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Abstract
An axiparabola is a reflective aspherical optics that focuses a light beam into an extended focal
line. The light intensity and group velocity profiles along the focus are adjustable through the
proper design. The on-axis light velocity can be controlled, for instance, by adding
spatio-temporal couplings via chromatic optics on the incoming beam. Therefore the energy
deposition along the axis can be either subluminal or superluminal as required in various
applications. This article first explores how the axiparabola design defines its properties in the
geometric optics approximation. Then the obtained description is considered in numerical
simulations for two cases of interest for laser-plasma acceleration. We show that the axiparabola
can be used either to generate a plasma waveguide to overcome diffraction or for driving a
dephasingless wakefield accelerator.

Keywords: laser, optics, spatio-temporal couplings,
longitudinal chromatism/pulse front curvature, laserwakefield acceleration

(Some figures may appear in colour only in the online journal)

1. Introduction

Bessel beams are diffractionless light waves and can propagate
with subluminal or superluminal velocities [1]. These proper-
ties have found many applications in material processing [2],
optical guiding of microscopic particles [3], optical coherence
tomography [4] and formation of plasma waveguides [5]. Sev-
eral optics, e.g. axilenses [6], axicon lenses [7], or conic mir-
rors, are able to generate quasi-Bessel beams. The axipara-
bola is an aspherical mirror, which combines the advantages of
these different optics by being achromatic, having a high dam-
age threshold and allowing for control of the intensity distribu-
tion along the focal line [8]. These features make it the perfect
tool for producing ultra-short quasi-Bessel beams at very high
intensity.

∗
Author to whom any correspondence should be addressed.

A beam focused by an axiparabola has phase and group
velocities, which are equal to each other, and in vacuum they
are larger than the speed of light in vacuum c [9]. Depending
on the mirror design, the beam’s on-axis velocity can either
only grow or only fall along the focal line. Moreover, the
intensity and velocity profiles are fully coupled: any change
of the optics surface through its so-called sag function, aiming
at modifying the intensity profile, impacts the velocity pro-
file. However, this restriction changes if the focused beam ini-
tially contains spatio-temporal couplings (STC), which allow
to decouple the intensity and velocity profiles.

In this article, we study theoretically the properties of a
laser beam focused by an axiparabola and we present ways to
control these properties by the means of STC. We first derive
basic equations and describe the intensity and velocity pro-
files without STC and in the geometrical optics approxima-
tion. Secondly, we explore effects of STC on a velocity pro-
file and determine the way to control it. We then present an
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optical propagation algorithm, which we further use to con-
firm the predictions of geometric optics. Finally we discuss
in more detail two examples of axiparabolas of relevance for
laser plasma accelerators development, such as dephasingless
wakefield acceleration [10–12] or diffractionless wakefield
acceleration with an all-optical plasma waveguide [8, 13, 14].

2. Basic equations

An axiparabola is an aspheric mirror that reflects a collim-
ated beam into an extended focal line by focusing rays at
different focal planes depending on their radial coordinate r
on the mirror. The shape of its surface is defined by the sag
function s(r). The rays coming parallel to the optical axis ζ
at the radial coordinate r impinge the mirror at ζ = s(r) and
are focused at ζ = f(r) = f0 + z(r) with f 0 the nominal focal
length, z(r) ∈ [0, δ] the focal line coordinate along the ζ axis,
and |δ| the focal depth (see figure 1(a)). The main differences
between an axiparabola and an axicon lens, or a conic mir-
ror, is that f 0 is non-zero, and that δ can be either positive or
negative (δ < 0 corresponds to outer rays focused first). This
means that the focal spot size and effective Rayleigh range are
decoupled. The mean focal spot transverse size is controlled
by f 0 and the focal range (‘effective Rayleigh range’) by δ.

From geometrical optics laws, the sag function is defined
by [8]:

s(r)+
r
2

(
1

D(r)
−D(r)

)
= f(r), (1)

with D(r) = ds/dr the sag derivative with respect to the radial
coordinate. Computing D(r) and choosing the positive solu-
tion, we get:

r
ds
dr

= s(r)− f(r)+
√
[s(r)− f(r)]2 + r2. (2)

Let σ(r) = s(r)− r2/4f0 be the deviation to a perfect parabola
and R the beam radius. Assuming that the deviation to a para-
bola is small, σ≪ r2/4f0 and δ2/8R2 ≪ 1, equation (2) can
be approximated as:

dσ(r)
dr

=− rz(r)
2ff0

+ o(r3). (3)

The integration of equation (2) or (3) allows to determine the
required sag function for achieving a given focal line f (r). This
will fix the intensity distribution at focus as well as the light
velocity evolution along the focal line.

2.1. Longitudinal intensity distribution

A key parameter for the practical use of axiparabolas is the
intensity distribution along the propagation axis. Let us start
from the geometrical optics description and define λz(z) as the
linear density of ray along the propagation axis ζ (in W.m−1).
The laser intensity on the axiparabola I0(r) (in W.m−2) is

defined as the surface density of rays, and it is related to the
linear ray density as [15]:

λz(z)dz= 2 πrdrI0(r). (4)

In the present study we assume a top-hat beam profile, so that
the intensity on the mirror is uniform, I0(r) = P0/(πR2) with
P0 the incident power, leading to:

dr
dz

=
λz(z)R2

2P0 r
, (5)

and finally

r(z) = R

(ˆ z

0

λz(z ′)
P0

dz ′
)1/2

. (6)

This equation allows to calculate the function r(z) and hence
the sag function defining the desired intensity profile λz(z)
[16]. For instance, for a focal line of constant intensity,
λz = P0/δ, we get that f= f0 + δr2/R2. The sag function can
then be obtained by integration of equation (2).

2.2. Transverse intensity distribution

While for a classical focusing optic, the focal depth, or in other
words the Rayleigh length, is closely linked to the beam waist,
these two quantities are decoupled at the focus of an axipara-
bola. For the sake of simplicity, we illustrate this property by
considering a top-hat incident beam. In the Fresnel diffrac-
tion regime, the field at the distance f(r) = f0 + z(r) from the
axiparabola is:

E(rζ ,z) =−iE0 k
f(r)

e
ik

(
f(r)+

r2ζ
2f(r)

) ˆ R

0
dreiΨ(r)rJ0

(
k
rζr
f(r)

)
,

(7)

with k= 2π/λ the wave-vector, rζ the radial coordinate over
the focal line, J0 the first Bessel function of first kind and:

Ψ(x) = k
(
x2/2f(x)− 2s(x)

)
= k

(
x2/2f(x)− x2/2f0 − 2σ(x)

)
,

for z≪ f0. For r≫ 1/kwe can use the stationary phasemethod
to estimate the integral [17, 18]:

E(rζ ,z) =−iE0 k
f(r)

e
ik

(
f(r)+

r2ζ
2f(r)

)√
2π

Ψ ′ ′(rs)
rsJ0

×
(
k
rζrs
f(r)

)
eiΨ(rs)+iπ/4, (8)

with rs the coordinate such as Ψ ′(rs) = 0 (note that we
assumed Ψ ′ ′(rs)> 0). According to equation (3), we have:

Ψ′(x)≈−kxz(x)
ff0

+ k
xz(x)
ff0

+ o
(
kx3/f 20

)
.

It follows from equation (5) that Ψ ′ ′(rs) = 2 r2s P0/(λz(z)
R2 f 20 ). As a consequence, the intensity along the focal line
is:
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Figure 1. (a) Schematic representation of rays focused by an axiparabola with a positive δ. (b) Schematic representation of a ray focused by
an axiparabola with a positive δ in a constant density plasma.

I(rζ ,z) = |E(rζ ,z)|2

=
E2
0k

2

f 20

2π
kΨ ′ ′(rs)

r2s J
2
0

(
k
rζrs
f0

)
= kλz(z)J

2
0

(
k
rζrs
f0

)
,

(9)

with

rs = R

√ˆ z

0

λz(z ′)
P0

dz ′. (10)

One may easily see that the radial intensity profile is described
by the first Bessel function and that the on-axis intensity
is I0(z) = I(0,z) = kλz(z). We finally find that the first-zero
radius, for rs ≫ 1/k, is:

rζ,0(z)≈ 0.77 λN

(ˆ z

0

I0(z ′)
kP0

dz ′
)−1/2

, (11)

with N= f0/2 R the f-number. As a result, equations (9) and
(11) show that the intensity does not depend on N, and hence
that r0 can be adjusted independently of I0 by changing N. For
example, for a constant intensity focal line we get I0 = kP0/δ
and rζ,0 = 0.77λN(δ/z)1/2; the intensity at focus depends only
on the beam power and focal depth, while the focal spot is a
function of N. Therefore an axiparabola can redistribute the
laser energy into a focal line combining a long focal depth and
a very small focal spot.

2.3. Velocity profile

It is well-known that Bessel beams travel at constant velocit-
ies that can exceed light speed in vacuum. However, as shown
in previous section, an axiparabola generates a quasi-Bessel
beam, for which the longitudinal group velocity is still super-
luminal but is no longer constant. Defining the group velo-
city of the beam as the velocity of the intensity peak along the
focal line we can describe it using equation (2). The optical
path of light in vacuum from a certain plane perpendicular to

the optical axis and reflecting on the axiparabola to the optical
axis is:

p(r) =
√
[s(r)− f(r)]2 + r2 − s(r). (12)

The geometrical group velocity is the change of the focus pos-
ition in time υ = df/dt, and we note that the increase of the
optical path on axis ζ is dp= cdt. With that in mind, we can
parametrize differentials as functions of r, and express the
group velocity as:

υ

c
=
df
dr

(
dp
dr

)−1

=

(
dp
dz

)−1

. (13)

Then using equations (2) and (12), we get in the paraxial limit:

υ

c
= 1+

2
(
ds
dr

)2
1−

(
ds
dr

)2 = 1+
r2

2f 2
. (14)

Equation (14) shows that the group velocity is always larger
than the speed of light in vacuum [19, 20] and that its evolu-
tion along the focal line can be either increasing or decreasing,
depending on whether δ is positive or negative respectively.
For a top-hat incident beam, we get from equation (6) that the
group velocity of the focal line is:

υ

c
= 1+

R2

2f 2P0

ˆ z

0
λz(z

′)dz ′, (15)

which illustrates the direct relation of the group velocity to
the local intensity. This link between velocity and intensity
hinders the actual ability of axiparabolas to control the velo-
city of laser power propagation. Nevertheless, as will be shown
later, this scheme still holds the opportunity to dissociate that
connection through STC, which gives another degree of free-
dom to control and modify the group velocity along the focal
line.

3
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3. Control of the velocity

3.1. Group velocity

Axiparabola focuses different annular beamlets annuli to dif-
ferent focal planes depending on their incident radial coordin-
ates. This spatial separation allows for control of the beamlets
arrival and thus control of the group velocity [21]. In other
words: group velocity along the focal line depends on the
radial coordinate on the mirror. Hence, its value can be modi-
fied by adding a radial delay prior to the axiparabola. This can
be exemplified by considering a linear propagation in vacuum.
Starting from equation (13), a radial delay τ(r) is added and
modifies the velocity υ as υm:

υm
c

=

(
d(p+ cτ)

dz ′

)−1

. (16)

Assuming that p≫ cτ , this leads to:

υm
c

≃ υ

c

(
1− υ

c
c
dτ
dr
dr
dz

)
. (17)

This highlights that the velocity can be controlled by introdu-
cing simple STC. To properly illustrate this phenomenon, let
us assume a top-hat beam in the paraxial limit for an axipara-
bola such as r2/2f 2 ≪ 1: the radial delay needed for having
an intensity peak that propagates, at a constant velocity c+ υ0
with υ0 ≪ c, is:

c
dτ
dr

≃
(υ
c
− υ0

c
− 1

)( c
υ

)2 2P0r
λzR2

, (18)

leading to:

cτ ≃ P0

λzR2

(
−υ0
c
r2 +

1
2f 2

(
υ0
c
+

1
2

)
r4
)
+ o(r5). (19)

Here the term∝ r4 flattens the velocity profile to get an intens-
ity peak that propagates at a constant velocity c, while the
quadratic term allows to adjust the value of the velocity around
c. This quadratic term corresponds to the pulse front curvature
(also known as longitudinal chromatic aberration), an aber-
ration which is present in many laser chains, and which can
be controlled by using simple plano-convex optics in the laser
chain [22, 23]. Achieving the r4 term would require the use of
aspheric lenses, specially designed for a given axiparabola.

This simple prediction model can also be adjusted to take
into account the medium in which the laser propagation occurs
depending on the applications. For applications in the field
of laser-plasma acceleration, the design has also to account
for the laser propagation in plasma. For this, let us consider
a uniform plasma slab localized in between the focal line’s
boundaries, i.e. plasma density ne is constant for f0 ≤ z≤
f0 + δ and zero elsewhere, as shown in figure 1(b). The plasma
is assumed to be underdense, which means ne ≪ nc, with
nc = π/

(
λ2
0 re

)
= 1.1 · 1021 (λ0[µm])−2 cm−3 being the crit-

ical plasma density for the wavelength λ0 and re the classical
electron radius.

Propagation of light in plasma is affected by the refrac-
tion at the vacuum/plasma interface and by the modification of
the light velocity in plasma. Let i(r) be the angle between the
optical axis and the rays that are focused at z(r) in vacuum and
X(r) the propagation distance after the vacuum/plasma inter-
face of the rays that are focused at z(r) in vacuum. Assuming
paraxial rays, these two variables are defined by:

i(r) = arctan(r/( f− s)), (20)

z= Xcos(i). (21)

The rays that are focused at z(r) in vacuum cross the optical
axis at a new coordinate:

z ′ = X ′ cos(i ′)

≃ zη

(
1+

i2

2

)
, (22)

for i≪ 1 and with η ≃ 1− ne/(2nc) being the refractive index
of plasma. This involves a shortening of the focal line (δ ′ < δ)
that leads to a corresponding increase of the intensity. As the
optical path in plasma remains equal to the one in vacuum
(X= X ′/η), the decrease of the propagation distance is com-
pensated by the slower group velocity of light in plasma
(υg/c= 1− ne/(2nc)). The group velocity of the focal line in
plasma can therefore be written:

υp = υ
dz ′

dz
, (23)

with υp the group velocity in plasma and υ the one in vacuum.
Following the same method as in equation (17), this involves
that the modified velocity in plasma can be written:

υp,m
c

≃
υp
c

(
1− υ

c
c
dτ
dr
dr
dz

)
. (24)

From this equation, the required radial delay can be computed
with the same process as in equation (18). This study of the
group velocity is applicable in vacuum and in any transpar-
ent medium and shows that the group velocity can be adjusted
independently of the intensity of the focal line, allowing for
subluminal or superluminal velocities.

3.2. Phase velocity

In dispersive media, group velocity and phase velocity can
be different. Therefore, to fully describe the focal line
propagation, the impact of the control of the group velocity
through STC on the phase velocity is also of interest. Let
φ(z, t) = kp(z)−ωt be the beam phase, with ω the laser pulsa-
tion. The phase velocity is:

υφ =
dφ/dt
dφ/dz

, (25)

4
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and in a plasma and in the absence of STC, its spatial derivative
can be written:

dφ
dz

= k
dp
dz

=
ω

υ
(26)

with υ the group velocity. This leads to the following formula:

υφ
c

=
υ

c
= 1+

r2

2f 2
. (27)

The phase velocity of the focal line is thus equal to its group
velocity. Now let us observe the evolution of the phase velo-
city when a radial delay τ(r) is added prior to the axipara-
bola as presented in the previous subsection. The phase is then
changed to:

φm = k(p+ cτ)−ω (t+ τ)

= kp−ωt= φ. (28)

This means that the focal line phase is not modified by the
introduction of a radial delay and therefore the phase velocity
is always equal to the unaltered group velocity, and thus dif-
ferent from the group velocity in presence of STC:

υφ
c

=
υ

c
= 1+

r2

2f 2
. (29)

4. Optical propagation modeling

To simulate the evolution of the laser field along its path
we solve numerically the Helmholtz equation. In the Fourier
space, propagation of the complex field ψ(ω,kx,ky,z) from the
plane z0 to z1 can be computed bymultiplying it by the propag-
ator:

ψ1 = ψ0 exp
(
i(z1 − z0)

√
ω2/c2 − k2x − k2y

)
.

Here, the field is considered strictly cylindrically symmet-
ric, and solutions can be expressed via cylindric modes, i.e.
Bessel functions ψ(r) =

´
rdrψ̂J0(krr), where kr is equivalent

to
√
k2x + k2y in the propagator expression.

One method, based on the quasi-discrete Hankel transform
was demonstrated in [24]. The approachwas based on the sym-
metric transform (same matrix for forward and inverse projec-
tions), where both spatial and spectral axes, r and kr, were built
on the zeros of J0. In the case of a sharply focused beam, the
beamwaist can be 102 − 103 times smaller than the spot on the
mirror, and to resolve both one may require large numbers of
points along the radial and spectral axes Nr = Nkr ≥ 104.

For our calculations, we have used a non-symmetric trans-
form with different sampling of the initial and focused
images. For this we consider field decomposition into the
series,ψ(ri) =

∑Nr−1
j=0 ψ̂jJ0(kr, jri), where ri = Rmaxαi/αNr and

kr, j = αj/Rmax with αi defined as the roots of Bessel function
J0 (see [24]). This gives the inverse Hankel transform matrix
T(−1)
ji = J0(αiαj/αNr), and the forward transform T ij, which

is found by the numerical inversion of T(−1)
ji . To reconstruct

the field, we use the re-sampled inverse transform T(−1)
ji =

J(r ′i kr, j), where axis kr, j is same as in T ij, but r ′i is sampled
uniformly in a small area around the beam effective waist.

Both schemes have been tested numerically in all relev-
ant cases. The resampling scheme demonstrated a very good
agreement with the original approach [24] with significant
sampling reduction (reduction ∼ 8 times of Nr). The imple-
mentation of this and a few other schemes can be found in the
open-source library ‘Axiprop’ in [25].

5. Axiparabola with a constant intensity focal line

Let us now consider an axiparabola design for relevant applic-
ations in laser-plasma acceleration. In laser wakefield acceler-
ators (LPA), an ultra-short laser pulse is focused in a plasma
to generate a plasma wave. The amplitude of the longitudinal
electric field of such a wave can be a few orders of magnitude
higher than those created in conventional linear accelerators.
One fundamental limitation of LPA is the particle-wave deph-
asing that is due to the mismatch between the group velocity
of the laser in plasma and the velocity of relativistic electrons.
A laser pulse focused by an axiparabola to a constant intens-
ity line could be used to drive a plasma wave with a phase
velocity equal to the vacuum speed of light, overcoming this
limit. As shown in equation (18), the combination of axipara-
bola and appropriate STC allows to control the group velocity,
and hence eventually to phase-lock the light beam velocity on
the electron beam velocity. This paved the way for a new accel-
eration concept that could increase the energy of the generated
electrons by at least an order of magnitude [10, 11].

To design an axiparabola with a constant intensity focal
line, it was assumed that the linear density of rays λz = P0/δ,
with δ the focal line length. By replacing the expression of λz
in equation (6), the focal length expression becomes:

f= f0 + δ
( r
R

)2
(30)

From equation (15), the group velocity can now be written:

υ

c
= 1+

R2

2δf 2
z. (31)

Note that the group velocity with this particular axiparabola
design has a linear dependence on the position along focal line
z. For simulations, the following characteristics were chosen:
a nominal focus f0 = 400 mm, a focal line length δ= 15 mm
and a radius R= 38.1 mm.

In figure 2(a), we plot the radial distribution of laser field
intensity mapped along its propagation, and figure 2(b) shows
the beam characteristics. From figure 2(b) one can see that,
in agreement with theoretical considerations laser intensity
remains constant along the focal line. The sinusoidal vari-
ations are typical characteristics of a Bessel beam. As the first-
zero radius diminishes along the focal line, while the intensity
remains constant, the energy encircled in the focal spot also
diminishes proportionally to the first-zero radius.

5
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Figure 2. (a) Fluence map of a constant intensity focal line in arbitrary units, as a function of (r, z). (b) Axiparabola relative intensity (blue
curve), relative energy which is defined by integrating the intensity in the first-zero radius (orange curve) and first-zero radius (green curve)
along the focal line.

Figure 3. (a) Group velocity as a function of the position along the focal line of the axiparabola. The orange curve corresponds to
equation (31), the blue and purple ones to simulation data obtained without and with the radial delay displayed in (b), respectively.
(b) Radial delay needed for a group velocity equal to (c), from equation (18).

The group velocity of the focal line is calculated by aver-
aging over the intensity map, hence oscillations are visible
within the group velocity’s evolution along the focal line
(figure 3(a)). Leaving aside the oscillations, which can not
be described in the framework of geometrical optics, the
group velocity increases linearly with z, as expected from
equation (31). The STC computed from equation (18) and
shown in figure 3(b), enable to obtain a focal line with a
constant group velocity close to the light velocity in vacuum
c. The gap observed between the obtained and aimed group
velocities, as well as the slope deviation between the orange
and blue curves are likely due to the paraxial approximation
made to compute the theoretical velocities. The quadratic term
of STC should, therefore, be adjusted to get the requested
velocity. Note that the end of the focal line also disturbs the
measurement of the group velocity, which results in its sud-
den increase (purple curve in figure 3(a)).

6. Axiparabola with a constant energy focal line

The great versatility of axiparabolas for applications provides
the possibility to achieve various focal line distributions.
Axiparabolas with various intensity distributions are of par-
ticular interest for the investigation of plasma channels gener-
ation for guiding purposes (figure 4). The study of an axipara-
bola with another sag function also allows us to assess the
validity and solidity of our theoretical model.

Let’s take the example of an axiparabola with a constant
energy focal line. In order to obtain a focal line with a constant
energy encircled in the central spot, the linear density of rays
λz needs to compensate for the first-zero radius decrease, as
illustrated in figure 2(b). Therefore, following equation (11),
λz needs to be proportional to the square of the incident rays
radius on the axiparabola r : λz ∝ (r/R)2, which leads for a
holed axiparabola to

6
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Figure 4. Example of setup for a guiding experiment. The generation beam is focused by an axiparabola and shot a few nanoseconds before
the guided beam to allow the formation of the waveguide [8].

Figure 5. (a) Fluence map of a constant energy focal line in arbitrary units as a function of (r, z). (b) Axiparabola relative intensity (blue
curve), relative energy which is defined by integrating the intensity in the first-zero radius (orange curve) and first-zero radius (green curve)
along the focal line.

f= f0 +
1
a
ln
( r
R
eaδ

)
, (32)

with a= 1
δ ln

(
R
rhole

)
where rhole is the radius of the hole at the

center of the axiparabola. However, this simple model over-
estimates the energy for small radii, which would result in an
increasing energy focal line. Therefore, we use an empirical
formula similar to the previous one but more in adequation
with reality for smaller radii.

In practice this condition is fulfilled for:

f= f0 + 0.1δ
r
R
+ 0.9δ

( r
R

) 1
2
, (33)

leading to an expression for the group velocity:

v
c
= 1+

δ2

f 2

(
0.405

r
R
+ 0.135

( r
R

) 3
2
+ 0.01

( r
R

)2
)
. (34)

The coefficients of equation (33) were obtained and adjus-
ted through iterations using the propagation code, detailed
in section 4, in order to obtain a constant energy focal
line.

For simulations, we assume the same parameters as in
section 5: a nominal focus f0 = 400 mm, a focal depth
δ= 15 mm and a radius R= 38.1 mm.

We observe in figure 5(b) that the intensity effectively
increases along the focal line to compensate for the decrease
of the first-zero radius.

In figure 6, the theoretical group velocity matches the
numerical estimate, with the deviation at the end of the focal
line, which is mainly due to the ray approximation assumption
made to derive equations. This confirms the reliability of the
simple model exposed in the first three sections, for axipara-
bolas with different sag functions and different purposes. The
STC needed to obtain a focal line group velocity equal to c is
also validated by simulation data.

7
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Figure 6. (a) Group velocity as a function of the position along the focal line of the axiparabola. The orange curve results from
equation (31). The blue and purple curves correspond to simulation data obtained without and with the radial delay displayed in (b),
respectively. (b) Pulse front delay required for the group velocity to equal c, according to equation (18).

7. Conclusion and future work

In conclusion, we demonstrated the possibility to control the
longitudinal intensity distribution and the beam velocity, over
a distance much larger than the Rayleigh length, using an
axiparabola. The adaptability of this aspheric mirror was illus-
trated by designing and presenting two optical configurations
for different applications. We also showed through theory and
simulations that the group velocity of the focal line can be con-
trolled through STC and that the corresponding delay can be
evaluated from the main axiparabola features. The unique cap-
abilities and versatility of axiparabolas open up new perspect-
ives for manipulating intense and ultra-short laser pulse, which
is a promising boost for the development of compact and flex-
ible bright radiation and particles sources in laser wakefield
acceleration frame. Moreover, a better control of these high
intensity focal line properties (intensity distribution, propaga-
tion velocity) can also be an advantage for many other applica-
tions, e.g. soft x-ray laser [26], pulse compression in a plasma
[27] or photon acceleration [28, 29].
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