

Structural and optical characterization of mechanochemically synthesized CuSbS₂

Luís Esperto¹, Isabel Figueira¹, João Mascarenhas¹, Teresa Pena Silva², José Brito Correia¹ and <u>Filipe Neves¹</u>

 ¹ LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
² LNEG, Laboratório Nacional de Energia e Geologia, Estrada da Portela, Bairro do Zambujal – Alfragide, Apartado 7586, 2610-999 Amadora, Portugal

filipe.neves@lneg.pt

This work is funded by national funds through the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project PTDC/EAM-PEC/29905/2017

ABRIL 10-13 2022 Centre for Rapid and Sustainable Product Development POLYTECHNIC OF LEIRIA MARINHA GRANDE, PORTUGAL

Topic introduction

- Photovoltaic technologies (PV) Thin film solar cells
- Earth-abundant and eco-friendly absorber materials
- Objectives

Experimental details

Results

Final remarks

PV Technologies

Materials science is key enabler for green transition

Green transition

Materials science-based solutions are vital for designing improved materials and devices

Use of a broad mixture of renewable energy sources.

Photovoltaic (PV) materials

Active research topic in the field of materials for energy applications

Despite the progress that has been achieved in materials and production processes, PV materials current research is still facing many challenges concerning, e.g., materials availability, environmental issues and processability to achieve low cost, efficiency and durability.

PV Technologies

PV Production by Technology Percentage of Global Annual Production

Data: from 2000 to 2009: Navigant; from 2010: IHS Markit. Graph: PSE 2021. Date of data: May-2021

SINEG

RESEARCH FOR SUSTAINABILITY

> ©Fraunhofer ISE: Photovoltaics Report, updated: 24 February 2022 Fraunhofer Institute for Solar Energy Systems, ISE

Thin film solar cells

Market Share of Thin-Film Technologies Percentage of Total Global PV Production

RESEARCH FOR

SUSTAINABILITY

Data: from 2000 to 2009: Navigant; from 2010: IHS Markit. Graph: PSE 2021 . Date of data: May-2021

28

©Fraunhofer ISE: Photovoltaics Report, updated: 24 February 2022 Fraunhofer Institute for Solar Energy Systems, ISE

Thin film solar cells

Thin-Film Technologies Annual Global PV Module Production

RESEARCH FOR

SUSTAINABILITY

Data: from 2000 to 2009: Navigant; from 2010: IHS Markit. Graph: PSE 2021 . Date of data: May-2021

628L

©Fraunhofer ISE: Photovoltaics Report, updated: 24 February 2022 Fraunhofer Institute for Solar Energy Systems, ISE

Thin film solar cells

Main limitations

- a-Si: low efficiency

- CdTe, CIGS: scarcity (In, Ga, Te) and toxicity (Cd)

- **CZTS**: compositional heterogeneities, manufacturing process

- **Perovskite**: thermal degradation (lack of thermal stability) and toxicity (Pb)

These considerations have led to increased interest in emerging light-absorber materials

containing modestly earth-abundant, and relatively non-toxic elements

Earth-abundant and eco-friendly absorber materials

One class of such non-toxic earth-abundant less-complex and low-dimensional absorbers is **ternary copper chalcogenides**, such as **CuSbS**₂ (CAS) chalcostibite

CAS main characteristics

	p-type electrical conductivity				
	Tunable optical bandgap (1.4-1.5 eV)				
	Strong optical absorption coefficient > 10 ⁵ cm ⁻¹				
	Orthorhombic layered crystal structure				

Low efficiency (~3%)

Synthesis: various physical and chemical methods have been reported - most of them involve post-deposition treatments of sulfurization

Krishnan, B., Shaji, S. & Ernesto Ornelas, R. J Mater Sci: Mater Electron (2015) 26: 4770.

Objectives

To produce chalcostibite (CuSbS₂) materials by mechanochemical synthesis (MCS)

• Unique characteristics: solid-state synthesis, scalable and environmentally friendly technology

To characterize the produced CuSbS₂ materials in terms of their structural and optical properties – PV applications

Chalcostibite (CuSbS₂) powders obtained by mechanochemical synthesis (MCS)

SINEG :

X40Cr13 stainless steel jars (250 mL) and balls (15 mm), without any additional fluid medium

The jars were sealed, evacuated, and back filled with Ar gas

High-energy planetary ball mill PM 400/Retsch; Milling speed: 340 rpm

Thermal heat treatment

350 °C for 24 h Vacuum (10⁻² mbar)

Total time: 2 h

Ball-to-powder ratio of 20:1

Milling periods of 10 min were alternated with 5 min periods of rest

Characterization techniques

Field emission scanning microscopy (FE-SEM) with backscattered electron detector (BSE)

Laser scattering (for particle size distribution evaluation)

Differential thermal analysis (DTA)

UV-VIS-NIR spectroscopy (diffuse reflectance mode)

Results

Morphology and particle size distribution after MCS

Morphology is quite irregular,

generically presenting three types of fractions: one at the submicrometric scale and the other two of the order of a few μ m to tens of μ m.

- The submicron fraction tends to aggregate in micron-sized agglomerates.
- These observations were corroborated by the values of the characteristic dimensions of the particles and by the granulometric distribution:
- D10: 0.42-0.61 μm

_

- D50: 2.93-3.10 μm
- D90: 14.09-14.29 μm
- The frequency distribution curve (q3, histogram) reveals a multimodal distribution.

EDS elemental mapping for the 2 h MCS CuSbS₂ powders

The chemical mappings revealed that the Cu, Sb and S elements are evenly distributed throughout the analyzed particles.

Considering the starting elemental powder mixture, the uniform distribution of Cu, Sb and S after the MCS process is extremely relevant.

HR EXCELLENCE IN RESEARCH

Results

XRD pattern for the 2 h MCS CuSbS₂ powders

- All the main reflections from the XRD pattern were assigned to the orthorhombic structure with the space group Pnma (62). There was a successful and fast conversion of the pristine elements into the chalcostibite phase.
- No secondary phases were detected.
- The broadening and low intensity of the Bragg peaks is mainly a consequence of the MCS process which causes low crystallite size and high lattice strain.

Typical Rietveld analysis outputs for the 2 h MCS CuSbS₂ powders

The orthorhombic structure with the space group Pnma (62) (COD 9003580) was used as structural model in the refinement

	R_{e}	хр	R _{wp}		
	2.5	56	3.8	0	
Cryst. Siz (nm)	e	26			
Lattice				9	standard
paramete	rs				values
a (Å)		6.	.02		6.018
b (Å)		3.	.80		3.7958
c (Å)		14	.50		14.495

The values obtained for the R factors $(R_{exp}$ (expected R factor) and R_{wp} (weighted profile R factor) ensure the good level of the refinement

Differential thermal analysis for the 2 h MCS CuSbS₂ powders

- For $CuSbS_2$, the onset of thermal decomposition (to $Cu_{12}Sb_4S_{13}$, Sb_2S_3 , and Sb_4) has been recorded for temperatures > 400 °C Peccerillo, E., Durose, K., MRS Energy & Sustainability 5, 9 (2018) https://doi.org/10.1557/mre.2018.10

- Melting temperature of ~552 °C Welch A.W., Zawadzki P.P., Lany S., Wolden C.A., and Zakutayev A., Sol. Energy Mater. Sol. Cells 132, 499–506 (2015) http://dx.doi.org/10.1016/j.solmat.2014.09.041

HR EXCELLENCE IN RESEARCH

Results

XRD pattern for the 2 h MCS CuSbS₂ powders heat treated at 350 °C/ 24 h

- All the main reflections from the XRD pattern were assigned to the orthorhombic structure with the space group Pnma (62).
- The Bragg peaks are sharper and better defined than those of the MCS powders. This can be attributed to the increase of the crystallite size and reduction of internal strains.

Typical Rietveld analysis outputs for the 2 h MCS CuSbS₂ powders heat treated at 350 °C/ 24 h

The orthorhombic structure with the space group Pnma (62) (COD 9003580) was used as structural model in the refinement

	R_{exp}	R _{wp}	
	2.29	5.20	
	HT	МС	S
Cryst. Size (nm)	141	26	;
Lattice parameters			standard values
a (Å)	6.02	<u> </u>	2 6.018
b (Å)	3.80) 3.8	0 3.7958
c (Å)	14.5	0 14.5	50 14.495

The values obtained for the R factors $(R_{exp}$ (expected R factor) and R_{wp} (weighted profile R factor) ensure the good level of the refinement

Tauc plot for the 2 h MCS CuSbS₂ powders

The optical bandgap (Eg) estimation was performed by extrapolating the linear region of the Tauc plot to the horizontal axis and considering the intersecting point.

Powders of CuSbS₂ were synthesized directly through a short mechanochemical step

• orthorhombic structure with the space group Pnma (62)

Absence of any phase transformation with the heat treatment at 350 °C/24 h

• strong structural stability of the produced phase

The bandgap energy of the $CuSbS_2$ powders was estimated by extrapolation to be ~1.41 eV

• good agreement to the values reported in the literature

The mechanochemically synthesized CuSbS₂ compounds can be considered suitable to be used as absorber materials for thin-film solar cells

The MCS process is a viable and promising route for the preparation of materials for photovoltaic applications

http://localenergy.lneg.pt

This work is funded by national funds through the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project PTDC/EAM-PEC/29905/2017

Thank You For Your Attention

filipe.neves@lneg.pt

LUDEC

RESEARCH FOR SUSTAINABILITY