1 envisions a future in which workflows are an integral
part of reproducible computational research, central to an ecosys-
tem of tools and standards which have emerged over the last decade.
In this scenario, workflows are executed byworkflow systems, which
leverage efficient job-scheduling and containerization technologies,
while collecting relevant metadata about the provenance of the
computed results. In addition, workflow registries provide a medium
to share and find workflow descriptions easily. Another important
player are FAIR [46] data repositories, both for publishing the results
of a workflow execution and finding the data to use as input. After



THIS WORK ENHANCES

Finding  
data

Designing
workflow

Executing
workflow

Sharing 
results

Reviewing
results

Browsing workflows  
and tools

Optimizing for efficiency

Containerizing  
environment

Visualizing workflow

Packaging 
analysis

Storing results in  
FAIR repositories

Analyzing provenance

Re-executing workflow

Tracking execution details

Figure 1: A vision of an ecosystem of workflow-related resources and its benefits for the reproducibility of computational
processes. In this vision, workflows and data are stored in FAIR repositories, are executed in containerized environments by
workflow systems which track details of the computation, and enable sharing of the analysis in a structured format (such as
ROs following the CWLProv or RO-Crate specification). The packaged analysis can later be used to understand the details of
the analysis or re-execute the workflow. Fundamental to the success of this approach is the interoperability of the components
of the ecosystem.

publication, the results of the workflow can be analyzed, and work-
flows can optionally be re-executed as the start of new projects
which build upon the research.

In this work, we are concerned with the format in which the
results of the analyses are shared. To make the vision presented
in Figure 1 a reality, the components of the ecosystem need to
be compatible with each other. In practice, there are a number of
challenges to overcome.

Firstly, the wide variety of workflow languages (which
are sometimes workflow system-specific) compromises the
portability and interoperability of workflows between differ-
ent systems. To address this issue, Common Workflow Language
[9] aims to provide a standard for workflow descriptions which can
be executed by multiple workflow systems.

Secondly, there is currently no widely accepted standard
for representing the results of a workflow execution. This
representation should both be used to infer the provenance of the
data generated by theworkflow, and bemachine-accessible (because
the results should be easily findable and storable).

Research Objects (ROs) [3] have been proposed as a pack-
aging solution for packaging the workflow description, with
the input configurations as well as details about the execu-
tion itself. ROs are data structures which aggregate all the data
entities and parameter values involved in a computational analysis,
with the workflow description and metadata files describing the
relationships between the data entities contained in the RO in a
machine-readable format.

In this project, we investigate CWLProv, a specification for the
packaging of CWL workflow executions as an RO. Related spec-
ifications also exist, such as the RO-Crate Workflow Run profile
[38].

1.1 Problem statement
However promising ROs are as a solution to the computational
reproducibility crisis, there are still several open problems which
need to be addressed.

Open challenges in the field include the large size of ROs due to
their inclusion of all data involved in the workflow execution, or
how to automate the collection of relevant metadata by workflow
systems.

The goal of this thesis is to address two other challenges: Which
metadata to include to make workflow executions sufficiently trans-
parent, and How to represent this information in a structured format.

Finding the answers to these questions is conceptually chal-
lenging, because the details which constitute provenance can vary
widely between scientific domains. It is difficult to define a standard
of metadata which is on the one hand broadly applicable across
many disciplines, while still able to express domain-specific infor-
mation on the other hand.

1.2 Research questions
In this thesis, we address the following research questions:

RQ1 Which elements of a Bioinformatics workflow execu-
tion should be described in RO metadata, considering
representative use cases of their provenance? The use
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cases of ROs and their provenance influence which meta-
data is important to capture and store. There may be use
cases which apply to most scientific workflows, while oth-
ers are highly domain-specific. Separating between these
can be non-trivial.

RQ2 How does provenance contained in ROs following the
CWLProv 0.6.0 specification compare to the elements
defined in answer to RQ1? It is important to assess how
close CWLProv ROs are to the ‘ideal’ standard of metadata
which is necessary in practice. Such an analysis is non-
trivial, because it should discriminate between different
forms of representation (structured or unstructured), and
take into account how much effort is required to supply the
information.

RQ3 How to improve the status of CWLProv provenance
such that it meets the requirements defined in the
answer to RQ1? After having identified elements where
CWLProv 0.6.0 does not adhere to the requirements, it is
important to consider how this information could be repre-
sented in future versions of CWLProv. Careful selection of
models and ontologies should be performed, considering
how they fit in with the current CWL Standards, and still
be extendable with other metadata which may be added in
the future.

1.3 Approach
To answer the research questions, we take the following (inter-
disciplinary) approach, integrating methods from Bioinformatics,
Computer Systems and Software Engineering.

We answer RQ1 by defining a taxonomy of provenance
based on representative questions about the provenance of
an example Bioinformatics workflow. Firstly, we implement
a workflow for epitope prediction in CWL, considering potential
challenges for its reproducibility. Secondly, we identify a set of use
cases for which the provenance of the workflow may be queried
in the future, and formulate questions associated with each use
case. Thirdly, we categorize the questions into 6 elements of the
workflow execution which should be represented in its provenance.
We relate them to existing standards and recommendations for data
[12], [39] and software citation [35], which are both based on the
FAIR principles [46].

Although other models of provenance exist (e.g. the PRIMAD
model, [19]), our taxonomy is grounded in real life use cases of a
specific Bioinformatics, and specifies in detail which metadata is
necessary to address these use cases. Other provenance taxonomies,
such as [32], are concerned with features of provenance systems,
not with the content of the provenance they collect.

To answer RQ2, we analyze the representation of each
component of the taxonomy in CWLProv 0.6.0. We distin-
guish between representation in RDF, structured but CWL-specific
documents, and unstructured representation.

Based on the results of the analysis, we answer RQ3 in
two ways. For both, we adhere to the AtLarge design framework
[22]. Firstly, we design and implement a model for the structured
annotation of workflow input data. This scheme uses terms from

the Schema.org1 [20] ontology and aligns with the Dataset pro-
file established by the Bioschemas community [30]. The proposed
model can be used to express information which is relevant in most
scientific domains, and can also be integrated with terms from other
ontologies for the representation of domain-specific metadata.

Secondly, we design an extension to the RDF provenance graph
for support of richer annotations. Taking the existing design into
account, we extend the model with terms from the wfdesc ontology
[36], and propose terms by which CWL-specific metadata fields and
other structured annotations (following our annotation scheme)
can be represented in the provenance graph.

1.4 Main contributions
The work described in this thesis includes several contributions,
both conceptual and technical.

C1 Technical: Implementation of a workflow for epitope pre-
diction in CWL (Section 3).

C2 Conceptual:A taxonomy of provenance types, together with
the metadata required to describe them (Section 4).

C3 Conceptual: A qualitative analysis of CWLProv provenance,
evaluating the representation of the elements of the prove-
nance taxonomy (Section 5).

C4 Conceptual: The design of an annotation scheme for input
data of CWL workflows (Section 6).

C5 Conceptual, Technical: An extension of the design of the
CWLProv provenance graph and its partial realization in
the CWL reference engine cwltool (Section 7).

1.5 Reading guide
Figure 2 shows an overview of the structure of this thesis. In this
section, we introduced ROs as a potential solution to the problem
of computational reproducibility. Section 2 gives a brief introduc-
tion into CWL workflows and the description of their execution
in CWLProv ROs. The next section (Section 3) explains the ratio-
nale for epitope prediction, gives a conceptual overview of our
example workflow, identifies key challenges for its computational
reproducibility and explains how we address these challenges in
its CWL implementation. In Section 4, we outline the taxonomy of
provenance types and connect them with metadata which describes
them. In Section 5, we evaluate the representation of each of these
provenance types in CWLProv. Section 6 outlines an annotation
format for input data which authors of CWL workflows can use to
enrich their workflow descriptions. In Section 7, we describe how
CWLProv can be extended to solve some of the gaps we found in
the analysis. Finally, we conclude the thesis in Section 8.

2 BACKGROUND: CWL AND CWLPROV
In the previous section, we introduced the problem we address in
this thesis, and provided a high-level overview of our approach. In
this section, we define the concepts we introduced in the Introduc-
tion in more detail, and provide further background information
which is necessary to understand the rest of the thesis. We start
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Figure 2: The structure of this thesis. The arrows denote sug-
gested reading flows. The design of this figure was inspired
by [1].

with a short introduction of CWL workflow descriptions in Sec-
tion 2.1. Subsequently, in Section 2.2, we explain how the results of
CWL workflow runs are packaged in CWLProv ROs.

2.1 The CommonWorkflow Language
Standards v1.2

In this section, we give a primer into the background of CWL,
sufficient to understand the rest of this thesis. A full explanation
of the CWL standards is considered out of scope for this work and
can be found in [9].

2.1.1 Motivation for the CWL standards. CWL was developed for
two main reasons:

• To improve the portability of workflows. Portability
means that the workflow can be taken from the platform
(e.g. the operating system or workflow engine) on which
it was originally developed and executed on another plat-
form, producing the same output. CWL aims to be a unify-
ing language which can be executed on multiple workflow
systems.

• To provide a standard for good workflow descriptions.
Since the concept of workflow thinking can be implemented

in many different ways, there need to be formalized guide-
lines for writing high-quality workflows. Shell scripts and
workflows on highly sophisticated workflow systems may
produce the same output, but the quality of one can be
much higher, because it also describes required resources,
is easily rerunnable with different inputs (because it avoids
the use of hard-coded filepaths), contains information about
the underlying software which are used in the steps, etc.
The CWL standards formally specify essential components
of workflows and how they should be described.

CWL workflows are run with a workflow description file and an
input parameter file.

2.1.2 CWL Workflow description. CWL workflows consist of a
series of steps, which each run a CommandLineTool or nestedWork-
flow. CommandLineTools are CWL descriptions of command-line
programs. The syntax of Workflows, CommandLineTools, and other
CWL documents is built upon YAML.

Parameters: Steps have input parameters, which can be ei-
ther connected to the output parameters of previous steps, or to
workflow-levelWorkflowInputParameters. In addition to input pa-
rameters, workflows can also have one or multipleWorkflowOut-
putParameters, which are linked to theWorkflowStepOutputs which
produce them.

The CWL standards distinguish between different types of pa-
rameters, such as File, Directory, string, or float. Parameters can
also be arrays. The expected parameter types should be explicitly
defined in the CommandLineTool andWorkflow descriptions, and
must correspond between steps that are linked together.

Requirements: Workflows and CommandLineTools can also
specify resource requirements, both hardware (memory, storage, or
CPU cores) and software. In addition, DockerRequirement indicates
that a step should be run inside a software container, and specifies
the repository fromwhich the image can be pulled or the Dockerfile
from which it can be built.

Metadata: Finally, both Workflows and CommandLineTools can
be enriched with annotations to make them and their components
easier to understand. There are CWL-specific metadata fields (doc,
label, and intent), but custom semantic annotations are also sup-
ported. Table 1 summarizes which components can be annotated
and their associated metadata fields.

2.1.3 CWL input object document. The input object is a data struc-
ture which contains the values assigned to the workflow input
parameters. Although parameter values can be specified at the
command line, they are usually presented in a file.

The input object is an array, where the keys are the parameter
names and the values are the parameter values.

The values for all parameter types except File and Directory are
simply the values. For files and directories, however, the value is
an object with multiple fields, including the location of the file or
directory. In addition, the format can be specified, as well as custom
semantic annotations.

2.1.4 Execution of CWL workflows. It is important to realize that
CWL is a language, not a workflow system itself. Currently, sup-
port for the CWL standards has been implemented in at least 5
workflow runners and platforms [9]. These workflow systems may
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have implemented some or all features of CWL. They also differ
in the way they execute workflows: Toil is designed to execute
computationally heavy workflows efficiently. Some execute their
workflows in the cloud. In this project, we use the CWL reference
implementation cwltool.

Table 1: Metadata fields in CWL Standards v1.2. format is
only allowed for parameters of type File or File array.

Workflow component label doc intent format

Workflow • • •
WorkflowStep • •
CommandLineTool • • •
ExpressionTool •
WorkflowInputParameter • • •
WorkflowOutputParameter • • •
WorkflowStepInput •
WorkflowStepOutput
CommandInputParameter • • •
CommandOutputParameter • • •

2.2 CWLProv 0.6.0
In the previous section, we explained that CWL is a standard for
workflow descriptions. In this section, we explain CWLProv, which
is a standard for the description of (CWL) workflow executions.

2.2.1 Motivation for CWLProv. The provenance (i.e., lineage) of
the results of a computational analysis can not be represented by
the workflow description alone. It is also dependent on the input
data (parameter values) and the computational environment in
which the analysis was performed. Although it is conceptually
possible to share this information separately, the complexity of the
analyses (some workflows are executed on distributed systems) can
render this practically infeasible. In addition, workflows may be
executed multiple times with different settings, and can themselves
be subject to change, and tracing the generated results back to the
exact version and settings of the workflow that produced them can
be non-trivial.

The CWLProv specification addresses a need for the represen-
tation of workflow executions which connects the data, workflow
and computational environment in a machine-accessible format.

2.2.2 The CWLProv 0.6.0 specification. CWLProv ROs contain the
CWL workflow description, the input object and all data products
(inputs, intermediate and final outputs) associated with a given
workflow execution. In addition, they also contain RDF files detail-
ing the relation between the aggregated resources and the workflow
execution itself.

In principle, sharing just an RO is sufficient to reproduce the
analysis on another system and generate the same output [28]. A
tool which can be used for this is cwlprov-py [28], which takes a
CWLProv RO as input and can rerun single steps or entire work-
flows.

The following sections explain the structure and purpose of
specific metadata files in CWLProv ROs in more detail.

2.2.3 Packed.cwl. The entire workflow description packaged into
one document (as opposed to separateWorkflow and CommandLine-
Tool files). The document contains all the structured information
from the original workflow description, including metadata, but
unstructured information (e.g. comments) is lost.

2.2.4 Primary-job.json. The input object document. It contains
the values for all parameters in the original input file, but not for
parameters with default values (specified at CommandLineTool or
Workflow level and preserved in packed.cwl).

2.2.5 Manifest.json. An RDF document in JSON-LD format, listing
all data entities aggregated in the RO.

2.2.6 Provenance graph. One or more documents in RDF format
(stored in the provenance directory) describing the relationships of
the aggregated data entities with the workflow execution.

To express provenance, CWLProv uses PROV-DM [31], a stan-
dard for the RDF representation of provenance which is applicable
to most domains of science. In PROV, all provenance relationships
are (in general) expressed with a combination of just three types:Ac-
tivities, Entities, and Agents. Entities are derived from other Entities
via Activities, which are controlled by Agents.

Figure 3 shows a high-level overview of the CWLProv prove-
nance graph. Summarizing, the graph describes the execution (G2)
of a workflow description (G1) by a workflow engine (G4), which
was initiated by a human agent (G3). The workflow description
consists of one or multiple steps (G8) and their execution (G7)
can occur in a software container (G6). During the execution, data
entities (G5) are consumed or produced and are linked to the step
and workflow input and output parameters.

Although all components in the graph and their relations can in
principle be expressed as a PROV type or property, its vocabulary
is often not specific enough to represent subtle differences between
different types of interactions and relationships (workflows and
files are both Entities, yet their distinction can be quite important).
Therefore, CWLProv also uses other ontologies with workflow-
specific vocabulary, such as wfdesc [36] and wfprov [37]. Wfdesc
expresses concepts related to workflow descriptions, whereaswfprov
conveys details about their execution. In addition, CWLProv uses
terms from several other ontologies, including Schema.org2 [20].

2http://schema.org/
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ò
What is RDF?
Resource Description Framework (RDF) [10] is a stan-
dard for the representation of information in a machine-
accessible format.
An RDF document consists of one or more 3-component
statements (triples). The first component is the identifier
of the object that is described, followed by a property of
that object and the value of the property. Properties can
be taken from ontologies such as Schema.org or EDAM,
which are schemas of interrelated terms with precise def-
initions and expected values. The relation with terms in
other ontologies can also be specified.
RDF can be serialized in multiple formats, such as JSON-
LD [26], and queried with a query language known as
SPARQL [45].

3 IMPLEMENTATION OF A USE CASE
WORKFLOW FOR EPITOPE PREDICTION

In this section, we explain the workflow that we took as a example
in this thesis. In Section 3.1, we explain the rationale behind this
type of research. In Section 3.2, we present the requirements to
which our implementation should adhere. In Section 3.3, we explain
the first requirement by giving a conceptual overview of themethod.
Subsequently, we present the second requirement by presenting
challenges for reproducibility of this workflow in Section 3.4. In
Section 3.5, we explain how we addressed the two requirements in
our CWL implementation of the workflow. Finally, we discuss the
implementation in Section 3.6.

Input annotation 1

In contrast to earlier work in this domain

(PPI and protein structure prediction),

our workflow was implemented with reproduci -

bility in mind. For this reason , we avoided

the use of external resources (identifier

mapping) and preserved the context of the

data (query as input , download was part of

workflow execution).

3.1 Background of epitope prediction
Epitopes are binding sites for antibodies on proteins (antigens)
[2][34]. Because of their high specificity for their target protein,
antibodies have a lot of applications in diagnostics, therapeutics
and vaccine design [27]. Knowing the localization of an antigen’s
epitope and understanding the mechanism via which antibodies
recognize antigens is therefore very important.

Which amino acids are epitopes can be inferred from the struc-
ture of the antibody-antigen complex: the amino acid residues
which are within a certain distance from the antibody residues
are considered part of the interface. However, experiments which
resolve these structures are expensive and laborious. Given the
enormous diversity in antibody-antigen complexes, determining
the epitopes for all of them is practically infeasible.
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An alternative to determining the protein structures experimen-
tally is predicting them computationally. Given that protein struc-
ture ultimately arises from sequence (see A primer on protein struc-
ture), epitope prediction models like SeRenDIP-CE [21] attempt to
identify the epitope residues based on features inferred from pro-
tein sequence. The predictions made by these models can then be
used to preselect antibodies which are likely to bind to the epitopes
of a given antigen, enabling a much more targeted approach than
evaluating each candidate experimentally.

However, a challenge which epitope prediction models face is
the scarcity of training data, which compromises the accuracy of
the predictions for proteins which do not have an experimentally
resolved protein structure.

ò
A primer on protein structure
Proteins consist of one or multiple chains (peptides) of
linked-together amino acids. The order and identity of
these amino acids (the protein sequence) is specified in
the DNA. Each amino acid has distinct characteristics.
Some prefer to interact with water on the protein surface
(hydrophilic), others are hydrophobic and are often located
on the inside of the protein.
We discriminate between four layers of protein structure.
The primary structure is the protein sequence. The sec-
ondary structure arises from hydrogen bonds within the
peptide backbone. On top of that, the peptide can be folded
into the tertiary structure. The quaternary structure arises
when the folded protein chain interacts with other (folded)
protein chains to form a complex.
Summarizing, we see that even though protein structures
can be very complex, they ultimately arise from the infor-
mation encoded in the DNA.

3.2 Requirements
The CWL implementation of our example workflow should meet
two requirements, which we explain further in the subsequent
sections:

WR1 Adhere to a specific method of epitope prediction which
was conceptualized and provided to us by the workflow
authors, explained in Section 3.3.

WR2 Address challenges which compromise the transparency
and reproducibility of this workflow, explained in Section 3.4.

3.3 WR1: Adhere to a conceptual method
In this section, we explain WR1, providing a conceptual overview
of the method which should be implemented in the CWL workflow
we used as a use case in this work.

The design of the epitope predictor, conceptualized by the work-
flow authors, is based on a model for predicting ‘general’ protein-
protein interaction (PPI) interfaces [6]. In its turn, that model was
derived from OPUS-TASS [47], a predictor for protein structure.

It addresses the lack of training data via a multi-task learning
strategy, in which the model not only learns the label of interest
(epitopes), but also related characteristics, such as solvent accessi-
bility (the fraction of amino acid surface which is exposed to the

aqueous environment). This allows the model to be trained on a
larger set of structures, not restricted to antibody-antigen com-
plexes, but also including structures with general PPI interfaces
and other structural information.

The PPI predictor on which this method was based, was trained
on OPUS-TASS reference data and did not include calculation of
the input features or labels. In contrast, the OPUS-TASS source
code did contain calculation of the input features, but the labels
were reused from a reference dataset and not directly derived from
protein structure. However, because we wanted to maximize
the transparency of our research, our workflow comprises
the entire trajectory from protein structure and sequence to
labels and features used for model training.

3.3.1 Data sources. These are the (main) data sources used to cal-
culate the input features and labels:

• Protein Data Bank (PDB) [5], a database of experimen-
tally resolved structures of proteins and complexes.

• Structural AntibodyDatabase (SAbDab) [13], a database
of metadata for antibody-antigen complexes in the PDB
(e.g., which part of the complex corresponds to the antibody
and which to the antigen).

• BioDL [43], a dataset of protein sequences containing an-
notations for general PPI interactions, previously derived
from structure.

• HHBlits reference database. Used by HHBlits [33] to
compute some of the input features.

3.3.2 Structure-derived labels. For each residue in each protein
sequence, the model predicts a number of properties.

• Epitope: a binary label indicating if a given residue is an
epitope. Calculated from protein structure in combination
with SAbDab metadata. Missing for proteins which are not
included in SAbDab.

• PPI: a binary label indicating if a given residue is part of a
general PPI interface. Extracted from BioDL.

• Surface accessibility: a label indicating how much of the
amino acid is exposed to the surface. Calculated by DSSP
[25] based on the protein structure.

• Secondary structure: 3 binary labels indicating the sec-
ondary structure of which a given residue is part (alpha
helix, beta strand or loop). Calculated by DSSP based on
the protein structure.

3.3.3 Sequence-derived input features. The model predicts epitope
annotations based on three groups of sequence-derived features:

• PC7: 7 features which reflect amino-acid-specific physico-
chemical characteristics. Every amino acid type has fixed
values for these features.

• PSP19: 19 binary features which reflect the presence of
particular amino acid ‘building blocks’ (e.g. a benzene ring).
Every amino acid type has fixed values for these features.

• HHM: 30 features derived from a sequence profile gener-
ated from alignment with highly similar sequences. Com-
puted with HHBlits.
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3.4 WR2: Address reproducibility challenges for
this workflow

In this section, we explainWR2 by presenting a number of char-
acteristics of this workflow which may make its implementation
challenging from a transparency and reproducibility perspective.

3.4.1 Workflow design. Firstly, the method requires calculation of
over 50 input features and at least 6 labels for every amino acid
in each of the several thousand proteins in the training dataset,
involving three data sources, at least two command-line tools and
several Python scripts. This underlines the importance of describing
this process as a workflow, in order to keep track of all the data
flows.

Secondly, the design of the workflow is subject to extensive
changes, as the workflow authors test different combinations of
input features and labels in order to optimize performance as well
as computational efficiency. In addition, they may need to include
extra preprocessing steps to remove potential bias from the training
set (e.g. due to overrepresentation of certain protein families in the
PDB).

3.4.2 Software. The workflow steps each have their respective
software dependencies, some of which are only compatible with
particular versions of other software (e.g. tensorflow). Recording
the versions of tools and dependencies is therefore very important
for reproducibility.

3.4.3 Data. Retrieving and handling the data used as input for this
workflow has its own challenges. Firstly, HHBlits can be used with
different reference databases, which will influence the produced
sequence profiles. These databases have versions, and are not stored
in a FAIR manner.

Secondly, the dataset downloaded from PDB does not comprise
the entire database, but a subset which is selected as the result of
a query. Since new entries are added to PDB continually, it is not
likely that running the same query at a later moment will result in
the same dataset. Similarly, SAbDab also receives weekly updates
[13].

Finally, the identifiers in the BioDL dataset correspond to par-
ticular sequences, whereas those in SAbDab and PDB represent
structures. Therefore, we need to match the two types of identifiers
with each other. However, external resources such as the UniProt
mapping tool3 [44] may not return the same mappings in the future.

3.5 Implementation of the workflow
In this section, we describe how we implemented the epitope pre-
diction workflow in CWL, considering the requirements described
in Section 3.3 and Section 3.4.

Figure 4 shows an overview of the CWL implementation of the
workflow, which was based on a diagram provided by the work-
flow authors (Figure 4a). Figure 4b shows an early version of the
workflow, and Figure 4c the final implementation.

3.5.1 Implementation of the conceptual method (WR1). To address
the first requirement, the workflow starts by issuing a query to
the PDB Search API4 (run_pdb_query). This produces a list of PDB
3https://www.uniprot.org/id-mapping/
4https://search.rcsb.org/index.html#search-api

IDs which is used to download the protein structures from PDB
(download_pdb_files), which are subsequently decompressed (de-
compress_pdb_files). From the protein structures, DSSP calculates
surface accessibility and secondary structure (generate_dssp_labels),
and an in-house Python script extracts epitope annotations (gener-
ate_epitope_labels) using a SAbDab summary file which has been
preprocessed in an earlier step (preprocess_sabdab_data). Another
Python script extracts PPI annotations from BioDL and performs
identifier mapping (generate_ppi_labels). Three separate steps cal-
culate input features for the protein sequences with PPI annota-
tions (generate_hhm, generate_pc7, and generate_psp19). The in-
put features and labels are subsequently combined in two steps
(combine_features, combine_labels) and used to train the prediction
model (train_epitope_prediction_model).

3.5.2 Consideration of workflow reproducibility (WR2). Firstly, we
aimed to automate the workflow as much as possible. For this
reason, the PDB query and download steps are included in the
workflow (with the query as one of the workflow inputs). The two
workflow inputs constituting the BioDL dataset (biodl_test_dataset
and biodl_train_dataset) are included as remote files and down-
loaded by cwltool during workflow execution. Because SAbDab is
not programmatically accessible, sabdab_summary_file needs to
be downloaded manually, but all further preprocessing steps are
included of the workflow.

To avoid using external mapping tools between UniProt and
PDB identifiers, we infer the relationships between the two types
of IDs from the downloaded PDB files, which contain both types of
identifiers.

To make the workflow design easy to adapt and modify with
different combinations of input features and labels, we spread the
computation of these features over separate steps. This is different
from the original OPUS-TASS code, in which all input features are
calculated by a single Python script.

To increase the portability of the computational environment,
some steps are executed inside software containers. The workflow
engine pulls Docker images from external repositories and converts
them to Singularity [29] containers, the software which is installed
on the Bazis HPC cluster on which we executed the workflow.

3.5.3 Emulation of workflow steps. Because this workflow is still
in development and not all the scripts were ready, some of the
steps are emulated. In this way, the steps produce output in the
expected format, but do not necessarily contain biologically sensible
information.

In summary, for three steps we used scripts provided by the
workflow authors (preprocess_sabdab_data, generate_epitope_labels,
and generate_dssp_labels). For other steps we reused or modified
code from OPUS-TASS (generate_pc7, generate_psp19, and gener-
ate_hhm) or other sources (run_pdb_query, download_pdb_files).
Finally, we wrote custom Python scripts for the remaining steps, of
which two were partially (combine_labels) or completely emulated
(train_epitope_prediction_model).
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(a) Diagram of the conceptual method, provided by the workflow
authors.

(b) Early version of the implementation, in
which most steps are still abstract Opera-
tions (dashed nodes).

Workflow Inputs

Workflow Outputs

generate_psp19

combine_features

train_epitope_prediction_model

generate_ppi_labels

generate_pc7generate_hhm combine_labels

generate_dssp_labels generate_epitope_labels

download_pdb_files

decompress_pdb_files

run_pdb_query preprocess_sabdab_data

predictions

hhblits_db_dir hhblits_db_name biodl_test_dataset biodl_train_dataset sabdab_summary_filepdb_search_api_query

(c) The final implementation of the workflow.

Figure 4: Progression of the workflow implementation from initial sketch to full implementation. Nodes represent the steps,
edges signify data flow between the steps. Yellow nodes indicate steps which run CommandLineTools, orange nodes represent
steps which control nestedWorkflows, blue nodes signify workflow input and output parameters.
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3.6 Discussion
In this final section, we discuss the implementation of our example
workflow. A number of steps still need to be taken before this model
can be used to generate biologically meaningful epitope predictions.

Firstly, we focused on the high-level design of the workflow, and
organized this in such a way as to maximize the transparency and
reproducibility of the workflow in the future. We only addressed
challenges for reproducibility which we anticipated given the na-
ture of the method, hence there might be more challenges when
the workflow is reproduced at some point in the future.

Secondly, the design of the workflow only considers the train-
ing of the model. In the future, extra steps could be added which
split the dataset into training and test set, and potentially a sepa-
rate workflow can be made in which the trained model computes
predictions for query sequences. In addition, future work should
replace the emulated steps with functional code and test them with
(OPUS-TASS) reference data.

Finally, not all steps were containerized, because we could not
find suitable images for all steps, and Singularity is incompatible
with dockerFile (a local Docker recipe). In the future, these steps can
be containerized if images are built from Dockerfiles on a system
which has Docker installed, and uploaded to our own repository.
Because of time constraints, we could not do this ourselves, but
we included the Dockerfiles as comments in the CommandLineTool
descriptions.

4 DEFINITION OF A TAXONOMY OF
PROVENANCE

In Section 3, we described the implementation of a workflow which
we use as an example. In this section, we synthesize requirements
for CWLProv provenance, in this way answering RQ1. Section 4.1
specifies use cases for the provenance which are specific for this
workflow. In Section 4.2 we link this to 6 aspects of the workflow
and its execution, which should be represented in provenance. In
Section 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8, we elaborate on each of these
aspects and explain by which metadata they should be accompanied
to fulfill the requirements associated with the use cases described
in Section 4.1.

Input annotation 2

In contrast to other provenance models , our

taxonomy is both based on real -life use cases

of the provenance of a specific Bioinformatics

workflow , and connects them with existing

standards for data and software citation to

identify which metadata are necessary to

fulfill the use cases.

4.1 Workflow use cases
In this section, we describe the use cases of ROs associated with
our example workflow coupled with the practitioners for which
they are relevant.

We consider 5 use cases, each in a different stage of the work-
flow’s lifetime.

U1 Workflow development. Most relevant for:Workflow
author. During this stage, the workflow design is not fully
established. Different input datasets and configurations are
tested. Steps may be added or removed based on the out-
put of previous steps. ROs of multiple workflow runs may
be used to compare different designs and configuration
settings with each other.

U2 Publishing the workflow. Most relevant for: Workflow
author. At this stage, the workflow is ready for publication,
and the workflow author has to explain the methodology
and rationale of the research in a scientific article (or write
documentation for the workflow). The RO may serve as a
guide during writing, comprising a record of used data and
tools, contributions of collaborators (allowing credit and
attribution), and choices which were made during workflow
development.

U3 Understanding the workflow. Most relevant for: Reader
of the article describing the research. The RO has been
published in companionship with the article. The metadata
contained in the RO serves as a bridge between the methods
section of the article and the workflow itself. In addition,
the metadata may connect the conclusions in the article to
the results that support them.

U4 Reproducing the workflow. Most relevant for: Third
party continuing the research. After reading the arti-
cle and examining the RO to understand the research, this
person may use the RO as a guide to reproduce the anal-
ysis first, before modifying or extending it for their own
purposes.

U5 Model workflow execution as a service. Most relevant
for: User of the trained model as a web service. In this
stage, the trained model has been made available as a web
service, which can be used to predict epitopes for sequences
for which the structure is unknown. The RO is the standard
output of the web-based tool.

4.2 Synthesis of a taxonomy of provenance
Based on the use cases (Section 4.1) we synthesized a list of ques-
tions, presented in Appendix A. Based on these questions, we pro-
pose a 6-component taxonomy of provenance types which should
be represented in the provenance of the workflow execution.

T1 Scientific context. Explanation of the choices which were
made in the design of the workflow and parameter values.

T2 Data. Input and (intermediate) output data.
T3 Software. The tools directly orchestrated by the workflow,

and their dependencies.
T4 Workflow. The workflow and tool descriptions, but not

the software they control.
T5 Computational environment. Metadata about the sys-

tem on which the workflow was executed, comprising both
software and hardware.

T6 Execution details. Additional information about the work-
flow execution itself.

The rest of this section elaborates on these components. For
every element of the taxonomy, we define its meaning, why it
should be included, and how it should be represented.
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4.3 T1: Definition of metadata for scientific
context

In Section 4.2, we presented scientific context (T1) as one of the
aspects that should be present in the collected provenance. In this
section, we elaborate on what we mean with scientific reasoning
and how it should be incorporated in provenance.

Why: Representing the scientific thinking process in provenance
is meant to make the connection between the article advertising
the research and the research itself, contained in the RO. This
connection is bidirectional: ROs can be used as a guide during
manuscript writing as well as for providing context for a third
party who has read the paper and wants to understand the analysis
in more depth.

What: The scientific context covers many aspects of the research,
from the reasons why particular input data and parameter settings
were chosen [8], to the design of the workflow (why particular
steps were included), to the rationale for the study and the overall
hypothesis of the research [4][19]. Even negative results can be
reported and explored strategies which did notwork can be included
[41]. In addition, it can include the interpretation of the results
and their implications on the field (or maybe the output of an
intermediate step warrants the inclusion of another preprocessing
step).

How:We classify scientific context into 3 components:
SC1 Workflow design. Annotations on the design of the work-

flow and its components. Purpose of the workflow, why
steps were included or excluded, the meaning of particular
input parameters, etc.

SC2 Entity annotations: The meaning of individual input and
output data entities. Why were they chosen? How are the
results interpreted?

SC3 Workflow execution annotations: Annotations about a
set of parameters in a particular workflow run. Allows to
distinguish between the ROs of multiple workflow runs.

4.4 T2: Definition of metadata for data
In this section, we describe which metadata should be attached to
data entities (T2) in the provenance record.

What: We mean not only input data, but also (intermediate)
output data.

Why:Metadata associated with data entities can have at least
two purposes:

• To explain the meaning and context of the data. The
context of the data should be described, because others
need to be able to assess the appropriateness of the data for
the purpose of the computational analysis. In the case of the
epitope prediction workflow, it is important to understand the
composition of the training set, since this is highly influential
on the performance and applicability of the model.

• To describe data which is not contained in the RO.
To reduce RO size, or because the data cannot be shared
for privacy reasons (it is proprietary or in other ways non-
public), data may not be present in the RO but stored in
an external repository. Characteristics of the data may still
be included which provide information, to make sure that
the data in the repository is the same as which was used

in the original analysis. Use case U5 is an example where
limiting the size of the RO may be desirable. Instead, the RO
could contain references to datasets which are too large and
are instead stored in an external repository.

How:We identify 4 categories of data metadata which should
be represented based on these two reasons. Here we link them to
established recommendations and best practices for data citation,
according to the FORCE11 Data Citation Principles [12], which are
based on the FAIR principles [46].

D1 Identification: PID, version, name and description of the
dataset. Preferred citation of the data. When the data is not
FAIR: URL and download date as an alternative for PID and
version.When the dataset is a subset of a larger collection (e.g.
a database): PID of database, database version and download
date, and the query or filtering strategy which produced
the dataset.

D2 File characteristics: Filename, format, creation and last
modification timestamps, size, and checksum.

D3 Access: URL to a downloadable form of the data. License.
D4 Mapping: The workflow and step parameters for which

the data is an input or output.

4.5 T3: Definition of metadata for software
In this section, we elaborate on the representation of software in
the provenance record (T3).

What: In particular, we mean the command-line programs di-
rectly orchestrated by the workflow. However, these principles also
apply to the workflow itself (Section 4.6), the workflow engine
(Section 4.8), and computational environment (Section 4.7).

Why: There are two main reasons why software should be de-
scribed with metadata:

• Obtaining identical results in a re-execution may be
highly dependent on the version of the tools used.
This is important when reproducing the workflow.

• The original software may not be available or exe-
cutable in the future. In this case, the software should
be sufficiently described for others to choose a suitable
equivalent.

How: We identify 3 categories of software characteristics which
should be included in the provenance. Here we link them to estab-
lished recommendations and best practices for software citation,
according to the FORCE11 Software Citation Principles [35], which
were adapted from the FORCE11 Data Citation Principles.

SW1 Identification: PID, name, version, release date and de-
scription of the software. Preferred citation. When the soft-
ware is not FAIR: URL of repository, download date and/or
git commit hash as substitute for PID, version or release
date.

SW2 Documentation: URL of documentation or other metadata
which is important to make informed use of the tool. URL
to repository with source code of the software.

SW3 Access: URL to downloadable, executable form of the soft-
ware. License.
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4.6 T4: Definition of metadata for workflow
In this section, we describe the metadata that is associated with the
workflow (T4).

What: We define workflow here as the documents described in
CWL (for other workflows, this would be the top-level script, not
the underlying software that it controls). Hence the workflow com-
prises the main workflow description and the CommandLineTool
and nestedWorkflow descriptions.

Why: Workflows provide both a high-level overview of the
analysis as well as details which are difficult to convey in a textual
format in the Methods section of a scientific article [16]. In addition,
workflows are software which should be preserved and reused [17].

How: The metadata associated with workflows comprise general
software metadata, in addition to workflow-specific information.

WF1 General software metadata: At workflow and step level,
according to Section 4.5.

WF2 Parameters: Type, format, and description, at workflow
and step-level.

WF3 Requirements: Software and hardware resources which
are required to execute the workflow or workflow steps.

4.7 T5: Definition of metadata for
computational environment

In this section, we describe the requirements for computational
environment (T5).

What: Environment encompasses both software and hardware
infrastructure, and may be part of a software container.

Why: Information about the computational environment is im-
portant for reproducing the workflow (U4).

• Required resources: Details about the resources available
on the system which executed the original analysis can give
an indication of what is necessary to rerun the workflow,
even if this is not documented in the workflow description.

• Debugging: The generated output (or executability) of a
step may be sensitive to specific versions of the tool orches-
trated by the step or its dependencies.

How: We discriminate between three components of the com-
putational environment:

ENV1 Software: software (dependencies), operating system. De-
pendencies could comprise all installed software (might
contain much redundant information if a step was not exe-
cuted in a software container), or the dependencies of the
software which is run (which may be difficult to identify).
Should follow the requirements as described in Section 4.5.

ENV2 Hardware: Available RAM, storage, number and type of
CPUs and GPUs. Network access.

ENV3 Container image: Image name, tag and digest (because
names and tags are not stable). Additional metadata (ex-
tracted from image labels), contents of Dockerfile (if built
from Dockerfile), and general requirements for software as
described in Section 4.5.

4.8 T6: Definition of metadata for execution
details

In this section, we define the final element of our provenance tax-
onomy: execution details (T6).

What: Executions are everything that is related to the analysis
but which is not covered by the other categories. They constitute
pure retrospective provenance: a record of what actually happened
during the workflow run.

How: We distinguish four components in this category:
EX1 Timestamps: When the workflow was executed, at step-

granularity. The timestamps can be helpful when files were
downloaded during the execution, especially from a data-
base which does not have clear versions (SAbDab). In addi-
tion, the duration of the execution may be important during
workflow development (test different settings) and when
reproducing the workflow.

EX2 Consumed resources: The resources used during execu-
tion, at step-granularity. This is different from what was
described in Section 4.7, because there we only described
what was available, not what was actually used.

EX3 Workflow engine: Software, therefore with same meta-
data as general software entities (Section 4.5).

EX4 Human agent: At a minimum, a PID such as ORCID should
be included, or name and email of the person who ran the
workflow. These details may be important for attribution
(U2), and can also be used by third parties to ask further
questions about the research.

4.9 Discussion of the provenance taxonomy
The provenance taxonomy defined in the previous sections was
established on the basis of representative provenance questions
for potential use cases of ROs produced by a workflow for epitope
prediction.

In reality, the list of use cases of CWLProv ROs is likely longer
than the few we considered for our example workflow. For example,
there may be stakeholders which are interested in the funding of
the research, which is an element which is currently not included in
our provenance taxonomy. Nevertheless, we are convinced that the
use cases we covered are realistic and applicable to more workflows
than our example workflow, and that the provenance questions and
taxonomy described here are a useful starting point which can be
extended when other use cases are identified.

The first practical application is that our provenance ques-
tions are within the scope of the Competency Questions5

gathered by the RO-Crate Workflow Run profile working
group. These competency questions will serve as a basis for the
new RO-Crate Workflow Run profile. This way, our work not only
applies to CWLProv ROs, but also to a much broader specification
which can be adopted by a variety of workflow languages.

Secondly, our work identifies a use case (U5) where the
RO in question is not generated for publication in compan-
ionship with a scientific article, but as standard output of a
web-based tool. This scenario calls for a light-weight RO profile,
in which some data entities are stored in an external repository
5https://github.com/ResearchObject/workflow-run-crate/issues?q=is%3Aissue+is%
3Aopen+label%3ARequirement
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instead of in the RO itself. Future work will need to explore the
desired properties of these ROs further, as well as analyze the po-
tential implications and risks of data exclusion from the RO, and
translate this to metadata which is particularly important to include
in these ROs.

5 ANALYSIS OF CWLPROV METADATA
In Section 4, we presented potential use cases for ROs associated
with our example workflow and specified the metadata required
to support them. In this section, our aim is to evaluate CWLProv
provenance for the presence of the components of the provenance
taxonomy, and in this way answer RQ2.

Input annotation 3

In contrast to the original CWLProv paper , our

method explicitly evaluates CWLProv from a

provenance analytics perspective (how ROs are

used in practice). This analysis is concep -

tually challenging , because it requires us to

discriminate between different types of

representation (structured or unstructured ,

automatically or manually supplied).

5.1 Requirements
In this analysis, we consider for each of the provenance types and
subtypes defined in Section 4 whether they adhere to the following
requirements:

R1 The provenance subtype is represented in the RO.
R2 The representation of the subtype is in a structured format.

5.2 Methodology
We perform a qualitative analysis of CWLProv 0.6.0, based on ROs
generated with the CWL reference implementation cwltool. We con-
sider each of the 6 components defined in Section 4.We discriminate
between structured representation in RDF (provenance graph and
manifest.json), structured annotations in CWL-specific documents
(packed.cwl and primary-job.json), and unstructured documents such
as the execution log.

We consider a component fully represented if it is included in
the document by default, or if the CWL standards provide clear
guidelines for its manual annotation in a workflow or input object
document. In contrast, a provenance subtype is partially represented
if only a subset of themetadata is included in the RO, or it is not clear
how to annotate this in the workflow or input object document.

5.3 Results
Here we connect the provenance as described in Section 4 to the
requirements as defined in Section 5.1.

Table 2 summarizes the results of the analysis. Of all 6 prove-
nance elements, execution details (T6) are best represented. The
provenance graph contains start and end timestamps at both work-
flow and step granularity6 (EX1). The workflow engine is described

6A side note to be made here is that in cwltool-generated ROs of executions which
reused cached results, the timestamps correspond to the final execution, not the original

with name and version (EX3), and linked to the human agent who
initiated the workflow run (EX4). Apart from maximum memory
used during a container execution, the RO contains no reference to
used resources (EX2).

The workflow (T4) is also included in CWLProv. The full work-
flow is contained in packed.cwl, including any structured annota-
tions made by the workflow author (WF1). In contrast, the RDF
description mentions only the workflow and its steps. The steps
are not further explained in the provenance graph, nor linked to
the underlying CommandLineTool or nested Workflow descriptions.
The workflow and step execution records mention the input param-
eters (WF2) and link them to their values, but they are not further
explained with metadata in the provenance graph. Software and
hardware requirements (WF3) can be found in packed.cwl if they
were specified by the workflow author.

The computational environment (T5) is very poorly described.
Only when steps are executed in a software container, the container
image (ENV3) is represented in RDF. However, the description is
restricted to its name and tag, which is not stable and does not
convey any information about its contents. If an image was built
from a Dockerfile, the Dockerfile is included in packed.cwl, but there
is no guarantee that the same image (with the same versions) will
be built when re-executing the workflow.

Although the underlying software (T3) may be part of Soft-
wareRequirements and therefore included in packed.cwl, there is no
guarantee that the specified versions are identical to those installed
on the system which executed the workflow. If workflow authors
added structured annotations about the software to the Command-
LineTool document, these are also contained in packed.cwl. None of
these annotations are represented in RDF.

In contrast to software, data entities (T2) are part of the RDF
provenance graph, and linked to the workflow and step parameters
for which they were values (D4). Each file is a separate entity in the
provenance graph, and when they were part of an Array or Direc-
tory, this association is also represented. Files are annotated in the
provenance graph with filename and checksum, and manifest.json
contains the creation date of files generated during workflow ex-
ecution (D2). However, structured annotations of input data (D1,
D2, D3) are only present in primary-job.json.

The scientific context (T1) can be partly represented via man-
ual annotations in the workflow (via intent and doc fields, SC1)
and input file (via custom annotations, SC2) and will be present in
packed.cwl and primary-job.json. There are currently no standards
for adding annotations specific for the execution (hence SC3 is
missing).

5.4 Discussion
Here, we presented the results of our analysis of the CWLProv
0.6.0 specification, based on the provenance taxonomy described in
Section 4.

In this analysis, we distinguished between description in RDF,
in CWL-specific documents (packed.cwl and primary-job.json), and
in an unstructured format (e.g. the execution log).

run which computed the results. We opened an issue about this: https://github.com/
common-workflow-language/cwltool/issues/1689
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Table 2: Summarized results of CWLProv 0.6.0 analysis. The table shows for each taxonomy component defined in Section 4
whether it is fully (■) or partially represented (□). Components which are not represented in any of the documents are marked
with an asterisk (∗). Representations which are only included when this metadata is manually supplied are indicated with
parentheses. We distinguish between description in RDF, CWL-specific documents (packed.cwl and primary-job.json), and
unstructured representation (e.g. execution log).

Type Subtype Name RDF packed.cwl primary-job.json unstructured

T1 SC1 Workflow-level (■)
SC2 Data-level (□)
SC3 Execution-level ∗

T2 D1 Data identification (□)
D2 File characteristics □ (□) □
D3 Data access (□)
D4 Data mapping ■ □ □

T3 SW1 Software identification (□)
SW2 Software documentation (□)
SW3 Software access (□)

T4 WF1 Workflow software metadata □ (■)
WF2 Workflow parameters □ (■)
WF3 Workflow requirements (■)

T5 ENV1 Software environment ∗
ENV2 Hardware environment ∗
ENV3 Container image □ □ □

T6 EX1 Timestamps ■
EX2 Consumed resources □
EX3 Workflow engine □
EX4 Human agent ■ ■

Firstly, we observe that very few categories are considered
fully represented in provenance (R1). Except the workflow (T4),
which is contained in its entirety in packed.cwl, all components are
missing at least one element. The computational environment (T5)
is almost entirely absent from provenance.

Secondly, the information that is contained in the RO
is mostly restricted to CWL-specific files (packed.cwl and
primary-input.json). Many of the annotations supplied in the
workflow or input object are not transferred to the RDF provenance
record, and can therefore not be extracted with SPARQL queries.

Finally, we observe that much of the required metadata for data
(T2), software (T3, T4), and scientific context (T1) depends heavily
on manual annotations supplied by the workflow author. Authors
are encouraged to add this metadata7, but there are no formal
specifications how to supply these annotations. However, if
provenance is to be queried systematically, there is a need to issue
stricter guidelines to do this, and in this way meet R2.

Our analysis was an evaluation of the CWLProv specifi-
cation, not of the workflow engine which produced the RO.
For this reason, we did not consider the amount of effort that was
required from the workflow authors to supply this information.
However, since much of the metadata was strongly dependent on
manual input from the workflow authors, it is not reasonable to
assume that this information will be present in all CWLProv ROs,
7https://www.commonwl.org/user_guide/17-metadata/index.html

especially in complex workflowswithmany input parameters, steps,
and software dependencies. In Section 7.6, we explore strategies to
partially automate the inclusion of these metadata descriptions to
reduce the burden on workflow authors.

6 DESIGN AND IMPLEMENTATION OF AN
ANNOTATION SCHEME FOR INPUT DATA

In Section 5, we analyzed CWLProv provenance for the presence
of the provenance types and subtypes defined in Section 4. Among
other gaps, we observed that although some of this metadata can be
provided viamanual annotations of theworkflow and input files, the
CWL standards do not formally specify how this information should
be included. In this section, we propose an annotation schemewhich
can enrich input data with semantic annotations and also enables
authors to annotate the workflow run itself (i.e., the combination of
a particular workflow and its configuration settings, SC3). In this
way, we (partially) answer RQ3.

The remainder of this section is organized as follows. In Sec-
tion 6.1, we define the requirements for a satisfactory standard. In
Section 6.2, we describe the key ideas behind the annotation scheme.
In Section 6.3, we describe how the current CWL standards (v1.2)
support annotation of the input object document. Subsequently,
in Section 6.4, we propose an extension of the annotation scheme
which can be included in a future release of the CWL standards
and provide examples of how it supports richer descriptions of
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workflow inputs. In Section 6.5, we use the annotation scheme
to annotate the input object document of the epitope prediction
workflow and analyze its strengths and limitations.

Input annotation 4

Our annotation scheme is grounded in real life

use cases and designed to be easy for workflow

authors to understand and use. Moreover , it is

compatible with the existing Bioschemas

specification , which it extends with additional

terms to represent the history of processed

workflow inputs.

6.1 Requirements
Based on the results of the analysis described in Section 5, the input
annotation scheme should meet the following requirements:

IR1 Represent the elements defined in D1 and D3.
IR2 Describe input data of type File, Directory and Array.
IR3 Represent the history of processed input data (e.g filtering).
IR4 Represent the database query which produced a dataset.
IR5 Support extension with domain-specific vocabularies.
IR6 Represent information about a set of input parameters

(SC3)

6.2 Design principles
The design of the input data annotation scheme was based on a set
of underlying principles:

IP1 Reuse of existing terms and ontologies. Our scheme
uses Schema.org, since this complies with the Bioschemas
[18] initiative. Schema.org terms are also adopted by related
efforts such as the RO-Crate specification [38].

IP2 Extension of theCWL standards onlywhen absolutely
necessary.We started from the latest CWL Standards speci-
fication (v1.2), and only where these did not support adding
metadata we proposed an extension.

IP3 Clear separation between input data and metadata.
This keeps the input object document relatively easy to
understand.

IP4 Simplicity. The annotation scheme should be easy to un-
derstand and use for CWL workflow authors.

6.3 Annotations supported by CWL standards
v1.2

Here, we explain the annotations that are supported by the latest
release of the CWL standards (IP2). In the examples outlined below,
we abbreviate http:// schema.org/ with the prefix s:.

6.3.1 Format. CWL Standards v1.2 support semantic annotations
for File and Directory objects in the input object document. We
recommend that annotations are appended on the same level as the
standard fields (class, location and format), where the property is
the key and the annotation itself the value. Values can be single
annotations, arrays or (arrays of) dictionaries.

In addition, the authors can convey information about a set of
input parameters via annotations in the root of the input object
document (IR6).

6.3.2 Vocabulary. Information about a set of input values can be
expressed under the s:description key.

For File and Directory inputs, we reused the Bioschemas Dataset
profile v1.08, in this way complying with IP1. Table 3 shows how
the Schema.org terms relate to the required metadata specified in
D1 and D3.

We recommend that authors adhere to this vocabulary when
describing properties of their datasets which are domain-neutral.
However, if theywant to convey domain-specific informationwhich
is not covered by the terms in Table 3, they may choose to extend
this annotation scheme with domain-specific ontologies (such as
EDAM [24]), in this way fulfilling IR5.

Below, we show some annotation examples. In general, we rec-
ommend that authors provide at a minimum the metadata which is
not covered by the identifier of the data they use (IP4).

6.3.3 Annotations for a FAIR file. The following is an example of a
standalone dataset with its own identifier. In addition to the CWL-
specific format field (line 4), we provided additional Schema.org
terms in order to comply with IR1. In principle, providing the
identifier and version with a description (lines 5-7 ) is sufficient
for unambiguous identification, since the identifier resolves to a
landing page with additional information. However, for the purpose
of our example, we added all other terms from Table 3 manually as
well (lines 8-16).

1 FAIR_file:
2 class: File
3 location: path://path/to/6nzn.pdb
4 format: http://edamontology.org/format_1476 # pdb
5 s:identifier: https://doi.org/10.2210/pdb6nzn/pdb
6 s:version: "1.4"
7 s:description: "Amyloid fibril structure of

glucagon in pdb format."↩→

8 s:name: "6NZN"

8https://bioschemas.org/profiles/Dataset/1.0-RELEASE

Table 3: Schema.org terms to use to express the metadata
elements described in D1 and D3. Taken from Bioschemas
Dataset profile v1.0.

Schema.org T2 element Expected type

identifier PID URL
version version Number, Text
name name Text
description description Text
citation citation CreativeWork
includedInDataCatalog database DataCatalog
dateCreated download date Date, DateTime
dateModified modification date Date, DateTime
distribution URL to data DataDownload
license license URL
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9 s:citation:
10 s:identifier:

https://doi.org/10.1038/s41594-019-0238-6↩→

11 s:dateCreated: 2019-02-14
12 s:dateModified: 2019-12-18
13 s:includedInDataCatalog: # PDB
14 s:identifier:

https://doi.org/10.25504/FAIRsharing.2t35ja↩→

15 s:distribution:
https://ftp.wwpdb.org/pub/pdb/data/structures
/divided/pdb/nz/pdb6nzn.ent.gz

↩→

↩→

16 s:license: https://spdx.org/licenses/CC0-1.0

Appendix B.1.1 shows an example of an annotated dataset which
is not FAIR.

6.3.4 Adding domain-specific annotations. The CWL standards also
support adding domain-specific ontologies. Here we add extra infor-
mation about the biological interpretation of the data, using terms
from the EDAM ontology (with edam: for http://edamontology.org/ ).
In addition to the identifier, version and description (lines 5-7 ), we
explicitly define this file as a dataset and protein structure (lines
8-10) and express the scientific domain to which it is related (line
11).

1 domain_annotations_file:
2 class: File
3 location: path://path/to/6nzn.pdb
4 format: http://edamontology.org/format_1476 # pdb
5 s:identifier: https://doi.org/10.2210/pdb6nzn/pdb
6 s:version: "1.4"
7 s:description: "Amyloid fibril structure of

glucagon in pdb format."↩→

8 s:additionalType:
9 - s:Dataset
10 - edam:data_1460 # protein structure
11 edam:has_topic: edam:topic_2814 # protein

structure analysis↩→

6.3.5 Annotations of a collection of input parameters. This example
shows how scientific context can be represented, even for parame-
ters which are not Files or Directories. Lines 1-5 denote the value
of the workflow input parameters. The entire set of parameters
is described via s:description (line 7 ), providing a mechanism to
distinguish ROs of different workflow runs from each other.

1 input1: "string value"
2 input2: 4
3 input3:
4 class: File
5 location: path://path/to/file.txt
6

7 s:description: "Workflow run without input feature

X to test effect on model performance."↩→

6.4 Proposed extension of CWL standards to
support richer annotations.

The previous section explained how the latest release of the CWL
standards can support metadata annotations. However, with the

Table 4: Schema.org terms to represent the history of data
inputs.

Schema.org Expected type Explanation

query Text Query used (only for
SearchAction)

object Thing Database or initial dataset
result Thing Resulting dataset
instrument Thing Tool used, e.g. for filtering
endTime DateTime, Time Time of action
agent Organization, Person Who performed the action
description Text Description of the action

presented annotation scheme, authors will find it difficult to explain
the history of processed input data in a structured format (IR3). In
addition, it is non-trivial to explain that a dataset (which can be a
collection of files) is the result of a database query (IR4).

In this section, we propose an extension to the CWL standards
which enables authors to annotate Arrays (IR2), and represent
queries and processing operations which lead to the dataset they
used as input for the workflow execution.

6.4.1 Format. We propose that authors represent the history of
their datasets as a sequence of actions in the input object document.
These actions are performed on an initial dataset and produce a
result. The result of an action can be the input of another.

To avoid obfuscating the input object document, the metadata
must be listed under a cwlprov:prov field, separate from the input
values (IP3). This is analogous to the overrides field in the current
CWL standards9.

6.4.2 Vocabulary. Weused Schema.org terms to express search and
processing actions. Table 4 lists the properties defined for s:Actions
and (more specific) s:SearchActions and explains how they can be
used in the annotation of CWL documents. In general, Actions
are performed on an object, producing a result. The action can be
initiated by an agent, using an instrument. SearchActions can be
based on a query. The moment the action was performed can be
represented via endTime.

6.4.3 Example annotation of a sequence of actions. In the following
example, a database search was performed (lines 2-8), followed by
a filtering operation (lines 10-15). The resulting dataset was used
as an input for the workflow (lines 17-19). Both actions are listed
under cwlprov:prov (line 1). The result of the search action (line 7 )
corresponds to the object of the filtering operation (line 12). In this
example, the query is provided in a human-readable format, but the
exact query which was issued (a JSON string) could also be used.

1 cwlprov:prov:
2 pdb_search:
3 s:additionalType: s:SearchAction
4 s:query: "All proteins with at least 2 chains

deposited between 2010 and 2022"↩→

5 s:object:

9https://github.com/common-workflow-language/cwltool/#overriding-workflow-
requirements-at-load-time
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6 s:identifier: https://bio.tools/pdb
7 s:result: pdb_search_result
8 s:endTime: 2022-08-01
9

10 filtering_action:
11 s:additionalType: s:Action
12 s:object: pdb_search_result
13 s:instrument:
14 s:identifier: https://bio.tools/pisces
15 s:result: filtered_pdb_dataset
16

17 filtered_pdb_dataset:
18 class: Directory
19 location: path://path/to/directory/

In Appendix B.2, we provide an example of an input dataset
which was merged from two initial datasets.

6.5 Analysis
6.5.1 Annotate input data for epitope prediction workflow. In Ap-
pendix B.3, we show how we would apply the annotation scheme
to the inputs of the epitope prediction workflow. Because of the
annotation scheme proposed in this section, D1 and D3 are now
represented in a structured format (R2), as well as SC3.

6.6 Discussion
In Section 6, we proposed an annotation scheme with which CWL
workflow authors can enrich the input data they use with structured
metadata expressing their origin. In addition, the model facilitates
annotations related to specific executions of the workflow with a
particular input configuration.

Firstly, it should be mentioned that the proposed annota-
tions are limited to inputs of the workflow. Data entities which
are intermediate or final outputs are not enriched with metadata
via annotations in the input object document. A strategy via which
this information could be supplied could involve adding similar
annotations toWorkflow and CommandLineTool output parameters.
Workflow systems could also support annotations of data after exe-
cution of the workflow, to facilitate representing interpretation of
the workflow results. In the case where a workflow is built incre-
mentally, these descriptions could convey themotivation behind the
addition of new workflow steps (e.g. examination of the results of
the first step could motivate the inclusion of an extra preprocessing
operation).

In addition, we did not consider the structured annota-
tion of CWL tool and workflow descriptions (which are soft-
ware entities). Future work should focus on how to apply the
Bioschemas ComputationalTool10 and ComputationalWorkflow11

profiles to CWLWorkflow and CommandLineTool descriptions in
order to improve the representation ofWF1.

The CommandLineTool documents could also be used to annotate
the underlying command-line program. This is especially important
when the tool runs a custom script which can not be represented
under SoftwareRequirements. We propose that these annotations

10https://bioschemas.org/profiles/ComputationalTool/1.0-RELEASE
11https://bioschemas.org/profiles/ComputationalWorkflow/1.0-RELEASE

are nested under the field s:mainEntity, to clearly separate them
from the annotations describing the CommandLineTool itself.

Finally, we limited our annotation scheme to Schema.org
vocabulary. Although other, domain-specific ontologies are sup-
ported, we considered specific guidelines for their application in
CWL out of scope for the CWL standards. With the proposed
Schema.org terms, authors can represent metadata which was part
of our provenance taxonomy (D1 and D3), and generalizable to
most workflows. If necessary, additional guidelines can be estab-
lished within the respective scientific communities for the use of
particular domain-specific ontologies in CWL.

7 DESIGN OF AN EXTENSION OF THE
CWLPROV PROVENANCE GRAPH

In Section 5, we analyzed CWLProv for the representation of the
provenance taxonomy we defined in Section 4. Based on this analy-
sis, we concluded that not all provenance components were suffi-
ciently represented in a structured format. Specifically, we found
that although certain metadata was part of primary-job.json and
packed.cwl, these annotations were not represented in RDF format.

In this section, we propose an extension of the design of the
CWLProv provenance graph described in Section 2.2, which can
at least represent the values for already supported metadata fields
and can also be extended later with other metadata. In this way, we
(partially) answer RQ3.

Here, we are only concerned with the representation of this in-
formation, if it exists. Mechanisms for the collection of the metadata
(whether it be manually or automated), are considered out of scope
for this thesis.

In Section 7.1, we first describe the requirements and principles
which we used in this design. Subsequently, in Section 7.2, we give
a high-level overview of the design. We then give recommenda-
tions for specific terms and vocabulary which can be used for the
metadata fields doc, label, intent, and format which are part of v1.2
of the CWL Standards (Section 7.3). We describe how we have
partially realized this design in cwltool (Section 7.4). Finally, we
perform a conceptual analysis in Section 7.5 and discuss the design
in Section 7.6.

Input annotation 5

Our analysis of CWLProv revealed incomplete RDF

description of the workflow execution. Here ,

we design a solution , compatible with the

annotation scheme for input data and existing

metadata fields in the CWL standards , and

considering the initial design of the

provenance graph.

7.1 Requirements and principles
For this design, we reuse principles IP1 and IP2. In addition, the
RDF extension should adhere to four requirements.

PR1 Represent the annotations that are supported in CWLwork-
flows according to the CWL standards v1.2, summarized in
Table 1.

18

https://bioschemas.org/profiles/ComputationalTool/1.0-RELEASE
https://bioschemas.org/profiles/ComputationalWorkflow/1.0-RELEASE


PR2 Represent the annotations for Files andDirectories proposed
in Section 6.3.

PR3 Represent the annotations for a collection of input values
proposed in Section 6.3.

PR4 Represent the annotations for Actions proposed in Sec-
tion 6.4.

7.2 High-level overview
In this section, we present a high-level overview of the extended
provenance graph and link it to the requirements defined in Sec-
tion 7.1.

7.2.1 Representation of CWL metadata fields. Figure 5 shows how
we extended the provenance graph to represent all current metadata
fields (PR1). In the new graph, every workflow component
in Table 1 is represented as a distinct entity, and interre-
lated with terms from the wfdesc ontology (IP1). We added
entities describing the CWL tools that are run by the steps (E5)
and linked them to their input (E4) and output parameters (E1)
via wfdesc:hasInput and wfdesc:hasOutput. We connected the steps
(G8) and tools via wfdesc:hasSubProcess. In addition, we linked
the step parameters (E6, E7) together via wfdesc:hasSource and
wfdesc:hasSink to express the data flow between the steps.

In CWLProv 0.6.0, the execution of nested workflows is described
in separate RDF documents. Following the same strategy, we
recommend to only represent top-level parameters of nested
workflows in the primary provenance graph. More detailed
annotations can be represented in the separate RDF documents
which describe the nested workflows.

7.2.2 Representation of input data annotations. This structure de-
picted in Figure 5 also supports representation of the input data
annotations described in Section 6.3 (PR2), by transferring them to
the data entities they describe (G5).

7.2.3 Representation of configuration settings annotations. Anno-
tations describing a collection of parameters (PR3) are specific
to the workflow execution. Therefore, we recommend that these
annotations are transferred to the entity in the provenance graph
describing the workflow execution (G2).

7.2.4 Representation of input data history. In the annotation scheme
described in Section 6.4, the history of (processed) input data is
expressed through Actions. Figure 6 presents their representation
in RDF (PR4). Actions (A2) are performed on objects, which are
data entities not aggregated in the CWLProv RO (A1). Actions can
have additional properties such as Tools (A3) or other annotations
as summarized in Table 4. They are connected to input data entities
(G5) via s:result.

7.3 Details of the design
Here, we move from the structure of the provenance graph to the
annotations that now can be attached to the newly added entities
and with which terms they should be represented.

First, we describe which terms to use for the CWL-specific meta-
data fields doc, label, format, and intent.

Although we could use the exact terms with cwlprov prefix, we
aim for interoperability with other provenance representations,

such as the RO-Crate specification. Therefore, we reuse Schema.org
terms, and because this is in agreement with our annotation scheme:

• doc: http://schema.org/description
• label: http://schema.org/name
• format: http://schema.org/encodingFormat
• intent: http://schema.org/featureList

In addition, we recommend that custom annotations at-
tached to workflow components and input objects are trans-
ferred as they are.We make an exception for s:additionalType, for
which the value can be added to the types of the entity it describes,
instead of being literally transferred as s:additionalType.

When entities are describedwith nested annotations (e.g. s:citation),
we recommend to make this a separate entity in the graph instead
of a nested annotation, in compliance with the PROV data model
(IP1).

7.4 Partial realization in cwltool
Because of time constraints, we could only partially realize the
provenance graph extension in cwltool. At the time of writing,
annotations directly associated with inputs of type File and Direc-
tory, as exemplified in Section 6.3.3, are propagated to the RDF
provenance record. However, annotations of the collection of input
parameter values (Section 6.3.5) or annotations under cwlprov:prov
(Section 6.4), are currently not represented in RDF.

7.5 Conceptual analysis of the design extension
To test the extended design, we analyzed the RDF provenance graph
which would have been associated with the epitope prediction
workflow we used as an example in this thesis. The elements of
the design which were not yet realized in cwltool, we emulated via
manual annotations of the document.

7.5.1 SPARQL queries. Here, we present two example SPARQL
queries we issued on the emulated extended provenance graph.
The first (Q1) extracts the DOIs of all publications which were the
citations of the used inputs.

The second (Q2) lists the formats for every file for which this is
specified.

Q1

PREFIX s: <http :// schema.org/>

SELECT ?doi

WHERE {

?cit s:identifier ?doi .

?name s:citation ?cit .

}
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Figure 5: The RDF provenance graph depicted in Figure 3, now extended with CommandLineTools and parameter entities. Red
stars mark nodes which are part of the design extension. Parameters are linked to theirWorkflow, CommandLineTool or step via
wfdesc:hasInput and wfdesc:hasOutput. Node G5 represents both input and output data entities. The data flow between steps is
represented via wfdesc:hasSink and wfdesc:hasSource. Steps are linked to their underlying tools via wfdesc:hasSubProcess.

Q2

PREFIX s: <http :// schema.org/>

PREFIX cwlprov: <https :// w3id.org/cwl/prov#>

PREFIX prov: <http ://www.w3.org/ns/prov#>

SELECT DISTINCT ?data_entity ?basename ?format

WHERE {

?data_entity s:encodingFormat ?format .

?id prov:specializationOf ?data_entity .

?id cwlprov:basename ?basename .

}

7.5.2 Which provenance types have improved: As a result of the
design presented in this section, we find that the representation
ofWF1 andWF2 has improved, since these provenance elements
are now described in RDF with their associated metadata. In addi-
tion, the provenance subtypes represented in the input annotation
scheme described in Section 6 (D1, D3, and SC3) are now included
in RDF as well.

7.6 Discussion
In Section 7, we outlined an extension of the provenance graph
such that it includes more of the provenance subtypes defined in

Section 4. Here, we discuss the implications and future directions
of this work.

Firstly, although the provenance graph included the (con-
tainer) environment as a separate entity, our design did not
specify how the properties of this environment should be
expressed. As far as we are aware, Schema.org currently does not
include a formalized profile for Computational Environment. Until
such a specification exists, CWLProv could represent the environ-
ment with a custom vocabulary using the cwlprov namespace as a
temporary solution.

Secondly, we were only concerned with provenance repre-
sentation, not with its acquisition. The collection of the meta-
data may be different for each workflow system, which is why we
considered it out of scope for our thesis.

Our analysis revealed that much of the required metadata needs
to be added manually, and in Section 5.4 we stated that this can
lead to incomplete provenance. Although manual annotations are
difficult to replace in some cases (such as scientific context, T1),
part of metadata collection can be automated to lift the burden on
workflow authors.

For example, workflow systems could extract all relevant meta-
data associated with a given entity from a data or software registry,
if the workflow author supplied the identifier (or if the workflow
system itself has stored its available tools with structured anno-
tations). Workflow systems could support widely used registries
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Figure 6: Actions represented in RDF provenance graph.
Workflow input datasets (G5) are connected to the Actions
(A2) which produced them via s:result. In addition, Actions
can have properties such as object (A1) and instrument (A3).

like Zenodo12 [14], BioTools [23], and WorkflowHub13, as well as
standards like FAIRsharing.org.

In addition, file characteristics like last modification date and size
(D2) can be retrieved from the filesystem onwhich the data is stored.
In cwltool, we realized preservation of the last modification date of
a remote file14. A next step could be to propagate this information
to manifest.json.

Other information can be automatically extracted following a
similar strategy, if a database returns metadata with the data during
a download. An example of this is UniProt [44], which includes the
database version and download date in the HTTP headers of the
response15. Wide adoption of this strategy would require a common
format in which databases supply their metadata.

Lastly, metadata can be extracted from container image labels,
for which a standard format is specified by the Open Containers
Initiative16. Application of this format to represent the metadata
specified inENV3 is within the scope of the BioContainers initiative
[11]17.

Finally, before concluding this section, we discuss four
methods via which the information contained in CWLProv

12https://zenodo.org/
13https://workflowhub.eu
14https://github.com/common-workflow-language/cwltool/pull/1676
15https://www.uniprot.org/help/api_downloading
16https://github.com/opencontainers/image-spec/blob/
6ad7100eb087e43398e9ea8fe44fffc1501b8984/annotations.md
17See the issue we opened about this topic here: https://github.com/BioContainers/
specs/issues/105

ROs can be applied for better transparency and reproducibil-
ity of workflow executions.

First of all, the extended provenance graph can be queried with
SPARQL queries. The functionality of cwlprov-py could be extended
with a set of SPARQL queries which are relevant tomanyworkflows,
and also allow users to issue their own SPARQL queries.

Secondly, workflow systems and repositories can use the struc-
tured information stored in the RO to make visualizations of the
workflow and its execution. The command and parameter settings
used in each step of the workflow could be represented in a table.
These visualizations and data summaries can be used by workflow
authors to make their analyses easier to understand in a scientific
article (U2).

The provenance graph could also be exploited for automated
generation of textual descriptions of the workflow execution, based
on previous work on data narratives [16].

Future work should also focus on devising strategies for the an-
notation of data which is extracted from another RO.U5 exemplifies
how workflow outputs (a trained model) can be reused as the input
of another workflow (the trained model as a web service). FRESH
[15] is a model for representation of the provenance of entities
which are (intermediate) data products of a workflow run.

8 CONCLUSION
In a workflow-centric ecosystem of computational resources, ROs
have been proposed as a means to represent the results of computa-
tional analyses in a structured format. In this section, we summarize
how our work has answered the research questions defined in the
Introduction.

For this work, we integrated methods from both Bioinformatics
and Computer Science to arrive at a standard for metadata in ROs.

Firstly, we answered RQ1 by defining 5 use cases of ROs associ-
ated with an example Bioinformatics workflow and establishing a
provenance taxonomy based on questions associated with each use
case.

Subsequently, to answer RQ2, we assessed the representation of
each of the components of the provenance taxonomy in CWLProv
0.6.0, discriminating between RDF, structured but CWL-specific,
and unstructured representation. We observed that computational
environment was largely absent from the provenance record, that
much of the required metadata was dependent on manual annota-
tions, and that the RDF description of the workflow execution was
incomplete.

In order to improve the provenance contained in CWLProv ROs
(RQ3), we designed an annotation scheme with which workflow
authors can add structured annotations to their input data. This
scheme uses Schema.org vocabulary to express required metadata
according to our provenance taxonomy, and can be extended with
domain-specific ontologies. We demonstrated the application of
our annotation scheme to the input document of our example Bioin-
formatics workflow.

Finally, we designed an extension to the RDF graph in order to
support RDF representation of CWL-specific metadata fields and
the structured annotations defined in our annotation scheme. We
partially realized propagation of these annotations to RDF in the
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CWL reference engine cwltool and demonstrated exploitation of
the added metadata with SPARQL queries.

Summarizing, we established a model for provenance which will
not only inform future releases of CWLProv, but also related stan-
dards like the RO-Crate Workflow Run profile. It also demonstrates
that even considering only one example workflow can produce
many new insights into the improvement of workflow reproducibil-
ity. Future directions of this work include its full realization in
cwltool, an extension of the functionality of cwlprov-py to support
structured provenance queries, and the specification of a model for
the representation of metadata for RO output data entities which
are used as input for another workflow. We are confident that the
work presented in this thesis can serve as the basis for new, auto-
mated approaches to improve the transparency of computational
analyses. Ultimately, this brings many scientific domains one step
closer to a future in which computational reproducibility is not an
exception, but the norm.

9 ACKNOWLEDGEMENTS
Alexandru Iosup supervised the project. Michael R. Crusoe was
daily supervisor. The use cases arose from discussions with Katha-
rina Waury and other members from VU Bioinformatics Group,
who conceptualized the epitope prediction workflow. Simone Leo
, Stian Soiland-Reyes and the rest of the RO-Crate Workflow

Run Profile Working Group provided helpful feedback on the input
data annotation scheme and extension of the provenance graph.

10 DATA AND CODE AVAILABILITY
The CWL implementation of the epitope prediction workflow can
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A PROVENANCE QUESTIONS
This section presents representative questions associated to each
of the use cases defined in Section 4.1. Here, we relate them to the
components of the provenance taxonomy defined in Section 4.

U1: Workflow development
(1) What is the influence of a different model architecture on

performance? SW1, SW2,WF1,WF2
(2) What is the influence of removing input feature X on per-

formance?WF1, SC2
(3) What is the influence of including filtering step X on per-

formance?WF1, SC2
(4) What is the influence of ... on training time? EX1
(5) What is the influence of a different training set on perfor-

mance? D1

A.1 U2: Publishing the workflow
(1) What are all the resources which contributed to this re-

search (and should be cited)? D1, SW1,WF1, ENV3
(2) What are all the input data I used? D4
(3) Which software was used in this workflow? SW1
(4) I reused an existing CWL CommandLineTool description.

How do I give credit to the original authors?WF1
(5) I wrote a CWL CommandLineTool description for existing

software. How do I cite it? SW1
(6) I reused a custom, unpublished script made by one of my

collaborators. How do I give credit to the original authors?
SW1

(7) I wrote a custom script based on existing code. How do I
give credit to the original authors? SW1

(8) I reused aDockerfile or Docker containerwhichwaswritten
or built by someone else. How do I give credit to the original
authors? ENV3

(9) Which of my colleagues contributed to this workflow to
whom I should give credit and/or propose as co-authors?
What were their contributions?WF1, EX4

(10) From which workflow(s) was this workflow derived? WF1

A.2 U3: Understanding the workflow
(1) What is the goal of this analysis? What was the hypothesis

of this experiment? SC3
(2) Why was this step included? SC1
(3) Why was this combination of steps chosen? SC1
(4) Why was this set of values chosen as inputs for this work-

flow execution? SC3
(5) How was this figure from the paper generated? D4
(6) Why were these input settings chosen? SC3
(7) What is the interpretation of this (intermediate) output?

SC2
(8) Which input features were used for the model?WF1
(9) Which related tasks were predicted by the model?WF1
(10) What are the values of PSP19 for each amino acid type?

SC2
(11) What was the performance of the model? SC2
(12) What was model architecture? SW1, SW2

(13) Where can I find more information about BioDL dataset?
D1

(14) How were UniProt IDs mapped to PDB IDs?WF1
(15) Which SAbDab query was used to generate the summary

file? SC2, D1
(16) Which query was issued to PDB? SC2, D1
(17) Which UniProt IDs are part of BioDL? D1

A.3 U4: Reproducing the workflow
(1) Which HHBlits reference database was used? Which ver-

sion? D1
(2) Where can I download HHBlits reference database? (It was

not stored in the RO because of its large size.) D3
(3) Which version of HHBlits was used? SW1, ENV1
(4) Which software (and their versions) was installed on the

system? ENV1
(5) I pulled a Docker image. Is this the same as which was used

in the original analysis? ENV3
(6) Original author used Dockerfile. Is the image I built on a

rerun the same as the one in the original analysis? ENV3
(7) What are resource requirements as specified in the work-

flow description?WF3
(8) How many CPUs are required for this step?WF3, EX2
(9) How much memory is necessary for this step?WF3, EX2
(10) How much memory was used in the original run? EX2
(11) Does this step need network access?WF3, EX2
(12) Which CPU/GPU was installed? ENV2
(13) How long does this step take?WF3, EX1
(14) What was the last modification date of this input file? D2
(15) Which Python version was used in this step? SW1, ENV1
(16) When was PDB queried? EX1
(17) When was SAbDab queried? EX1
(18) Which format does the PDB batch download script need?

WF2
(19) The CWL CommandLineTool description did not describe all

parameters of this command-line program. Which values
were used for the other parameters?WF2

A.4 U5: Model as a web service
(1) Which protein sequences were in the training set? D1
(2) Which proteins had epitope annotations? D1
(3) For which proteins did I make epitope predictions? D1
(4) How should I cite this tool?WF1
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B INPUT ANNOTATION EXAMPLES
B.1 Annotations supported by CWL Standards v1.2
B.1.1 Annotations for a non-FAIR file. When the dataset is not FAIR, the download or modification date (line 7 ) can serve as an alternative
for version. The URL of the remote file is used as an alternative to a persistent identifier (line 3).

1 unFAIR_file:
2 class: File
3 location: https://www.ibi.vu.nl/downloads/PIPENN/PIPENN/BioDL-Datasets/prepared_biolip_win_p_testing.csv
4 format: http://edamontology.org/format_3752 # csv
5 s:additionalType: s:Dataset
6 s:name: "BioDL test set"
7 s:dateModified: "2021-08-02" # an alternative to version
8 s:citation:
9 s:identifier: https://doi.org/10.1093/bioinformatics/btac071
10 s:license: https://spdx.org/licenses/GPL-3.0-or-later.html
11 s:description: "BioDL test set containing only protein-protein interactions."

B.2 Annotations requiring extension of CWL Standards
B.2.1 Annotation of a dataset merged from two other datasets. In this example, a dataset is constructed from two other datasets (lines 4-6).
Here, the instrument is not a tool but a function (line 7 ).

1 cwlprov:prov:
2 merge_action:
3 s:additionalType: s:Action
4 s:object:
5 - dataset1
6 - dataset2
7 s:instrument: pd.merge(dataset1, dataset2, on = "ID", how = "inner")
8 s:result: merged_dataset
9 s:description: "Imported both datasets as pandas dataframes, performed inner merge and saved as csv."
10

11 merged_dataset:
12 class: File
13 location: path://path/to/file.csv

B.3 Annotations for epitope prediction workflow
Below, we show how we applied our annotation scheme to the input file for our example workflow. We represented the download action
which produced the sabdab_summary_file (lines 3-16). If files were not downloaded during workflow execution, we supplied the URL to the
dataset using s:distribution (line 69). Every file has a citation (s:citation), consisting of the DOI of the primary publication. Finally, we supplied
EDAM annotations to each File and Directory input (lines 29, 44, 58, 72) and annotated the workflow run (line 78).

1 cwlprov:prov:
2 sabdab_search:
3 s:additionalType: s:SearchAction
4 s:query: "All structures"
5 s:endTime: 2022-05-27
6 s:object:
7 s:additionalType: s:DataCatalog
8 s:name: "Structural Antibody Database"
9 s:citation:
10 s:identifier: https://doi.org/10.1093/nar/gkab1050
11 s:result: sabdab_summary_file
12 s:description: "Search Action for metadata on antibody-antigen complexes in SAbDab"
13 s:additionalType: edam:operation_0339 # structure database search
14

15 pdb_search_api_query:
16 class: File
17 location: path://path/to/pdb_query.json
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18 format: iana:application/json
19 s:description: "Input query for PDB search API."
20 s:additionalType:
21 - edam:data_3786 # Query script
22

23 sabdab_summary_file:
24 class: File
25 path: path://path/to/sabdab_summary_all_20220527.tsv
26 format: iana:text/tab-separated-values
27 s:description: "Summary file downloaded from SAbDAb database, containing metadata for all structures."
28 s:additionalType:
29 - edam:data_2080 # database search results
30 - s:Dataset
31

32 biodl_train_dataset:
33 class: File
34 location: https://www.ibi.vu.nl/downloads/PIPENN/PIPENN/BioDL-Datasets/prepared_biolip_win_p_training.csv
35 format: http://edamontology.org/format_3752 # csv
36 s:description: "BioDL training set containing PPI annotations for protein sequences (UniProt IDs)"
37 s:name: "BioDL training dataset"
38 s:dateModified: 2021-08-04
39 s:citation:
40 s:identifier: https://doi.org/10.1093/bioinformatics/btac071
41 s:license: https://spdx.org/licenses/GPL-3.0-or-later.html
42 s:additionalType:
43 - s:Dataset
44 - edam:data_1277 # protein features
45

46 biodl_test_dataset:
47 class: File
48 location: https://www.ibi.vu.nl/downloads/PIPENN/PIPENN/BioDL-Datasets/prepared_biolip_win_p_testing.csv
49 format: http://edamontology.org/format_3752 # csv
50 s:description: "BioDL test set containing PPI annotations for protein sequences (UniProt IDs)."
51 s:name: "BioDL test dataset"
52 s:dateModified: 2021-08-04
53 s:citation:
54 s:identifier: https://doi.org/10.1093/bioinformatics/btac071
55 s:license: https://spdx.org/licenses/GPL-3.0-or-later.html
56 s:additionalType:
57 - s:Dataset
58 - edam:data_1277 # protein features
59

60 hhblits_db_dir:
61 class: Directory
62 location: path://path/to/uniclust30_2018_08/
63 s:citation:
64 s:identifier: https://doi.org/10.1038/nmeth.1818
65 s:name: "uniclust30_2018_08_hhsuite"
66 s:version: "2018_08"
67 s:description: "Directory containing HHBlits reference database."
68 s:license: https://spdx.org/licenses/CC-BY-SA-4.0
69 s:distribution: https://wwwuser.gwdg.de/~compbiol/uniclust/2018_08/uniclust30_2018_08_hhsuite.tar.gz
70 s:additionalType:
71 - s:Dataset
72 - edam:data_0955 # data index
73

74 hhblits_db_name: "uniclust30_2018"
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75

76 hhblits_n_iterations: 1
77

78 s:description: "Demonstration run of epitope prediction workflow. Some steps are emulated, so the results of

the workflow are not yet biologically meaningful."↩→

79

80 $namespaces:
81 iana: "https://www.iana.org/assignments/media-types/"
82 s: "https://schema.org/"
83 edam: "http://edamontology.org/"
84

85 $schemas:
86 - https://schema.org/version/latest/schemaorg-current-https.rdf
87 - https://edamontology.org/EDAM_1.25.owl
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