Whois? Deep Author Name Disambiguation using Bibliographic Data

Zeyd Boukhers^{1,2} Nagaraj Bahubali Asundi¹ ♥@ZBoukhers

 ¹Institute for Web Science and Technologies (WeST) University of Koblenz-Landau, Germany
 ² Fraunhofer Institute for Applied Information Technology (FIT) Sankt Augustin, Germany

Padua, 21 September 2022

Outline

1 Introduction

2 Motivation

Table of Contents

1 Introduction

2 Motivation

5 Experiments

• There are millions of authors¹ sharing a relatively finite set of names.

Why is it a problem?

- It does not allow an accurate calculation of author-level metrics,
- It prevents the continued integrity of bibliographic data in DLs,
- and many more.

¹As of January 2019, DBLP indexes over 4.4 million publications, published by more than 2.2 million authors.

- Input: a collection of publications.
- **Goal:** map every author name in each publication to its respective real-world author (using ORCID for example).

Clustering

• The set of publications authored by the same name is clustered w.r.t real-world authors (the most common approach)

Graph-based

• Also unsupervised but based on the relationships between classes such as co-authorship (a trending approach)

Supervised

• Learn from the existing collection(s) to disambiguate the authors names in streaming records.

1 Introduction

2 Motivation

5 Experiments

- Both authors and publishers are getting keener and keener to identify themselves/authors in their publications (using ORCID for example, but
- In CITE, we found that the sources of around 60% of the extracted references are missing.
- The author names of the cited publications (i.e. reference section) are still ambiguous.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web. pp. 1067–1077 (2015)

- Homonymy: authors sharing the same names
 - ▶ Hao Chen, Associate Professor from California
 - ▶ Hao Chen, Associate Professor from Memphis
- Names substituted by their initials to save space
 Hao Chen as H. Chen
- Erroneous names due to wrong manual editing
 - Hao Chen as Hoa Chen

Table of Contents

Introduction

2 Motivation

5 Experiments

Formulation

- Given \mathcal{D} , a collection of N evidence-based bibliographic records, each of which consists of *title*, *source*, $\omega \times (real-world author and the respective$ *author name*).
- Let Δ be a set of M unique author names shared by A, a set of L unique authors, where L >> M
- Whois's Goal: given a new record d* ∉ D, link each author name
 ∈ Δ that occurs in d* to one of the appropriate L authors using title*, source*, ω*×(real-world author and the respective author name).

Note

- Each author name might refer to one or more authors in ${\cal A}$
- Each real-world author might be referred to by one or two author names in Δ
 - e.g., Rachid Deriche as Rachid Deriche and R. Deriche

Table of Contents

Introduction

2 Motivation

Experiments

For each author name $\delta_i^* \in \omega^*$:

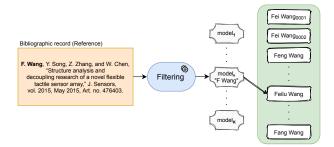
- Find the number of real-world authors in A that might correspond to δ_i^{*2}:
 - ▶ = 0 $\Rightarrow \delta_i^*$ refers to a new author $\notin A$. There is no ambiguity.
 - = 1 ⇒ δ^{*}_i refers to only one author ∈ A. There is no ambiguity.
 It can happen that the author ∉ A. Whois does not handle.
 - > 1 ⇒ δ^{*}_i refers to more than one author. Whois comes into play.
 It can happen that the author ∉ A. Whois does not handle.

13/30

²Blocking

- e.g. Albert Einstein → A. Einstein
- Solution 2 Let $\overline{\delta_i^*}$ corresponds to $\overline{\delta_k}$ which denotes the *kth* atomic name variate among *K* possible name variates ∈ A
- Pick model $\theta_k \in \Theta = \{\theta'_k\}_{k'=1}^K$ to distinguish between all authors \mathcal{A}_k who share the same name variate $\overline{\delta_k}$

Figure: An illustration for the task of linking a name mentioned in the reference string with the corresponding DBLP author entity



Characteristics

- Author names are specific sequences of characters
- They do not hold any specific semantic nature
- So, encode *author names* based on the order and distribution of characters

Char2Vec

- Uses a fixed list of characters for word vectorization
- Captures the non vocabulary words and places words with similar spelling closer in the vector space
- Hence, useful when the text consists of abbreviations, typos, etc.

Characteristics

- Title is a meaningful sentence that embeds the specific topic
- Source (e.g. journal names and book titles) can provide a hint about the area of research
- So, capture the context of the sequences of words forming the title and source

BERT

• Provides semantic-based embedding of words

17/30

Input

•
$$x_1 = char2vec(\delta_u^{*first-name}) \bigoplus \frac{1}{2} \left(char2vec(\delta_p^*) + char2vec(\delta_j^*) \right)$$

 $\bullet~{\rm char2vec}(w) \rightarrow$ vector of length 200, generated using Char2Vec~[1]

•
$$x_2 = \frac{1}{2} (bert(t^*) + bert(s^*))$$

 $\bullet \ \mathrm{bert}(w) \rightarrow vector \ of \ length \ 786, \ generated \ using \ \mathsf{BERT} \ [2]$

Output

• Softmax classifier representing each author class

18/30

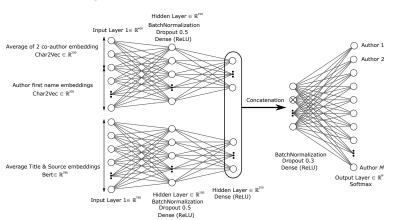


Figure: The architecture of Whols model

For each of the K ANVs $\overline{\delta_k}$

- Given $\mathcal{D}_k \subset \mathcal{D} \to$ records authored by authors having the ANV $\overline{\delta_k}$
- Generate U_k training samples $\langle \delta_{u_k}, \delta_{u_k,p}, \delta_{u_k,j}, t_{u_{k\mu}}, s_{u_k} \rangle_{u_k=1}^{U_k}$ where $\delta_{u_k,j} \rightarrow$ random co-author name of d_{u_k} or same author name as $\delta_{u_k,p}$
- Convert the sample into $\langle \overline{\delta_{u_k}}, \overline{\delta_{u_k,p}}, \overline{\delta_{u_k,j}}, t_{u_k}, s_{u_k} \rangle$
- So, each bibliographic record is fed into the model P(ω, 2) times.
 ω : the number of co-authors ∈ d.
- θ_k is trained on U_k

20/30

• Let
$$d^* = \{t^*, s^*, \langle \delta^*_u
angle_{u=1}^{\omega^*}\}$$
 be new record

- Generate Y samples $(S_{y=1}^{Y})$ with all pairs of co-author names $\langle \delta_{\text{target}}^*, \delta_p^*, \delta_j^*, t^*, s^* \rangle_{p=1,j=1}^{\omega^*, \omega^*}$ where $Y = P(\omega^*, 2)$
- Feed all samples to the corresponding model θ_μ
 a_{target} = argmax_{1···L_μ} (θ_μ(S₁) + θ_μ(S₂) + ··· + θ_μ(S_Y))

21/30

Table of Contents

Introduction

2 Motivation

DBLP³

- 4.4M records as of July 2020
- Theses and Books are authored by a single author and do not contain a source name \rightarrow Excluded.
- So, only publications of Journals and Proceedings are collected
- Statistical details of the used dataset
 - ▶ # of records 5.258.623
 - ▶ # of unique authors 2.665.634
 - ▶ # of unique author names 2.613.577
 - # of unique atomic name variates 1.555.517

³https://dblp.uni-trier.de/xml/

Results

Table: Comparison between *WhoIs* and other baseline methods on CiteSeerX dataset in terms of Macro F1 score as reported in [3]. **ANV** denotes that only atomic name variates were used for all target authors and all their co-authors.

	Macro ALL/ANV	Micro ALL/ANV
WhoIs	0.713 / 0.702	0.873 / 0.861
NDAG [3] (Unsup.)	0.367	N/A
GF [4] (Unsup.)	0.439	N/A
DeepWalk [5] (Unsup.)	0.118	N/A
LINE [6] (Unsup.)	0.193	N/A
Node2Vec [7] (Unsup.)	0.058	N/A
PTE [8] (Semi-Sup.)	0.199	N/A
GL4 [9] (Sup.)	0.385	N/A
Rand [3] (Unsup.)	0.069	N/A
AuthorList [3] (Unsup.)	0.325	N/A
AuthorList-NNMF [3] (Unsup.)	0.355	N/A

Table of Contents

Introduction

2 Motivation

5 Experiments

Conclusion

- Leveraging co-authorship and domain of expertise using DNN is beneficial for AND task.
- Do we really need to tackle AND as a clustering task while we have -relatively- free ambiguity corpora/indices?

Future Work

- We are introducing *Ambiguity Risk Score* by leveraging the author ethnicity.
- We are capturing the research evolution of the author over time.
- We are using a completely probabilistic approach (Metropolis-Hasting) to disambiguate author names embedded in a Graph.

Thank you!

Questions?

References I

- [1] K. Cao and M. Rei, "A joint model for word embedding and word morphology," *arXiv preprint arXiv:1606.02601*, 2016.
- [2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "Bert: Pre-training of deep bidirectional transformers for language understanding," arXiv preprint arXiv:1810.04805, 2018.
- [3] B. Zhang and M. Al Hasan, "Name disambiguation in anonymized graphs using network embedding," in *Proceedings of the 2017 ACM* on Conference on Information and Knowledge Management, 2017, pp. 1239–1248.
- [4] D. Kuang, C. Ding, and H. Park, "Symmetric nonnegative matrix factorization for graph clustering," in *Proceedings of the 2012 SIAM international conference on data mining*, SIAM, 2012, pp. 106–117.

References II

- [5] B. Perozzi, R. Al-Rfou, and S. Skiena, "Deepwalk: Online learning of social representations," in *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*, 2014, pp. 701–710.
- [6] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, "Line: Large-scale information network embedding," in *Proceedings of the* 24th international conference on world wide web, 2015, pp. 1067–1077.
- [7] A. Grover and J. Leskovec, "Node2vec: Scalable feature learning for networks," in *Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining*, 2016, pp. 855–864.

References III

- [8] J. Tang, M. Qu, and Q. Mei, "Pte: Predictive text embedding through large-scale heterogeneous text networks," in *Proceedings of the 21th* ACM SIGKDD international conference on knowledge discovery and data mining, 2015, pp. 1165–1174.
- [9] L. Hermansson, T. Kerola, F. Johansson, V. Jethava, and D. Dubhashi, "Entity disambiguation in anonymized graphs using graph kernels," in *Proceedings of the 22nd ACM international conference on Information & Knowledge Management*, 2013, pp. 1037–1046.