Cross Currency European Swaption Model

Abstract

A Cross Currency European Swaption is a European Swaption to enter into a swap to exchange cash flows in two different currencies. The domestic and foreign swap leg cash flows can be fixed or floating. The model outlined here is called a Multi-Currency Terminal Swap Rate Model which generalizes a Terminal Swap Rate Model to incorporate foreign exchange. The main idea behind a Terminal Swap Rate Model is to assume that the discount factors at the option maturity can be written as a function of the underlying swap rates. This assumption reduces the number of stochastic variables that need to be modelled.

A Cross Currency European Swaption gives the holder the option to enter into a swap to exchange cash flows in two different currencies. The domestic and foreign swap leg cash flows can be fixed or floating. The cash flow generation can be referred to as https://finpricing.com/lib/FiBondCoupon.html

The underlying cross-currency swap can be fixed-to-fixed, fixed-to-floating and floating-to-floating types with possible floating spread and principal exchanges which may happen at the beginning of the swap or at the end of the swap or at both the beginning and the end. The floating index interest rate for the CAD is BA rate and the one for USD is the LIBOR rate. In this swaption, the BA-LIBOR basis spread is also considered.

Even for a European cross-currency swaptions, a number of enforced assumptions have to be introduced to reduce the complexity of the problem. Some of the assumptions are purely technical and some of them are supported by historical observations. One of the
technical assumptions is that PVBPs for both currencies at a swaption maturity can be approximated by the corresponding forward PVBPs.

Let $m, n \geq 1$ be integers and
$0<t_{0}^{d}<t_{1}^{d}<\ldots<t_{n}^{d} \quad 0<t_{0}^{f}<t_{1}^{f}<\ldots<t_{m}^{f}$

Let the domestic and foreign daycount fractions be defined, respectively, as
$\alpha_{j}^{d}=\operatorname{DCF}\left(t_{j-1}^{d}, t_{j}^{d}\right.$, domesticDaycountBasis $), j=1, \ldots, n, \alpha^{d}=\left(\alpha_{1}^{d}, \ldots, \alpha_{n}^{d}\right)^{T}$
$\alpha_{i}^{f}=\operatorname{DCF}\left(t_{i-1}^{f}, t_{i}^{f}\right.$, foreignDaycountBasis $), i=1, \ldots m, \alpha^{f}=\left(\alpha^{f}{ }_{1}, \ldots, \alpha^{f}{ }_{m}\right)^{T}$
and $f_{j}^{d}(t), f_{i}^{f}(t)$ be the domestic and foreign forward interest rates seen at time t for the forward accrual periods of $\left(t_{j-1}^{d}, t_{j}^{d}\right),\left(t_{i-1}^{f}, t_{i}^{f}\right), t \leq t_{j-1}^{d}, t \leq t_{i-1}^{f}$. We define $d f_{j}^{d}(t), d f_{i}^{f}(t)$ as the domestic and foreign discount factors at t to the time points t_{j}^{d}, t_{i}^{f}, respectively.

Let the present values, at time T, of the domestic and foreign fixed leg cash flows be respectively defined as

$$
\begin{align*}
& X_{T}^{d}(a, b) \equiv \sum_{j=1}^{n} K_{d} \cdot N_{d} \cdot \alpha_{j}^{d} \cdot d f_{j}^{d}(T)+a \cdot N_{d} \cdot d f_{n}^{d}(T)-b \cdot N_{d} \cdot d f_{0}^{d}(T) \tag{1a}\\
& X_{T}^{f}(a, b) \equiv\left(\sum_{i=1}^{m} K_{f} \cdot N_{f} \cdot \alpha_{i}^{f} d f_{i}^{f}(T)+a \cdot N_{f} \cdot d f_{m}^{f}(T)-b \cdot N_{f} \cdot d f_{0}^{f}(T)\right) \cdot F X_{T} \tag{1b}
\end{align*}
$$

where,
$T \leq t_{0}^{k}, k=d, f$
N_{d}, N_{f} are the domestic and foreign notionals, respectively.
$K_{d,} K_{f}$ are the domestic and foreign fixed rates, respectively.
$F X_{T}$ is the FX rate at time T expressed as units of domestic per unit of foreign currency.
$a=1$ if notional amounts are exchanged at the maturity of the swap, else $a=0$
$b=1$ if notional amounts are exchanged at the start of the swap, else $b=0$

Let the present values, at time T, of the domestic and foreign floating leg cash flows be respectively defined as
$F_{T}^{d}(a, b) \equiv \sum_{j=1}^{n}\left(x+f_{j}^{d}(T)\right) \cdot N_{d} \cdot \alpha_{j}^{d} \cdot d f_{j}^{d}(T)+a \cdot N_{d} \cdot d f_{n}^{d}(T)-b \cdot N_{d} \cdot d f_{0}^{d}(T)$
$F_{T}^{f}(a, b) \equiv\left(\sum_{i=1}^{m}\left(y+f_{i}^{f}(T)\right) \cdot N_{f} \cdot \alpha_{i}^{f} \cdot d f_{i}^{f}(T)+a \cdot N_{f} \cdot d f_{m}^{f}(T)-b \cdot N_{f} \cdot d f_{0}^{f}(T)\right) \cdot F X_{T}$
where,
$T \leq t_{0}^{k}, k=d, f$
x, y are the domestic and foreign floating rate spreads, respectively.

We define the domestic and foreign PVBP factors, respectively, as.
$P_{t}^{d} \equiv \sum_{j=1}^{n} \alpha_{j}^{d} \cdot d f_{j}^{d}(t) \quad P_{t}^{f} \equiv \sum_{i=1}^{m} \alpha_{i}^{f} \cdot d f_{i}^{f}(t), \quad t \leq t_{0}^{k}, k=d, f$
and the domestic and foreign vanilla swap rates, respectively, as.

$$
\begin{equation*}
S_{t}^{d} \equiv \frac{d f_{0}^{d}(t)-d f_{n}^{d}(t)}{P_{t}^{d}} \quad S_{t}^{f} \equiv \frac{d f_{0}^{f}(t)-d f_{m}^{f}(t)}{P_{t}^{f}}, t \leq t_{0}^{k}, k=d, f \tag{3}
\end{equation*}
$$

With (2) and (3) we can re-express $1(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$ at time T, assuming $T=t_{0}^{d}=t_{o}^{f}$, as:

$$
\begin{align*}
& X_{T}^{d}(a, b) \equiv K_{d} \cdot N_{d} \cdot P_{T}^{d}+a \cdot N_{d} \cdot\left(1-\left(\lambda_{T}+S_{T}^{d}\right) \cdot P_{T}^{d}\right)-b \cdot N_{d} \tag{4a}\\
& X_{T}^{f}(a, b) \equiv\left(K_{f} \cdot N_{f} \cdot P_{T}^{f}+a \cdot N_{f} \cdot\left(1-S_{T}^{f} \cdot P_{T}^{f}\right)-b \cdot N_{f}\right) \cdot F X_{T} \tag{4b}\\
& F_{T}^{d}(a, b) \equiv\left(x+S_{T}^{d}\right) \cdot N_{d} \cdot P_{T}^{d}+a \cdot N_{d} \cdot\left(1-\left(\lambda_{T}+S_{T}^{d}\right) \cdot P_{T}^{d}\right)-b \cdot N_{d} \tag{4c}\\
& F_{T}^{f}(a, b) \equiv\left(\left(y+S_{T}^{f}\right) \cdot N_{f} \cdot P_{T}^{f}+a \cdot N_{f} \cdot\left(1-S_{T}^{f} \cdot P_{T}^{f}\right)-b \cdot N_{f}\right) \cdot F X_{T} \tag{4d}
\end{align*}
$$

Note: that we have also added a basis spread, λ_{T}, to the domestic swap rate.

Further simplifying we have

$$
\begin{align*}
& X_{T}^{d}(a, b)=c_{X}^{d} \cdot S_{T}^{d}+q \lambda_{T}+r_{X}^{d} \text { where, } c_{X}^{d}=-a \cdot N_{d} \cdot P_{T}^{d} \tag{5a}\\
& q=-a \cdot N_{d} \cdot P_{T}^{d} \\
& r_{X}^{d}=N_{d} \cdot\left(K_{d} \cdot P_{T}^{d}+(a-b)\right) \\
& X_{T}^{f}(a, b)=F X_{T} \cdot\left(c_{X}^{f} \cdot S_{T}^{f}+r_{X}^{f}\right) \quad \text { where }, c_{X}^{f}=-a \cdot N_{f} \cdot P_{T}^{f} \tag{5b}\\
& r_{X}^{f}=N_{f} \cdot\left(K_{f} \cdot P_{T}^{f}+(a-b)\right) \\
& F_{T}^{d}(a, b)=c_{F}^{d} \cdot S_{T}^{d}+q \lambda_{T}+r_{F}^{d} \text { where, } c_{F}^{d}=N_{d} \cdot P_{T}^{d}(1-a) \tag{5c}\\
& q=-a \cdot N_{d} \cdot P_{T}^{d} \\
& r_{F}^{d}=N_{d} \cdot\left(x \cdot P_{T}^{d}+(a-b)\right)
\end{align*}
$$

$$
\begin{align*}
F_{T}^{f}(a, b)=F X_{T} \cdot\left(c_{F}^{f} \cdot S_{T}^{f}+r_{F}^{f}\right) \quad \text { where, } c_{F}^{f} & =N_{f} \cdot P_{T}^{f}(1-a) \tag{5d}\\
r_{F}^{f} & =N_{f} \cdot\left(y \cdot P_{T}^{f}+(a-b)\right)
\end{align*}
$$

We represent the present values, at time T, of a swap to exchange the domestic and foreign leg cash flows as

$$
\begin{align*}
& V\left(T, \beta, X^{d}, X^{f}\right) \equiv \beta \cdot\left(X_{T}^{d}(a, b)-X_{T}^{f}(a, b)\right) \tag{6a}\\
& V\left(T, \beta, X^{d}, F^{f}\right) \equiv \beta \cdot\left(X_{T}^{d}(a, b)-F_{T}^{f}(a, b)\right) \tag{6b}\\
& V\left(T, \beta, F^{d}, X^{f}\right) \equiv \beta \cdot\left(F_{T}^{d}(a, b)-X_{T}^{f}(a, b)\right) \tag{6c}\\
& V\left(T, \beta, F^{d}, F^{f}\right) \equiv \beta \cdot\left(F_{T}^{d}(a, b)-F_{T}^{f}(a, b)\right) \tag{6d}
\end{align*}
$$

where, $\beta=1$ indicates a pay-foreign swap and $\beta=-1$ indicates a receive-foreign swap. Let $0 \leq T=t_{0}^{d}=t_{0}^{f}$, then the payoff to the option at maturity can be expressed as:
$\left[V\left(T, \beta, X^{d}, X^{f}\right)\right]^{+} \equiv\left[\beta \cdot\left(X_{T}^{d}(a, b)-X_{T}^{f}(a, b)\right)\right]^{+}$
$\left[V\left(T, \beta, X^{d}, F^{f}\right)\right]^{+} \equiv\left[\beta \cdot\left(X_{T}^{d}(a, b)-F_{T}^{f}(a, b)\right)\right]^{+}$
$\left[V\left(T, \beta, F^{d}, X^{f}\right)\right]^{+} \equiv\left[\beta \cdot\left(F_{T}^{d}(a, b)-X_{T}^{f}(a, b)\right)\right]^{+}$
$\left[V\left(T, \beta, F^{d}, F^{f}\right)\right]^{+} \equiv\left[\beta \cdot\left(F_{T}^{d}(a, b)-F_{T}^{f}(a, b)\right)\right]^{+}$

We assume the following dynamics

$$
\begin{align*}
& d \ln S_{t}^{i}=\left(u_{i}-\sigma_{i}^{2} / 2\right) d t+\sigma_{i} \cdot d W_{t}^{i} \tag{8}\\
& d \ln F X_{t}=\left(u_{F X}-\sigma_{x}^{2} / 2\right) d t+\sigma_{F X} \cdot d W_{t}^{F X} \tag{9}\\
& d \lambda=\bar{\lambda}+\sigma_{\lambda} \cdot d W_{t}^{\lambda}
\end{align*}
$$

where,
$d W_{t}^{j} \cdot d W_{t}^{k}=\rho_{j, k} d t$
$i=d, f$
$j, k=d, f, F X, \lambda$
$\sigma_{d}, \sigma_{f}, \sigma_{F X}, \sigma_{\lambda}, u_{d}, u_{f}, u_{F X}$ are deterministic functions of time.
$W_{t}^{k}, k=d, f, M, \lambda$ is a 4-dimensional Brownian motion.

Given the above dynamics the variables $\ln S_{T}^{d}, \ln S_{T}^{f}, \ln F X_{T}, \lambda_{T}$ are joint-normally distributed.
$\left(\begin{array}{l} \\ \ln S_{T}^{d} \\ \ln S_{T}^{f} \\ \ln F X_{T} \\ \lambda_{T}\end{array}\right) \sim N(m, \Sigma)$
where,
$m=\left(\begin{array}{c}E_{t}^{Q}\left[\ln S_{T}^{d}\right] \\ E_{t}^{Q}\left[\ln S_{T}^{f}\right] \\ E_{t}^{Q}\left[\ln F X_{T}\right] \\ E_{t}^{Q}\left[\lambda_{T}\right]\end{array}\right)=\left(\begin{array}{c}\ln \bar{S}_{T}^{d}+(T-t) \cdot\left(-1 / 2 \bar{\sigma}^{d}(T, t)^{2}\right) \\ \ln \bar{S}_{T}^{f}+(T-t) \cdot\left(-1 / 2 \bar{\sigma}^{f}(T, t)^{2}\right) \\ \ln \bar{F} \bar{X}_{T}+(T-t) \cdot\left(-1 / 2 \bar{\sigma}^{F X}(T, t)^{2}\right) \\ \lambda_{t}+(T-t) \cdot\left(-1 / 2 \bar{\sigma}^{\lambda}(T, t)^{2}\right)\end{array}\right)$
where,
$\bar{\sigma}^{i}(T, t)=\sqrt{\left(\frac{1}{T-t}\right) \cdot \int_{t}^{T}\left(\sigma_{\tau}^{i}\right)^{2} \cdot d \tau}$,
$i=d, f, F X, \lambda$

$$
\Sigma=\left[\begin{array}{cccc}
\sigma_{F X}^{2} & \sigma_{F X, d} & \sigma_{F X, f} & \sigma_{F X, \lambda} \tag{14}\\
\sigma_{d, F X} & \sigma_{d}^{2} & \sigma_{d, f} & \sigma_{d, \lambda} \\
\sigma_{f, F X} & \sigma_{f, d} & \sigma_{f}^{2} & \sigma_{f, \lambda} \\
\sigma_{\lambda, F X} & \sigma_{\lambda, d} & \sigma_{\lambda, f} & \sigma_{\lambda}^{2}
\end{array}\right]
$$

where,
$\sigma_{i}^{2}=(T-t) \cdot\left(\bar{\sigma}^{i}(T, t)\right)^{2}$
$i=d, f, F X, \lambda$
$\sigma_{i, j}=\rho_{i, j} \cdot(T-t) \cdot \bar{\sigma}^{i}(T, t) \cdot \bar{\sigma}^{j}(T, t)$
$i, j=d, f, F X, \lambda$
$\bar{S}_{T}^{d}, \bar{S}_{T}^{f}, \bar{F} \bar{X}_{T}$ are forward values as seen from time t.

We calulate the time-t value of the options given in $7(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$, where $0 \leq t \leq T$, as

$$
\begin{align*}
V_{t}^{X, X} & =d f_{T}^{d}(t) \cdot \mathrm{E}_{t}\left[\left[\beta \cdot\left(X_{T}^{d}-X_{T}^{f}\right)\right]^{+}\right] \\
& =d f_{T}^{d}(t) \cdot E_{t}\left[\left[\beta \cdot\left(c_{X}^{d} \cdot S_{T}^{d}+q \cdot \lambda_{T}+r_{X}^{d}-F X_{T} \cdot\left(c_{X}^{f} \cdot S_{T}^{f}+r_{X}^{f}\right)\right)\right]^{+}\right] \tag{15a}
\end{align*}
$$

$V_{t}^{X, F}=d f_{T}^{d}(t) \cdot \mathrm{E}_{t}\left[\left[\beta \cdot\left(X_{T}^{d}-F_{T}^{f}\right)\right]^{+}\right]$
$=d f_{T}^{d}(t) \cdot E_{t}\left[\left[\beta \cdot\left(c_{X}^{d} \cdot S_{T}^{d}+q \cdot \lambda_{T}+r_{X}^{d}-F X_{T} \cdot\left(c_{F}^{f} \cdot S_{T}^{f}+r_{F}^{f}\right)\right)\right]^{+}\right]$
$V_{t}^{F, X}=d f_{T}^{d}(t) \cdot \mathrm{E}_{t}\left[\left[\beta \cdot\left(F_{T}^{d}-X_{T}^{f}\right)\right]^{+}\right]$
$=d f_{T}^{d}(t) \cdot E_{t}\left[\left[\beta \cdot\left(c_{F}^{d} \cdot S_{T}^{d}+q \cdot \lambda_{T}+r_{F}^{d}-F X_{T} \cdot\left(c_{X}^{f} \cdot S_{T}^{f}+r_{X}^{f}\right)\right)\right]^{+}\right]$

$$
\begin{align*}
V_{t}^{F, F}= & d f_{T}^{d}(t) \cdot \mathrm{E}_{t}\left[\left[\beta \cdot\left(F_{T}^{d}-F_{T}^{f}\right)\right]^{+}\right] \\
& =d f_{T}^{d}(t) \cdot E_{t}\left[\left[\beta \cdot\left(c_{F}^{d} \cdot S_{T}^{d}+q \cdot \lambda_{T}+r_{F}^{d}-F X_{T} \cdot\left(c_{F}^{f} \cdot S_{T}^{f}+r_{F}^{f}\right)\right)\right]^{+}\right] \tag{15d}
\end{align*}
$$

Consider the following general form of the conditional expectation in 15(a,b,c,d)

$$
\begin{equation*}
E_{t}\left[V(T)^{+}\right]=E_{t}\left[\left[\bar{c}^{d} \cdot S_{T}^{d}+\bar{q} \cdot \lambda_{T}+\bar{r}^{d}-F X_{T} \cdot\left(\bar{c}^{f} \cdot S_{T}^{f}+\bar{r}^{f}\right)\right]^{+}\right] \tag{16}
\end{equation*}
$$

where,
$\bar{c}^{k}=\beta \cdot c^{k}, k=d, f$
$\bar{r}^{k}=\beta \cdot r^{k}, k=d, f$
$\bar{q}=\beta \cdot q$
$E_{t}\left[V(T)^{+}\right]=\int_{-\infty}^{+\infty+\infty} \int_{0}^{+\infty+\infty} \int_{0} \int_{0}^{\infty}\left(\bar{c}^{d} \cdot S_{T}^{d}+q \cdot \lambda_{T}+\bar{r}^{d}-F X_{T} \cdot\left(\bar{c}^{f} \cdot S_{T}^{f}+\bar{r}^{f}\right)\right)^{+}$

$$
\begin{equation*}
\cdot f_{F X_{T}, s_{T}^{d}, S_{T}^{f}, \lambda_{T}}\left(F X_{T}, S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right) \cdot d F X_{T} d S_{T}^{d} d S_{T}^{f} d \lambda \tag{17}
\end{equation*}
$$

$f_{F X_{T}, S_{T}^{d}, S_{T}^{f}, \lambda_{T}}\left(F X_{T}, S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right)$ is the corresponding density function.

To solve (23) we condition first on S_{T}^{d}, S_{T}^{f} and λ_{T} which yields

$$
E_{t}\left[V(T)^{+}\right]=\int_{-\infty}^{+\infty+\infty+\infty} \int_{0}^{+\infty} \int_{0}^{[}\left[\int_{0}^{+\infty}\left(\bar{c}^{d} \cdot S_{T}^{d}+q+\bar{r}^{d}-F X_{T} \cdot\left(\bar{c}^{f} \cdot S_{T}^{f}+\bar{r}^{f}\right)\right)^{+} \cdot f_{F X_{T} \mid S_{T}^{d}, S_{T}^{f}, \lambda_{T}}\left(F X_{T}\right) \cdot d F X_{T}\right]
$$

$$
\begin{gather*}
\cdot f_{S_{T}^{d}, S_{T}^{f}, \lambda_{T}}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right) \cdot d S_{T}^{d} d S_{T}^{f} d \lambda_{T} \tag{18}\\
E_{t}\left[V(T)^{+}\right]=\int_{-\infty}^{+\infty+\infty+\infty} \int_{0} \int_{0}^{\infty}\left[\int_{0}^{+\infty}\left(K\left(S_{T}^{d}, \lambda_{T}\right)-c\left(S_{T}^{f}\right) F X_{T}\right)^{+} \cdot f_{F X_{T} \mid S_{T}^{d}, S_{T}^{f}, \lambda_{T}}\left(F X_{T}\right) \cdot d F X_{T}\right] \\
\cdot f_{S_{T}^{d}, S_{T}^{f}, \lambda_{T}}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right) \cdot d S_{T}^{d} d S_{T}^{f} d \lambda \tag{19}
\end{gather*}
$$

where,
$c\left(S_{T}^{f}\right)=\bar{c}^{f} \cdot S_{T}^{f}+\bar{r}^{f}$
$K\left(S_{T}^{d}, \lambda_{T}\right)=\bar{c}^{d} \cdot S_{T}^{d}+\bar{q} \cdot \lambda_{T}+\bar{r}^{d}$
$f_{F X_{T} \mid S_{T}^{d}, S_{T}^{f}, \lambda_{T}}\left(F X_{T}\right), f_{S_{T}^{d}, S_{T}^{f}, \lambda_{T}}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right)$ are the corresponding conditional and trivariate densities.

Let
$B S^{*}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right) \equiv \int_{0}^{+\infty}\left(K\left(S_{T}^{d}, \lambda_{T}\right)-c\left(S_{T}^{f}\right) F X_{T}\right)^{+} \cdot f_{F X_{T} \mid S_{T}^{d}, S_{T}^{f}, \lambda_{T}}\left(F X_{T}\right) \cdot d F X_{T}$

The $B S$ in $B S^{*}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right)$ stands for Black-Scholes since depending on the signs of $c\left(S_{T}^{f}\right)$ and $K\left(S_{T}^{d}, \lambda_{T}\right), B S^{*}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right)$ reduces to the Black-Scholes equation.

The evaluation of $B S^{*}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right)$ is as follows:

Dropping the arguments of the functions $c\left(S_{T}^{f}\right)$ and $K\left(S_{T}^{d}, \lambda_{T}\right)$ we write

$$
\begin{equation*}
\text { payoff }_{T} \equiv\left(K-c F X_{T}\right)^{+} \tag{21}
\end{equation*}
$$

Case 1: if $c<0$ Then payoff $_{T}=|c| \cdot\left(-\frac{K}{c}+F X_{T}\right)^{+}$

Case 1a: if $K<0$ then $B S^{*}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right)=|c| \times[$ Black $-\operatorname{Scholes}($ call $)]$
Case 1b: if $K \geq 0$ then $B S^{*}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right)=|c| \cdot E_{t}\left[F X_{T}\right]+|K|$

Case 2: if $c>0$ Then payoff $_{T}=c \cdot\left(\frac{K}{c}-F X_{T}\right)^{+}$

Case 2a: if $K>0$ then $B S^{*}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right)=c \times[$ Black $-\operatorname{Scholes}(p u t)]$
Case 2 b : if $K \leq 0$ then $B S^{*}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right)=0$

Case 3: if $\bar{c}^{d}=0$ then payoff $_{T}=(K)^{+}$

Case 3a: if $K \geq 0$ then $B S^{*}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right)=K$
Case 3b: if $K<0 B S^{*}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right)=0$
where,
Black - Scholes $($ call $)=\exp \left(M^{d}+\frac{1}{2} V^{d}\right) \cdot \Theta\left(\frac{M^{d}+V^{d}-\ln (|K| /|c|)}{\sqrt{V^{d}}}\right)-\frac{|K|}{|c|} \cdot \Theta\left(\frac{M^{d}-\ln (|K| / c \mid)}{\sqrt{V^{d}}}\right)$
$\operatorname{Black}-\operatorname{Scholes}(p u t)=\frac{K}{c} \cdot \Theta\left(-\left(\frac{M^{d}-\ln (K / c)}{\sqrt{V^{d}}}\right)\right)-\exp \left(M^{d}+\frac{1}{2} V^{d}\right) \cdot \Theta\left(-\left(\frac{M^{d}+V^{d}-\ln (K / c)}{\sqrt{V^{d}}}\right)\right)$
$M^{d} \equiv E_{t}\left[\ln F X_{T} \mid \ln S_{T}^{d}, \ln S_{T}^{f}, \lambda_{T}\right]$
$V^{d} \equiv \operatorname{var}_{t}\left[\ln F X_{T} \mid \ln S_{T}^{d}, \ln S_{T}^{f}, \lambda_{T}\right]$

Refer to the Appendix for details on calculating conditional moments of a multivariate normal distribution.

With $B S^{*}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right)$ well defined we now need to solve

$$
\begin{equation*}
E_{t}\left[V(T)^{+}\right]=\int_{-\infty}^{+\infty+\infty+\infty} \int_{0}^{+\infty} \int_{0}^{*} B S^{*}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right) \cdot f_{S_{T}^{d}, S_{T}^{f}, \lambda_{T}}\left(S_{T}^{d}, S_{T}^{f}, \lambda_{T}\right) \cdot d S_{T}^{d} d S_{T}^{f} d \lambda_{T} \tag{22}
\end{equation*}
$$

Let

$$
y_{1} \equiv \ln S_{T}^{d} \quad y_{2} \equiv \ln S_{T}^{f} \quad y_{3}=\lambda_{T}
$$

$$
(23 a, b, c)
$$

Then

$$
\begin{equation*}
E_{t}\left[V(T)^{+}\right]=\int_{-\infty-\infty-\infty}^{+\infty+\infty+\infty} \int^{+\infty} B S^{*}\left(\exp \left(y_{1}\right), \exp \left(y_{2}\right), y_{3}\right) \cdot f_{y_{1}, y_{2}, y_{3}}\left(y_{1}, y_{2}, y_{3}\right) \cdot d y_{1} d y_{2} d y_{3} \tag{24}
\end{equation*}
$$

$f_{y_{1}, y_{2}, y_{3}}\left(y_{1}, y_{2}, y_{3}\right)$ is the multivariate normal density function.

We now proceed by conditioning on y_{2} and y_{3} to integrate with respect to y_{1}. Then we condition on y_{3} to integrate with respect to y_{2}. Then we integrate with respect to y_{3}. This allows us to write

$$
\begin{align*}
E_{t}\left[V(T)^{+}\right]= & \int_{-\infty}^{+\infty+\infty} \int_{-\infty-\infty}^{+\infty} \int^{+\infty} B S^{*}\left(\exp \left(y_{1}\right), \exp \left(y_{2}\right), y_{3}\right) \\
& \cdot f_{y_{1} \mid y_{2}, y_{3}}\left(y_{1}\right) \cdot f_{y_{2} \mid y_{3}}\left(y_{2}\right) \cdot f_{y_{3}}\left(y_{3}\right) \cdot d y_{1} d y_{2} d y \tag{25}
\end{align*}
$$

We define the following

$$
\begin{array}{lll}
\bar{u}_{y_{1}} \equiv E_{t}\left[y_{1} \mid y_{2}, y_{3}\right] & \bar{u}_{y_{2}} \equiv E_{t}\left[y_{2} \mid y_{3}\right] & u_{y_{3}} \equiv E_{t}\left[y_{3}\right] \\
& (26 \mathrm{a}, \mathrm{~b}, \mathrm{c}) & \\
\bar{\sigma}_{y_{1}}^{2} \equiv \operatorname{var}_{t}\left[y_{1} \mid y_{2}, y_{3}\right] & \bar{\sigma}_{y_{2}}^{2} \equiv \operatorname{var}_{t}\left[y_{2} \mid y_{3}\right] & \sigma_{y_{3}} \equiv \operatorname{var}_{t}\left[y_{3}\right] \\
& (27 \mathrm{a}, \mathrm{~b}, \mathrm{c}) &
\end{array}
$$

where, the bars on the variables above indicate that they are conditional moments.

We can now write

$$
\begin{gather*}
E_{t}\left[V(T)^{+}\right]=\int_{-\infty-\infty-\infty}^{+\infty+\infty+\infty} \int^{+\infty} B S^{*} \cdot \frac{1}{\sqrt{2 \pi} \bar{\sigma}_{y_{1}}} \exp \left(-\frac{\left(y_{1}-\bar{u}_{y_{1}}\right)^{2}}{2 \bar{\sigma}_{y_{1}}^{2}}\right) \cdot \frac{1}{\sqrt{2 \pi} \bar{\sigma}_{y_{2}}} \exp \left(-\frac{\left(y_{2}-\bar{u}_{y_{2}}\right)^{2}}{2 \bar{\sigma}_{y_{2}}^{2}}\right) \\
\cdot \frac{1}{\sqrt{2 \pi} \sigma_{y_{3}}} \exp \left(-\frac{\left(y_{3}-u_{y_{3}}\right)^{2}}{2 \sigma_{y_{3}}^{2}}\right) \cdot d y_{1} d y_{2} d y_{3} \tag{28}
\end{gather*}
$$

We make the following change of variables

$$
\begin{array}{lll}
y_{1}=z_{1} & \bar{\sigma}_{y_{1}}+\bar{u}_{y_{1}} & y_{2}=z_{2} \bar{\sigma}_{y_{2}}+\bar{u}_{y_{2}} \\
(29 \mathrm{a}, \mathrm{~b}, \mathrm{c}) & & y_{3}=z_{3} \sigma_{y_{3}}+ \\
z_{1}=\sqrt{2} \cdot x_{1} & z_{2}=\sqrt{2} \cdot x_{2} & z_{3}=\sqrt{2} \cdot x_{3}
\end{array}
$$

(30a,b,c)
(29a,b,c) \& (30a,b,c) imply

$$
y_{1}=\sqrt{2} x_{1} \bar{\sigma}_{y_{1}}^{2}+\bar{u}_{y_{1}} \quad y_{2}=\sqrt{2} x_{2} \bar{\sigma}_{y_{2}}^{2}+\bar{u}_{y_{2}} \quad y_{3}=\sqrt{2} x_{3} \sigma_{y_{3}}+u_{y_{3}}
$$

$$
(31 \mathrm{a}, \mathrm{~b}, \mathrm{c})
$$

Which allows us to express

$$
\begin{gather*}
E_{t}\left[V(T)^{+}\right]=\int_{-\infty-\infty-\infty}^{+\infty+\infty+\infty} \int_{-\infty} B S^{*}\left(\exp \left(\sqrt{2} x_{1} \bar{\sigma}_{y_{1}}+\bar{u}_{y_{1}}\right), \exp \left(\sqrt{2} x_{2} \bar{\sigma}_{y_{2}}+\bar{u}_{y_{2}}\right), \exp \left(\sqrt{2} x_{3} \sigma_{y_{3}}+u_{y_{3}}\right)\right) \\
\cdot \pi^{-3 / 2} \cdot \exp \left(-x_{1}^{2}\right) \cdot \exp \left(-x_{2}^{2}\right) \cdot \exp \left(-x_{3}^{2}\right) \cdot d x_{1} d x_{2} d x_{3} \tag{32}
\end{gather*}
$$

