# The lithium-age relation: Calibration with open clusters and associations 

# M.L. Gutiérrez Albarrán¹, D. Montes ${ }^{1}$, H.M. Tabernero ${ }^{1,2}$, J.I. González Hernández ${ }^{3,4}$, A. Frasca ${ }^{5}$, 

 A.C. Lanzafame ${ }^{5}$, R. Smiljanic ${ }^{6}$, A.J. Korn ${ }^{7}$, S. Randich ${ }^{8}$, G. Gilmore ${ }^{9}$, et al. \& GES Survey Builders${ }^{1}$ Departamento de Física de la Tierra y Astrofísica and IPARCOS-UCM, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain; ${ }^{2} \mathrm{CAB} ;{ }^{3} \mathrm{IAC} ;{ }^{4}$ Universidad de la Laguna, Tenerife; ${ }^{5}$ INAF Catania; ${ }^{6}$ Nicolaus Copernicus Astronomical Center; ${ }^{7}$ Department of Physics and Astronomy, Uppsala University; ${ }^{8}$ INAF Arcetri; ${ }^{9}$ Institute of Astronomy, University of Cambridge

Abstract
In this work we used a series of open clusters and associations observed by the Gaia-ESO Survey (GES) to study the use of lithium abundances ( Li I spectral line at 6708 A ) as an age indicator for pre- and main-sequence FGKM late-type stars. Previous studies of open clusters have shown that lithium depletion is not only strongly age dependent, but also shows a complex pattern with several other parameters, such as rotation, chromospheric activity and metallicity. Using the available data from both GES iDR6 and Gaia EDR3, we performed a thorough membership analysis and obtained lists of candidate members for 42 open clusters, ranging in age from 1-3 Myr to 4.5 Gyr . We then conducted a comparative study that allowed us to quantify the observable lithium dispersion in each cluster and study the influence of rotation, activity and metallicity in the lithium dispersion of the selected candidates. All this allowed us to calibrate a Li-age relation and create empirical lithium envelopes for 27 of of the 42 sample clusters, also constraining the LDB for those clusters in the 15-600 Myr age range


Dependence with rotation, activity and metallicity. Li-age relation


We used the rotational velocities (vsini), chromospheric activity indicators (EW(Ha)) and [Fe/H] metallicities provided by GES iDR6, as well as additional rotational periods ( $\boldsymbol{P}_{\text {rot }}$ ) from the literature, including Kepler, K2 and TESS measurements. We confirmed the findings of former publications and observed that members with higher values of $E W(\mathrm{Li})$ tend to be faster rotators and have higher levels of activity (for ex., $E W(L i)$-versus- $T_{\text {eff }}$ diagrams above, colour-coded by $P_{\text {rot }}$ and H $\alpha$ for NGC 2516, 125-138 Myr). We additionally observed slight effects of metallicity in the Li depletion of coeval clusters: Metal-rich clusters seem to show higher Li abundances than their metal-poor counterparts (see top right figure as example).


Taking all these effects into account, we calibratied a Li age relation and created empirical lithium envelopes for key age ranges in our cluster sample (see figure, left, showing all 27 final envelopes). This Li-age calibration will allow us to estimate age ranges for GES field stars As part of this calibration we also studied the lithium depletion boundary (LDB) for clusters in the 15-500 Myr range with the aid of models such as Baraffe et al 2015 (see vertical dashed lines in the IC 2602 diagram left).

