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Author Name Ambiguity Problem

There are millions of authors1 sharing a relatively finite set of names.

Why is it a problem?
It does not allow an accurate calculation of author-level metrics,
It prevents the continued integrity of bibliographic data in DLs,
and many more.

1As of January 2019, DBLP indexes over 4.4 million publications, published by more
than 2.2 million authors.
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Author Name Disambiguation

Input: a collection of publications.
Goal: map every author name in each publication to its respective
real-world author (using ORCID for example).

Daniel Micciancio, Hao Chen, Statistical Zero-Knowledge Proofs with Efficient Provers, CRYPTO 2003: 282-298
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Author Name Disambiguation

Clustering
The set of publications authored by the same name is clustered w.r.t
real-world authors (the most common approach)

Graph-based
Also unsupervised but based on the relationships between classes such
as co-authorship (a trending approach)

Supervised
Learn from the existing collection(s) to disambiguate the authors
names in streaming records.
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Motivation

Both authors and publishers are getting keener and keener to identify
themselves/authors in their publications (using ORCID for example,
but
In , we found that the sources of around 60% of the extracted
references are missing.
The author names of the cited publications (i.e. reference section) are
still ambiguous.
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Challenges

Homonymy: authors sharing the same names
▶ Hao Chen, Associate Professor from California
▶ Hao Chen, Associate Professor from Memphis

Names substituted by their initials to save space
▶ Hao Chen as H. Chen

Erroneous names due to wrong manual editing
▶ Hao Chen as Hoa Chen
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Formulation

Given D, a collection of N evidence-based bibliographic records, each
of which consists of title , source, ω×(real-world author and the
respective author name).

Let ∆ be a set of M unique author names shared by A, a set of L
unique authors, where L >> M

Whois’s Goal: given a new record d∗ /∈ D, link each author name
∈ ∆ that occurs in d∗ to one of the appropriate L authors using title∗,
source∗, ω∗×(real-world author and the respective author name).

Note
Each author name might refer to one or more authors in A
Each real-world author might be referred to by one or two author
names in ∆
e.g., Rachid Deriche as Rachid Deriche and R. Deriche
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Whois 1/3

For each author name δ∗i ∈ ω∗:
1 Find the number of real-world authors in A that might correspond to

δ∗i
2:

▶ = 0 ⇒ δ∗i refers to a new author /∈ A. There is no ambiguity.

▶ = 1 ⇒ δ∗i refers to only one author ∈ A. There is no ambiguity.
It can happen that the author /∈ A. Whois does not handle.

▶ > 1 ⇒ δ∗i refers to more than one author. Whois comes into play.
It can happen that the author /∈ A. Whois does not handle.

2Blocking
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Whois 2/3

2 Extract the atomic name variate (ANV) δ∗i from the author name δ∗i
e.g. Albert Einstein → A. Einstein

3 Let δ∗i corresponds to δk which denotes the kth atomic name variate
among K possible name variates ∈ A

4 Pick model θk ∈ Θ = {θ′k}Kk ′=1 to distinguish between all authors Ak

who share the same name variate δk
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Whois 3/3

Figure: An illustration for the task of linking a name mentioned in the reference
string with the corresponding DBLP author entity

Filtering

F. Wang, Y. Song, Z. Zhang, and W. Chen,
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Author Name Representation

Characteristics
Author names are specific sequences of characters
They do not hold any specific semantic nature
So, encode author names based on the order and distribution of
characters

Char2Vec
Uses a fixed list of characters for word vectorization
Captures the non - vocabulary words and places words with similar
spelling closer in the vector space
Hence, useful when the text consists of abbreviations, typos, etc.
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Source and Title Representation

Characteristics
Title is a meaningful sentence that embeds the specific topic
Source (e.g. journal names and book titles) can provide a hint about
the area of research
So, capture the context of the sequences of words forming the title
and source

BERT
Provides semantic-based embedding of words
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Architecture 1/2

Input

x1 = char2vec(δ∗first-name
u )

⊕ 1
2

(
char2vec(δ∗p) + char2vec(δ∗j )

)
char2vec(w) → vector of length 200, generated using Char2Vec [1]

x2 = 1
2 (bert(t∗) + bert(s∗))

bert(w) → vector of length 786, generated using BERT [2]

Output
Softmax classifier representing each author class
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Architecture 2/2

Figure: The architecture of WhoIs model
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Model Training

For each of the K ANVs δk

Given Dk ⊂ D → records authored by authors having the ANV δk

Generate Uk training samples ⟨δuk , δuk ,p, δuk ,j , tukµ , suk ⟩
Uk
uk=1

where δuk ,j → random co-author name of duk or same author name as
δuk ,p

Convert the sample into ⟨δuk , δuk ,p, δuk ,j , tuk , suk ⟩

So, each bibliographic record is fed into the model P(ω, 2) times.
ω : the number of co-authors ∈ d .

θk is trained on Uk

Z Boukhers and N Asundi Whois TPDL 2022 20 / 30



Prediction

Let d∗ = {t∗, s∗, ⟨δ∗u⟩ω
∗

u=1} be new record

Generate Y samples (SY
y=1) with all pairs of co-author names

⟨δ∗target, δ
∗
p, δ

∗
j , t

∗, s∗⟩ω
∗,ω∗

p=1,j=1 where Y = P(ω∗, 2)

Feed all samples to the corresponding model θµ

atarget = argmax
1···Lµ

(θµ(S1) + θµ(S2) + · · ·+ θµ(SY ))

Z Boukhers and N Asundi Whois TPDL 2022 21 / 30



Table of Contents

1 Introduction

2 Motivation

3 Formulation

4 Approach

5 Experiments

6 Conclusion

Z Boukhers and N Asundi Whois TPDL 2022 22 / 30



Dataset

DBLP3

4.4M records as of July 2020

Theses and Books are authored by a single author and do not contain
a source name → Excluded.

So, only publications of Journals and Proceedings are collected

Statistical details of the used dataset
▶ # of records – 5.258.623
▶ # of unique authors – 2.665.634
▶ # of unique author names – 2.613.577
▶ # of unique atomic name variates – 1.555.517

3https://dblp.uni-trier.de/xml/
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Results

Table: Comparison between WhoIs and other baseline methods on CiteSeerX
dataset in terms of Macro F1 score as reported in [3]. ANV denotes that only
atomic name variates were used for all target authors and all their co-authors.

Macro ALL/ANV Micro ALL/ANV
WhoIs 0.713 / 0.702 0.873 / 0.861

NDAG [3] (Unsup.) 0.367 N/A
GF [4] (Unsup.) 0.439 N/A

DeepWalk [5] (Unsup.) 0.118 N/A
LINE [6] (Unsup.) 0.193 N/A

Node2Vec [7] (Unsup.) 0.058 N/A
PTE [8] (Semi-Sup.) 0.199 N/A

GL4 [9] (Sup.) 0.385 N/A
Rand [3] (Unsup.) 0.069 N/A

AuthorList [3] (Unsup.) 0.325 N/A
AuthorList-NNMF [3] (Unsup.) 0.355 N/A
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Conclusion & Future Work

Conclusion
Leveraging co-authorship and domain of expertise using DNN is
beneficial for AND task.
Do we really need to tackle AND as a clustering task while we have
-relatively- free ambiguity corpora/indices?

Future Work
We are introducing Ambiguity Risk Score by leveraging the author
ethnicity.
We are capturing the research evolution of the author over time.
We are using a completely probabilistic approach (Metropolis-Hasting)
to disambiguate author names embedded in a Graph.
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Thank you!

Questions?
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