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Abstract—The management of motor complications in Parkin-
son’s disease (PD) is an unmet need. This paper proposes an
eHealth platform for Parkinson’s disease (PD) severity estimation
using a cloud-based and deep learning (DL) approach. The
system quantifies the hallmark symptoms of PD using motor
signals of patients with PD (PwPD). In this study, the dataset
named ”The Michael J. Fox Foundation-funded Levodopa Re-
sponse Study” is used for the development and evaluation of
computational methods focusing on severity estimation of motor
function in response to the levodopa treatment. The data is
derived from a wearable inertial device, named Shimmer 3,
to collect motion data from a patient’s upper limb which is
more affected by the disease during the performance of some
standard activities selected by MDS-UPDRS III and at home
while performing daily life activities (DLAs). Seventeen PwPD
were enrolled from two clinical sites, who have varying degrees
of motor impairment. An incorporated cloud-based framework
is proposed where patients’ motion data is saved in MS Azure
cloud where an automatic evaluation of patients’ motor activities
in response to the levodopa dose is performed using continuous
wavelet transform and CNN-based transfer learning approach.
Experimental results show that the efficiency and the robustness
of the proposed procedure are proven by 90.0% accuracy
for tremor estimation and 86.4% for bradykinesia, with good
performance in terms of sensitivity and specificity in each class.

Index Terms—Parkinson’s disease, cloud computing, deep
learning, severity estimation.

I. INTRODUCTION

Parkinson’s disease is a neurocognitive disorder (NCD) with
the unascertained aetiology identified by the progressive loss
of dopaminergic neurons in substancia nigra pars compacta
[1]. PD assessment is currently based on rating scales [2].
Two standard and common scales are used often; Movement

978-1-6654-8356-8/22/31.00©2022 IEEE.

Disorder Society-Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) and Hoehn and Yahr (H & Y) [3], but both
are non-objective, insufficient, and prone to inter and intra-
rater reliability problems. Apart from this, to guarantee proper
clinical treatment and the right portion of the medication for an
individual, PwPD is periodically assessed through subjective
clinical assessments by an observer dependent on these rating
scales. Because of the unpredictability and heterogeneity of PD
signs in understanding [4], the clinical assessment dependent
on rating scales and single observer is challenging, time
consuming and fluctuate colossally. In parallel, a patient’s
motor state during clinical examination may differ from a
usual condition, it might be altered due to fatigue, anxiety,
or dehydration from travelling. Hence a clinical expression is
only a photo in time, lacking complete information of before
and after examination. Consequently, the only solution that
correctly defines and outlines the patients’ motor locomotion is
to continuously assess their body movements for a prolonged
period instead of for few minutes while performing tailored
exercises.

While treating PwPD neurologists recommend Levodopa
(L-dopa) [5], [6], a naturally occurring amino acid that is
metabolized to dopamine in the brain and contemplated as
most adequate symptomatic therapy available for PD [7] but
a prolonged administration of L-dopa can have several side
effects [8] like hallucinations, delusions, psychosis, agitation,
hip fractures, mild increase in homocysteine levels, low serum
vitamin B12 production, cardiac arrhythmias, motor complica-
tions, somnolence, elevated methylmalonic acid levels and in-
creased chances of sensorimotor peripheral neuropathy. Since
the side effects associated with the administration of L-dopa
outgrow its positive effects, therefore, it becomes of utmost
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importance to have an idea about how a patient suffering from
PD will respond to the drug so, as to safeguard the patient from
the ill effects of the drug. In [9] authors evaluates a machine
learning (ML) method that analyses the signals provided by
a accelerometer placed on the waist of PwPD in order to
automatically assess bradykinetic gait unobtrusively. However,
the method is validated only in 12 patients and does not
include DLAs. Similarly in [10] developed and tested a new
keyboard-tapping test for objective and remote distal motor
function in PD patients. But this system lacks validation of
being used as a supplementary clinical tool for diagnosis and
remote monitoring of PD motor complications.

In recent time there is surge of many wearable sensors and
devices for monitoring and assessment of PD patients symp-
toms severity and response to therapy [11]–[13]. However,
these devices have issues with respect to long battery lifetime
and lack of cloud based assessment. Lately, researchers have
concentrated on the prediction of cardinal motor symptoms,
evaluating the progression of the disease by using DL that
outperform a classical ML model applied on hand-crafted
features in the time series classification task [14], [15]. As
in [16]–[18] the authors main objective is to use deep brain
simulation and inertial sensors data from single PD subject to
quantify PD hand tremors. Since the model is trained and val-
idated on single subject motor signals the DL model obtained
considerable accuracy but for proper adoption and acceptance
in clinical site the data density matters. However, a limited
number of studies have explored or compared medication state
(ON or OFF) effect on objective measurement of tremor and
bradykinesia severity. Contrary to the existing solutions, our
study proposes an eHealth monitoring system for PD patients
based on DL and cloud technology. This study is aimed at
creating a DL model that can predict the response of patients
suffering from PD to L-dopa drug. The insights obtained from
this analysis will provide means to improve patients’ quality of
life by providing useful information to their clinicians in terms
of dose optimization (thus reducing medication risk effects).

The remaining paper is structured as follows. Section II
elaborates the whole architecture of the system. This section
provides a description of data description, experimental proto-
cols, signal analysis using CWT and mapping scalograms to
the participant’s UPDRS III score to estimate the degree of
PD severity using the CNN-based transfer learning–AlexNet
network. Experimental outcomes are explained in section III,
and finally, in section IV some conclusions are provided.

II. PROPOSED FRAMEWORK

In comparison to other controlled studies, we are proposing
an integrated system which addresses most of the problems
in remote and continuous monitoring of PwPD and assimilate
diverse aspects such as patient’s physical health in ON and
OFF state while performing different tasks; walking, swing,
and set of DLA tasks. Likewise, it generates precise, viable
and opportune capacity and handling of gathered inertial
sensors data, effective data analysis, processing and producing
accurate and authentic information to the respective end users.

Fig. 1. presents the architecture of the proposed cloud-
based PD monitoring system. The person is wearing a Shim-
mer device and is performing some movements by his most
affected limb. The device is wirelessly connected with MS
azure cloud which provides ServiceNow platform in the form
of a web application where a database is created of motion
data transferred from Shimmer. That data goes to the module
developed for monitoring and assessment of PD patients’
symptoms in cloud. First, the module converts the inertial
sensor data to scalograms using CWT and then passes it to
CNN based transfer learning module to find the severity level.
Finally, the results are updated in the ServiceNow stage which
can be checked by the patient as well as by the clinical expert
who received access to cloud administration.

A. Data Description

The dataset used in this study is MJFF Levodopa
Wearable Sensors Dataset supported by the Michael
J. Fox Foundation at: https://www.michaeljfox.org/news/
levodopa-response-study, [19]. Subjects who participated in
this study were recruited from two clinical sites, and were
monitored both in-clinic, while performing a set of standard
activities, and at home while performing their DLAs. All
study participants wore a Shimmer 3 on the wrist of the most
affected limb. In total 17 individuals participated in this study
i.e., 6 women, 11 men with mean age ± standard deviation
(SD) of 69.52±8.76 years old. The demographic details of
these patients are given in Table I. The accelerometer data
is collected from PwPD in ON and OFF state and labelled
according to neurologists based on UPDRS scoring.

TABLE I
DEMOGRAPHIC DETAILS OF PD PATIENTS

Patient Gender Age Dominant
hand

More affected
upper limb

3BOS Female 86 Right Right
4BOS Female 52 Right Right
5BOS Male 74 Right Right
6BOS Male 62 Right Left
7BOS Male 74 Right Right
8BOS Male 64 Right Right
9BOS Female 69 Right Left
10BOS Male 83 Right Right
11BOS Male 61 Right Right
12BOS Female 82 Right Right
13BOS Male 68 Right Right
14BOS Male 65 Right Right
15BOS Female 70 Right Right
16BOS Male 70 Right Bilateral
17BOS Female 60 Left Bilateral
18BOS Male 65 Right Right
19BOS Male 77 Right Right

B. Study Protocol

To appraise clinically pertinent measures of the severity of
PD signs, including motor symptom fluctuation in response
to levodopa drug, the experimental study is based on four
continuous days of monitoring.
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Fig. 1. Block diagram of the proposed PD monitoring system.

On the first day of trial, study participants came to the labo-
ratory after taking their medication(s), answered demographic
as well as medical history questions. Then, they performed
section III of the MDS-UPDRS and daily routine tasks. The
rundown of activities performed incorporate standing, strolling
in an orderly fashion for 30s, strolling in straight line for 30s
while counting in reverse, strolling higher up, strolling down
steps, strolling through a limited passageway, executing finger-
to-nose practice for 15s (twice with each arm), rotating hand
movements for 15s (twice with each arm), drawing, opening
a jug and pouring water (multiple times), organizing pieces of
paper in folder (twice), gathering stray pieces for 30s, folding a
towel multiple times, and sitting. This arrangement of errands
endured around 20 minutes and, barring strolling here and
there steps, was rehashed 6-8 times at 30-minute spans. For
each case of each undertaking performed, clinical marks of
manifestation seriousness and additionally indication presence
were given by a clinician.

During Day 2 and Day 3, study participants were instructed
to conduct their usual activities. The subjects were likewise
approached to perform a short arrangement of set of tasks
corresponding to specific items of section III of the MDS-
UPDRS (i.e., rotating hand developments for 30s (once with
each arm), finger-to-nose for 30s (once with each arm), and
sitting discreetly for 30s) every 30 minutes, for a total of 7
times on each of the two days at home.

On Day 4, subjects were asked to come to the laboratory in

state when medication(s) were withheld overnight for approx-
imately 12 hours. The same procedures that were performed
on Day 1 were performed once again on Day 4.

C. Signal Processing using Continuous Wavelet Transform
(CWT)

In the past, numerous research studies used Fourier trans-
form or Short Time Fourier transform to extract features for
PD motor symptoms either from lower body motion signals
or upper limb motion signals [20]. However, these methods,
erroneously miss many of the important features or it can
not be exactly identified where an event occurs [21]; to deal
with this, a vast number of features are extracted and as the
number of features increases, the energy consumption and the
latency affect the data storage, processing and analyzing of the
events. Since CWT provides both time and frequency domain
features, in this research study we employed CWT method on
recorded accelerometer signals from standard hand movements
exercises as well as from DLAs of PwPD with varying severity
scores. The CWT of a signal is represented by Eq. 1.

CWT (a, b) = ⟨f,Ψa,b⟩ = 1/
√
a

∫ ∞

−∞
f(t).Ψ ∗ (t− b/a)dt

(1)
Here ψ represents the wavelet mother function, which is a
template basis function of finite duration, zero mean and
variable frequency content; a and b signify the dilatation
and shifting variables respectively; CWT (a, b) addresses the
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wavelet coefficients and ∗ is the complex conjugate operator.
There is a coordinated correspondence between the scale and
the frequency, given the sampling rate and the picked wavelet
family. In our case, the ’Morlet’ wavelet has been used. The
range of scales for CWT analysis [1,smax] is chosen using
the frequency scale relationship of the chosen [22], which is
presented using Eq. 2.

smax =
Fc× Fs

f
(2)

Here Fc is the central frequency of the mother wavelet, Fs
is the sampling period and f is the tremor or bradykine-
sia frequency. With the experiment conducted in [23], the
bradykinesia dominant frequency of patients appeared as 0.32-
1.40 Hz while the tremor frequency of upper extremities lies
between 3-12 Hz. Considering the chosen wavelet, the central
frequency is 0.8125, the sampling frequency of data is 100
Hz and, following the frequency range at which tremor and
bradykinesia occurs, the CWT is computed. First, the ac-
celerometer data of participants at which tremor and bradyki-
nesia occurred is filtered out and labelled. Then, the data is
sorted out in the form of a matrix based on severity score from
which the CWT is computed. This range covers the five main
severity levels of general interest. So, for each input signal pro-
jected to TF domain by the CWT. After, the raw accelerometer
signal prepocessed to eliminate sensor orientation dependency,
nontremor data and artefacts, first the raw signal was trimmed
to individual procession events through a MATLAB script
with the 3-s temporal window preceding motion onset. A
total of 7263 scalograms (6763 tremor scalograms and 637
bradykinesia scalograms) are produced from the accelerometer
data. The number of samples per class is provided in Table II.
These scalograms give intuitive illustration in 3-D, explaining
color coded wavelet coefficients of a particular event at a
particular time and frequency. We adapted jet colormap for
scalograms representation. Motor related disorder specially
with such low frequency i.e. tremor and bradykinesia is usually
not marked with correct severity score and mostly the features
are missed out in hand-crafted feature extraction method, but
this CWT method produce the whole spectra of movement and
one can visualize the difference in each level. Further,these
scalograms are stratified with respect to severity scores in
separate folders using MATLAB script and then classified by
using a DL classifier.

D. AlexNet Transfer Learning Model for Classification

The objective of this research is to classify the scalograms
built using CWT with high success into various stages of
the PD disease patients in their ON and OFF state. With
passing time there is a massive growth observed in patients
impaired by PD. That is why it is needful to rank the patients
into distinct stages of disease from mild to severe in a swift
manner. In the present research, the AlexNet TL architecture
is the kind of experiment to alter it in different weights to
get best results as successfully, also applied to waste sorting
tasks to achieve state-of-art performance [24] The architecture

TABLE II
NUMBER OF SAMPLES PER CLASS

Class Number of samples
Tremor Score 0 2094
Tremor Score 1 2091
Tremor Score 2 1360
Tremor Score 3 1095
Tremor Score 4 123
Bradykinesia Score 0 148
Bradykinesia Score 1 186
Bradykinesia Score 2 113
Bradykinesia Score 3 110
Bradykinesia Score 4 80

has been modified as shown in Fig. 2. and we have striven to
increase the classification accuracy in the study of finding the
severity level for the better assessment by doctors. The details
of hyperparameters is provided in Table III.

The operations associated with the execution of the pro-
posed AlexNet design are depicted in Fig. 2. The initial step
is to resize the input scalograms to the size of 227×227×3,
which are transferred to the convolutional layer, the max
pooling layer, again convolution then max pooling and then 3
convolution layers following max pooling and finally, the fully
connected layers. In each layer there is performed a mathe-
matical operation defined using the expression (3), where n
is the image height and weight (pixels), s is stride, f is filter
used and p is for padding. So, in the particular Fig. 2. the input
images go to convolution operation the mathematical operation
is performed where n=227, the filter size is 11×11 stride is
2 which produces the images of size 55×55 with kernels=96
then it is passed to max-pooling layer with same mathematical
operation remember that in max-pooling layer the kernels are
not used so, it will remain same in number now again the
images are passed to a convolution layer and here we used
padding=2 and stride=1 whenever the s=1 and p=2 the size of
image remains same by the end of mathematical operation i.e.
27× 27 here and in last 3 convolution layer it is clearly seen
the padding=1 which keeps the size of image same i.e., 13×13
only the kernels are changing and in final max-pooling layer
the stride is 2 which makes the size of an image to half i.e.,
6x6. The output of neurons is computed as a scalar product of
a small portion of the image with their corresponding weights.
This cycle continues along the length and breadth. This activity
is performed in the convolutional layer. Figue 2 elaborates all
the types of layers and learnable parameters. In the Rectified
Linear Unit (RELU) layer, an element-wise activation function
is employed. In the pooling layer, the samples are decreased
along with the spatial coordinates. This interaction is called
decimation. The fully Connected (FC) layer registers the class
scores for each sample and gives the prediction. The likelihood
score for each of the prediction classes is operated and the
class that is scoring with a maximum probability score is
elected as the predicted class as shown in Fig. 2. The last
FCL is revised to five outputs since the original FCLs were
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Fig. 2. AlexNet Transfer Learning model architecture

TABLE III
HYPERPARAMETERS ADOPTED

Momentum Initial Rate Decay
Factor

Learning Rate Decay
Factor

Moving Average
Decay

Number of Epochs
Per Decay

Weight
Decay

Batch
Size

0.9 0.01 0.01 0.999 150 0.0005 128

developed to classify 1,000 categories.

n+ 2p− f

s
+ 1 (3)

However, the model is trained on 70% data and tested on
30% data images. Score-wise strategy is adopted in this
study. Since data is based on subjects facing different severity
levels and all are labelled in form of severity-scores. The
hyperparameters adopted in model training are given in Table
III. For bradykinesia the model gives 86.4% accuracy and for
the tremor severity score analysis it gives 90.9%.

E. Cloud-based data processing and analysis

The role of cloud technology in current system is multifold.
For instance, it stores the hefty amount of motion data from
the inertial sensors, pre-processes the samples of motor signals
and converts to scalograms by utilizing CWT and examines
the severity level using CNN model; this process runs when
the data is acquired from wearable device and then it classify
it into certain stages. The person associates with the authority
over the cloud through the web utilizing their smart telephones
can monitor the results updated in cloud platform. In cloud, the
ServiceNow platform [25], [26] is implemented. This platform
can be used as a “tunnel” or “gateway” between the wearable
device and the DL computation method, as with ServiceNow
we can implement a POST method on top of it (or use the

out-of-the-box ones offered) to upload the acquired data to
a database table, offering the possibility to a script to fetch
these data through a GET method and feed them to the DL
algorithm. The whole computing and processing services are
provided in a distributed manner. The cloud stage helps in
maintaining clients’ privacy as well as data security. It is
done in various stages in the framework, data assortment,
information transmission and cloud data stockpiling scenario.
While gathering information, all information is passed to the
cell phone in an encrypted format. Additionally, in case of data
transmission, encoded data is transmitted to the cloud and only
the approved clients can get to it. Since the data measurement
is in real time. As each value is stored locally on the device and
once all values are read it is uploaded to cloud so there is no
such long delay that effects the communication. Also, the data
upload speed is dependent on the size of the file created with
all values that is read and upload speed. But ServiceNow has
an (Avg 53.2 Mbps/25.8 Mbps) user upload speed as shown
in Fig. 3. The only bottleneck left is the bandwidth of the
users internet. But the inertial data in form of CSV files are
in range of a couple MBs at worst so it is really not even that
observable delay to upload the data from wearable device to
cloud.
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Fig. 3. ServiceNow speed test. The blue line shows the download speed and orange line depicts the upload sped of data

III. RESULTS AND DISCUSSION

Since the model is trained and tested separately for tremor
and bradykinesia, the confusion matrix generated by each
model is shown in Fig. 4(a). and 4(b). The red boxes show
the number of wrong predictions while the green box depicts
correct predictions. Each score is considered as a separate
class. The performance metrics of the algorithm are depicted
in the form of sensitivity and specificity for each class.
To calculate the sensitivity and specificity we followed the
mathematical formula as mentioned in Eqs 4 and 5 The TPR
represents the true positive rates, FNR means false negative
rates, TNR represents true negative rates and FPR shows false
positive rates. The overall produced results are elaborated in
Table IV.

Sensitivity =
TPR

TPR+ FNR
(4)

Specificity =
TNR

TNR+ FPR
(5)

The model is trained and tested separately for tremor and
bradykinesia severity score analysis. AlexNet model shows
very promising results by giving 86.4% accuracy for bradyki-
nesia estimation and 90.9% for tremor with a good sensitivity
and specificity in terms of each scoring class as elaborated in
Table IV.

TABLE IV
SENSITIVITY AND SPECIFICITY OF EACH CLASS

Class Sensitivity Specificity
Tremor Score 0 0.97 0.95
Tremor Score 1 0.93 0.97
Tremor Score 2 0.88 0.96
Tremor Score 3 0.88 0.97
Tremor Score 4 0.36 0.99
Bradykinesia Score 0 0.90 0.94
Bradykinesia Score 1 0.87 0.94
Bradykinesia Score 2 0.87 0.96
Bradykinesia Score 3 0.77 0.98
Bradykinesia Score 4 0.90 0.97

Considering the existing methods which show poor in-
terpretability, our study shows promising results in extract-
ing potentially useful features using CWT for identifying
symptoms that are often overlooked by manual features. The
system tracks PD symptoms and analyzes medication effect
on patients utilizing the MDS-UPDRS data as ground truth.

(a) Confusion matrix for tremor severity

(b) Confusion matrix for bradykinesia severity

Fig. 4. Confusion matrix

IV. CONCLUSION

Nowadays, PD administration depends on normal clinical
visits for evaluation and close checking of PD side effects
which eventually creates trouble for patients and their families.
To solve this issue, remote monitoring of PwPD brings light
to considerable measures such as home-based continuous
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monitoring of patients, check seriousness of symptoms, correct
diagnosis and treatment of patients which reduces the burden
on medical practitioners and create easiness for patients and
their care takers. The final severity results obtained assess the
L-dopa drug effect on patient’s symptoms and help them in de-
ciding the drug dosage variation. The work in this study helps
clinicians to identify subtle changes in motor performance
that characterize PD onset in response to their recommended
treatment. In this work the patients while wearing Shimmer
3 device perform various physical activities in ON and OFF
state and the data from Shimmer 3 goes directly MS azure
cloud. In lieu of extracting temporal and spectral features,
CWT creates scalograms which are further classified using
AlexNet. The users can access the updated results in the form
of a medical report on the web application. The entire system
is very well developed and easy to implement. In future, we
are developing a new IoT based bracelet for a comparative
analyze with Shimmer results.
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[9] A. Samà, C. Pérez-López, D. Rodrı́guez-Martı́n, A. Català, J. M.
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