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Abstract. Robin’s criterion states that the Riemann Hypothesis is true
if and only if the inequality σ(n) < eγ · n · log log n holds for all natural
numbers n > 5040, where σ(n) is the sum-of-divisors function of n and
γ ≈ 0.57721 is the Euler-Mascheroni constant. We require the proper-
ties of superabundant numbers, that is to say left to right maxima of
n 7→ σ(n)

n
. In this note, using Robin’s inequality on superabundant num-

bers, we prove that the Riemann Hypothesis is true. This proof is an
extension of the article “Robin’s criterion on divisibility” published by
The Ramanujan Journal on May 3rd, 2022.
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1 Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part
1
2 . It is considered by many to be the most important unsolved problem in
pure mathematics. It was proposed by Bernhard Riemann (1859). The Riemann
Hypothesis belongs to the Hilbert’s eighth problem on David Hilbert’s list of
twenty-three unsolved problems. This is one of the Clay Mathematics Institute’s
Millennium Prize Problems. As usual σ(n) is the sum-of-divisors function of n∑

d|n

d,

where d | n means the integer d divides n. Define f(n) as σ(n)
n . We say that

Robin(n) holds provided that

f(n) < eγ · log log n,

where the constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is
the natural logarithm. The Ramanujan’s Theorem stated that if the Riemann
Hypothesis is true, then the previous inequality holds for large enough n. Next,
we have the Robin’s Theorem:

Proposition 1. Robin(n) holds for all natural numbers n > 5040 if and only if
the Riemann Hypothesis is true [4, Theorem 1 pp. 188].
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Superabundant numbers were defined by Leonidas Alaoglu and Paul Erdős
(1944). In 1997, Ramanujan’s old notes were published where he defined the
generalized highly composite numbers, which include the superabundant and
colossally abundant numbers. Let q1 = 2, q2 = 3, . . . , qk denote the first k con-
secutive primes, then an integer of the form

∏k
i=1 q

ai
i with a1 ≥ a2 ≥ . . . ≥ ak ≥ 1

is called a Hardy-Ramanujan integer [2, pp. 367]. A natural number n is called
superabundant precisely when, for all natural numbers m < n

f(m) < f(n).

We know the following property for the superabundant numbers:

Proposition 2. If n is superabundant, then n is a Hardy-Ramanujan integer [1,
Theorem 1 pp. 450].

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)

n1+ϵ
≥ σ(m)

m1+ϵ
for (m > 1).

There is a close relation between the superabundant and colossally abundant
numbers.

Proposition 3. Every colossally abundant number is superabundant [1, pp. 455].

Several analogues of the Riemann Hypothesis have already been proved. Many
authors expect (or at least hope) that it is true. However, there are some impli-
cations in case of the Riemann Hypothesis might be false.

Proposition 4. If the Riemann Hypothesis is false, then there are infinitely
many colossally abundant numbers n > 5040 such that Robin(n) fails (i.e. Robin(n)
does not hold) [4, Proposition pp. 204].

Putting all together yields the proof of the Riemann Hypothesis.

2 Main Results

The following is a key Lemma.

Lemma 1. If the Riemann Hypothesis is false, then there are infinitely many
superabundant numbers n such that Robin(n) fails.

Proof. This is a direct consequence of Propositions 1, 3 and 4. ⊓⊔

For every prime number qk > 2, we define the sequence:

Yk =
e

0.2
log2(qk)

(1− 1
log(qk)

)
.

As the prime number qk increases, the sequence Yk is strictly decreasing [5,
Lemma 6.1 pp. 6]. We use the following Propositions:
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Proposition 5. [5, Theorem 6.6 pp. 8]. Let
∏k

i=1 q
ai
i be the representation of a

superabundant number n > 5040 as the product of the first k consecutive primes
q1 < . . . < qk with the natural numbers a1 ≥ a2 ≥ . . . ≥ ak ≥ 1 as exponents.
Suppose that Robin(n) fails. Then,

αn <
log log(Nk)

Yk

log log n
,

where Nk =
∏k

i=1 qi is the primorial number of order k and αn =
∏k

i=1

(
q
ai+1

i

q
ai+1

i −1

)
.

Proposition 6. [3, Lemma 3.3 pp. 8]. Let x ≥ 11. For y > x, we have

log log y

log log x
<

√
y

x
.

This is the main insight.

Lemma 2. Let
∏k

i=1 q
ai
i be the representation of a superabundant number n >

5040 as the product of the first k consecutive primes q1 < . . . < qk with the
natural numbers a1 ≥ a2 ≥ . . . ≥ ak ≥ 1 as exponents. Suppose that Robin(n)
fails. Then,

αn <

√
(Nk)Yk

n
,

where Nk =
∏k

i=1 qi is the primorial number of order k and αn =
∏k

i=1

(
q
ai+1

i

q
ai+1

i −1

)
.

Proof. When n > 5040 is a superabundant number and Robin(n) fails, then we
have

αn <
log log(Nk)

Yk

log log n

by Proposition 5. We assume that (Nk)
Yk > n > 5040 > 11 since αn > 1.

Consequently,

log log(Nk)
Yk

log log n
<

√
(Nk)Yk

n

by Proposition 6. As result, we obtain that

αn <

√
(Nk)Yk

n

and thus, the proof is done. ⊓⊔

This is the main theorem.

Theorem 1. The Riemann Hypothesis is true.
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Proof. We know there are infinitely many superabundant numbers [1, Theo-
rem 9 pp. 454]. In number theory, the p-adic order of an integer n is the expo-
nent of the highest power of the prime number p that divides n. It is denoted
νp(n). For every prime q, νq(n) goes to infinity as long as n goes to infinity
when n is superabundant [3, Theorem 4.4 pp. 12], [1, Theorem 7 pp. 454]. Let
nk > 5040 be a large enough superabundant number such that qk is the largest
prime factor of nk. Suppose that Robin(nk) fails. In the same way, let nk′ be
another superabundant number much greater than nk such that Robin(nk′) fails
too. By Lemma 2, we have

αnk
<

√
(Nk)Yk

nk

and

αnk′ <

√
(Nk′)Yk′

nk′
.

Hence,

αnk′ · αnk
<

√
(Nk′)Yk′

nk′
· αnk

.

Consequently,

αnk′ · αnk
<

√
(Nk′)Yk′

nk′
·

√
(Nk)Yk

nk
.

So,

(αnk′ · αnk
)2 <

(Nk′)Yk′

nk′
· (Nk)

Yk

nk
.

However, we know that
(αnk′ · αnk

)2 > 1.

Moreover, we can see that

(Nk′)Yk′

nk′
· (Nk)

Yk

nk
≤ 1

since the following inequality

Yk ≤ log(nk′ · nk)

log((Nk′)
Y
k′

Yk ·Nk)

is satisfied for nk′ much greater than nk, because of
Yk′
Yk

< 1 and limk→∞ Yk = 1.
In this way, we obtain the contradiction 1 < 1 under the assumption that
Robin(nk) fails. To sum up, the study of this arbitrary large enough superabun-
dant number nk > 5040 reveals that Robin(nk) holds on anyway. Accordingly,
Robin(n) holds for all large enough superabundant numbers n. This contradicts
the fact that there are infinite superabundant numbers n, such that Robin(n)
fails when the Riemann Hypothesis is false according to Lemma 1. By reductio
ad absurdum, we prove that the Riemann Hypothesis is true. ⊓⊔
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3 Conclusions

Practical uses of the Riemann Hypothesis include many propositions that are
known to be true under the Riemann Hypothesis and some that can be shown
to be equivalent to the Riemann Hypothesis. Indeed, the Riemann Hypothesis is
closely related to various mathematical topics such as the distribution of primes,
the growth of arithmetic functions, the Lindelöf Hypothesis, the Large Prime
Gap Conjecture, etc. Certainly, a proof of the Riemann Hypothesis could spur
considerable advances in many mathematical areas, such as number theory and
pure mathematics in general.
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