Conference paper Open Access

Random Walks on Neo-Riemannian Spaces: Towards Generative Transformations

Nguyen, Philon; Tsabary, Eldad


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20220918022629.0</controlfield>
  <controlfield tag="001">7088389</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">13-15 September 2022</subfield>
    <subfield code="g">AIMC 2022</subfield>
    <subfield code="a">The 3rd Conference on AI Music Creativity</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Concordia University</subfield>
    <subfield code="a">Tsabary, Eldad</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">4311860</subfield>
    <subfield code="z">md5:2d49777cd8932c2434d6259c83a9fefc</subfield>
    <subfield code="u">https://zenodo.org/record/7088389/files/Nguyen_2022__Random_Walks_on_Neo-Riemannian_Spaces__Towards_Generative_Transformations.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-09-17</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:7088389</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Concordia University</subfield>
    <subfield code="a">Nguyen, Philon</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Random Walks on Neo-Riemannian Spaces: Towards Generative Transformations</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Random walks, fractional Brownian motion and stochastic processes have been used extensively by composers such as Iannis Xenakis and others, creating instantly recognizable textures. A trained ear can differentiate a uniform random walk from a Poisson process or an fBm process and random rotations. In the opera Sophocles: Antigone by one of the authors of this paper, random walks on neo- Riemannian PLR spaces were experimented with yielding mixed impressions of process music and post-romantic chromaticism. When the random walk is steered by transformational rules, special textures and harmonies emerge. We propose a new kind of parameterizable random walks, a generative system, on a space of arbitrary length chords equipped with an arbitrary distance measure steered from a customizable corpus learned by the system. The corpus provides a particular texture and harmony to the generative process. The learned neo-Riemannian spaces equipped with some distance measure provide the transformational rule base of the concatenative synthesis process.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.7088388</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="b">AIMC</subfield>
    <subfield code="t">Proceedings of the 3rd Conference on AI Music Creativity</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.7088389</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
42
40
views
downloads
All versions This version
Views 4242
Downloads 4040
Data volume 172.5 MB172.5 MB
Unique views 3838
Unique downloads 3838

Share

Cite as