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Abstract: Here  we  assume  a  discrete  random  variable,  possessing a  one-to-one
correspondence with the set of natural numbers. Its Shannon entropy is considered and some
distributions, obtained by means of the Maximum Entropy Principle, will be discussed too.
Then two entropies, the  q-entropy and κ-entropy proposed by C. Tsallis and G. Kaniadakis
respectively,  will  be considered.  These entropies  have as their  limit  the Shannon entropy
when entropic parameters q and κ approach specific values. We will show some relationships
existing between  the Shannon entropy and the above mentioned generalized entropies and
give some links regarding other functions, in particular the related logarithms. Exponentials
will be discussed too. We will also address ourselves to the generalization of the sum, in the
framework of the κ-calculus proposed by Kaniadakis. 

Keywords: Entropy,  Shannon entropy, Hartley entropy, Rényi entropy, Maximum Entropy
Principle, Uniform distribution, Geometric distribution, Generalized Entropies,  q-entropy, κ-
entropy, q-logarithm, κ-logarithm, q-exponential, κ-exponential, κ-calculus.

1. Introduction

Depending on the process  which we are studying,  the related random variable X may be
continuous or discrete. In the first case, the random variable is given in a continuous range of
values while, in the second case, the variable possesses a one-to-one correspondence with the
set of natural numbers.  If  X is discrete,  p(x i) is the probability distribution  at each
point  x i . In  the framework of a discrete random variable, in  1948 [1], Claude  Shannon
defined the entropy H   as the following expected value [2]:

    H (x )=∑i
p( xi ) I ( x i) =−∑i

p( xi ) logb p( xi )

In this expression,  I is the information content of  X ,  the probability of  i-event is  pi
and b  is the base of the used logarithm. Common values of the base are 2, Euler’s number
e  and 10.

Besides  Shannon  entropy, other  entropies  are  used  in  information  theory;  here  we  will
consider the generalized entropies proposed by C. Tsallis and by G. Kaniadakis, also known
as q-entropy and  κ-entropy [2-4]. Both entropies have simple functional forms. Actually, as
told in [5], the q-entropy was introduced in Information Theory and Statistics from 1967, [6],
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[7],[8], and after  it  was  re-discovered  in  1988  by Tsallis  (its  complete  name is  Havrda-
Charvát-Tsallis entropy). Kaniadakis proposed a new formulation of entropy in 2001. 

Here we will remember the relationship existing between q-entropy and κ-entropy [9]. Then,
we will also propose a discussion of the relationships between the generalized form of some
functions (such as exponential and logarithm).   

2. The entropies

In the following formulas we can see defined the entropies (Shannon, Tsallis q-entropy and
Kaniadakis κ-entropy), with a corresponding choice of measurement units equal to 1: 

(1)                        entropy      S=−∑
i

pi ln pi

(2)     q-entropy    T=Tq=
1

q−1 (1−∑
i

pi
q)

Here,  let  us add the Réyni entropy [10].  It  has,  like the q-entropy,  its  entropic parameter usually
indicated by the letter q: 

Rq=
1

1−q
ln(∑i pi

q)

In [3],  the Réyni entropy is  fundamental  for the given discussion.  Then,  we have the Kaniadakis
entropy:

(3)       κ-entropy     Kκ=−∑
i

pi
1+κ−pi

1−κ

2 κ

In (2),(3) we have entropic parameters q  and  κ , so that lim
q→1

T=S ; lim
κ→0

K=S .

3. The Hartley function

In the Shannon’s article we can find Ralph Hartley mentioned.

“If the number of messages in the set is finite then this number or any monotonic function of
this number can be regarded ad a measure of the information produced when one message is
chosen from the set, all choices being equally likely. As was pointed out by Hartley the most
natural  choice  is  the  logarithmic  function.  Although  this  definition  must  be  generalized
considerably when we consider the influence of the statistics of the message and when we
have a  continuous range of  messages,  we will  in  all  cases  use an essentially  logarithmic
measure.” And Shannon explain three reasons for using logarithm as a measure. 
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The Hartley measure was introduced in 1928. “If a sample from a finite set  A uniformly at
random is picked, the information revealed after the outcome is known is given by the Hartley
function:

H0(A) :=logb | A |

where |A| denotes the cardinality of A”. https://en.wikipedia.org/wiki/Hartley_function

Hartley used a base-ten logarithm. In fact, we can call it the Hartley entropy. “The Hartley
function  coincides  with  the  Shannon entropy (as  well  as  with  the  Rényi  entropies  of  all
orders) in the case of a uniform probability  distribution.  It  is a special  case of the Rényi
entropy since:

H0(X )=
1

1−0
log∑

i=1

| X |

pi
0=log |X |

But it can also be viewed as a primitive construction, since, as emphasized by Kolmogorov
and Rényi, the Hartley function can be defined without introducing any notions of probability
(see Uncertainty and information by George J. Klir, p. 423)”.

4. Uniform distribution

Let us assume a uniform discrete distribution: pi=
1
n

. The Shannon entropy is given by:

S=−∑
i

pi ln pi=−∑
i

1
n

ln 1
n
= n
n

lnn=ln n

In the case of  Tsallis entropy, we have:

T=Tq=
1

q−1 (1−∑
i

pi
q)= 1

q−1(1−∑i 1

nq )= 1
q−1

(1−n1−q )= n1−q−1
1−q

As we will see in the following discussion, in the Tsallis calculus it has been defined the q-
logarithm in the form:

    lnq
T ( f )= f 1−q−1

1−q
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Therefore, the Tsallis entropy for the uniform distribution becomes:

 T=Tq=
n1−q−1

1−q
=lnq

T (n)

Let us consider the  Réyni entropy:

 Rq=
1

1−q
ln(∑i 1

nq)= 1
1−q

ln n1−q=lnn

In the case of the Kaniadakis entropy:

Kκ=−∑
i

pi
1+κ−pi

1−κ

2 κ
=− 1

2κ
(n−κ−nκ )= 1

2κ
(nκ−n−κ )

In the κ-calculus, the κ-logarithm is lnκ f=
f κ−f−κ

2κ
, then: 

Kκ=
1

2κ
(nκ−n−κ )=lnκ n

Using  again  the  Shannon’s  words,  as  told  by  Hartley  “the  most  natural  choice  is  the
logarithmic function”, and this function can be generalized considerably.

5. Maximum entropy principle

“The  maximum  entropy  principle  (Jaynes,  1957)  provides  a  bridge  between  information
theory and probability theory. It states that given certain a priori knowledge, the distribution
that best represents the state of knowledge is the one with maximal entropy. As such, this
principle explains why certain probability distributions take the forms they do” [11],[12].

Abstract of Jaynes’ article [12] tells that “Information theory provides a constructive criterion
for setting up probability distributions on the basis of partial knowledge, and leads to a type of
statistical  inference  which  is  called  the  maximum-entropy estimate.  It  is  the  least  biased
estimate possible on the given information; i.e., it is maximally noncommittal with regard to
missing information. If one considers statistical mechanics as a form of statistical inference
rather than as a physical theory, it is found that the usual computational rules, starting with the
determination  of  the  partition  function,  are  an  immediate  consequence  of  the  maximum-
entropy principle”.
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In the Appendix A of [12],  “Entropy of  a probability  distribution”,  Haynes  is  giving  the
Shannon entropy  H using three conditions. Let us consider a variable with discrete values
x i , with probabilities pi . Conditions are: 

1) H is a continuous function of pi ,

2)   if  all  pi are equal,  the quantity  A(n)=H (1 /n , ... ,1/n) is  a  monotonic increasing
function of n ,

3)    a composition exists such as A(m)+A(n)=A(mn) .

The solution is:

 S=−∑
i

p
i
ln p

i .

Let us consider the uniform distribution that we have previously used for entropy.

“It  can  be  shown  that  a  uniform  distribution  maximizes  the  entropy  of  a  probability
distribution P(X) subject to no more prior knowledge than that the probability masses need to
sum to 1” [11].  

Let us use the Lagrange multiplier:

L(X)=S(X )+λ (∑i pi−1)=−∑i pi ln pi+λ (∑
i

pi−1)

∂ L
∂ pi

=−ln p
i
−1+λ=0    ;  

∂ L
∂λ =∑

i

p
i
−1=0

pi=eλ−1   ;   n eλ−1=1   therefore p
i
= 1
n

n  is  the  number  of  possible  values  of  i .  The  uniform distribution  is  a  probability
distribution that “satisfies the a priori constraint and maximizes the uncertainty under that
constraint” [11].

6. Shannon entropy and the geometric discrete distribution

Let us assume a geometric distribution: 

pi=(1−p)i−1 p , where i∈ℤ+ from 1 to infinity.

Parameter p is 0< p⩽1 .  
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The Shannon entropy (base 2) is:

−∑
i=1

∞

(1−p)i−1 p⋅log2((1−p)i−1 p)

= −p⋅log2 p∑
i=1

∞

(1−p)i−1−p⋅log2(1−p)∑
i=1

∞

(i−1)(1−p)i−1

= −log2 p−
(1− p)log2(1−p)

p

The first sum is a geometric series: ∑
i=1

∞

(1−p)i−1= 1
p

https://www.wolframalpha.com/input?i=sum_%28k%3D1%29%5Einfinity+%281-p%29%5E
%28k-1%29

The second sum is:

 ∑
k=0

∞

k (1− p)k=∑
k=1

∞

k (1− p)k=(1− p)∑
k=1

∞

k (1− p)k−1=(1−p) d
d(1− p)∑k=0

∞

(1−p)k

https://www.wolframalpha.com/input?i=sum_%28k%3D0%29%5Einfinity++%281-p
%29%5E%28k%29

= (1−p) d
d(1−p )( 1

p)=−(1−p) d
dp ( 1

p)=(1−p) 1

p2

For a given mean value  μ , the entropy maximizing probability distribution on the non-

negative integers is the geometric distribution. We have to maximize  S=∑
i

∞

p i log p i  with

the constraints ∑
i

i pi=μ and ∑
i

∞

pi=1 . 

The problem has been discussed by Pierre Brémaud, in his “Discrete Probability Models and
Methods. Probability on Graphs and Trees, Markov Chains and Random Fields, Entropy and
Coding” [13], by means of the following example.
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Example  11.1.6:  Geometric  Distribution  Maximizes  Entropy.  Prove  that  the  geometric
distribution maximizes entropy among all positive integer-values random variables with given
finite  mean  μ .  The corresponding maximization  problem is  solved by the  Lagrangian
method [13].

Let us use the function:

−∑
i

pi log p i−λ(∑i i pi−μ) , then  ∂
∂ pi

(∑i pi log p i)+λ ∂
∂ pi (∑i i p i)=0

log pi+1+λ i=0 ,   therefore    p
i
=e−1−λ i=1

e
e−λ i pi=(1−p)i−1 p

In [13], it is told that the constraint  ∑
i

pi=1 finally yields  pi= p(1− p)i−1 . Moreover,

p=μ−1 , where μ is the mean of the geometric distribution. 

This is what we find in [13]. However, let us discuss with more detail the calculation. Since
we use i in exponentials, please remember it is a positive integer, not the imaginary unit.

Let us start from:

L=−∑
i

p
i
ln p

i
−λ

o
(∑

1

p
i
−1)−λ

1
(∑

i

i p
i
−μ)

∂ L
∂ pi

=0 gives :  1+ln pi+λo+λ1 i=0 , so that: ln pi=−1−λo−λ1 i

Therefore, the  distribution is: 

pi=e
−1−λo e

−λ1 i . 

∑
i

e
−1−λo e

−λ1 i=1  →  e
−1−λ o ∑

i

e
−λ1 i=1 →  e

−1−λ o⋅ 1

e
λ

1−1
=1

The infinite sum is given by

https://www.wolframalpha.com/input?i=sum_%28k%3D1%29%5Einfinity++e%5E%28-
lambda*k%29
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e
−1−λ o=e

λ1−1

Now, let us consider the other constraint:

∑
i

i e
−1−λo e

−λ1 i=μ  →  e
−1−λo ∑

i

i e
−λ1 i=μ  →  e

−1−λo⋅ e
λ1

(eλ1−1)2
=μ

(e
λ1−1)⋅ e

λ 1

(eλ1−1)2
= e

λ1

e
λ1−1

 = μ

The infinite sum is given by

https://www.wolframalpha.com/input?i=sum_%28k%3D1%29%5Einfinity+k*+e%5E%28-
lambda*k%29

Let us write: e
λ

1= y , then:

y
y−1

=μ  →  y−1
y

= 1
μ  →  1− 1

y
= 1
μ  →  1

y
=1− 1

μ  →  y= μ
μ−1

.

Then:  λ 1=ln
μ

μ−1
 and  e

−1−λ
o=e

λ
1−1=

μ
μ−1

−1= 1
μ−1

. 

The distribution is:

pi=e
−1−λo e

−λ1 i= 1
μ−1

⋅e
−i ln( μ

μ−1)= 1
μ−1

⋅(μ−1
μ )i=μ−i (μ−1)i−1

= μ−i+1⋅μ−1 (μ−1)i−1=μ−1⋅( 1
μ )

i−1
(μ−1)i−1= 1

μ (1− 1
μ )

i−1
=p(1−p)i−1

Assuming μ=1 / p , we have the geometric distribution.
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Other distributions are given here:

https://en.wikipedia.org/wiki/Maximum_entropy_probability_distribution#Other_examples

7. Maximizing q-entropy

Let  us  consider  the  natural  constraint  ∑
i

p
i
=1 for  the  Tsallis  entropy.  Let  us  use  the

Lagrange multiplier  λo , and consider n the number of occurrences.

L= 1
q−1 (1−∑

i

pi
q)+λ o(∑i pi−1)

∂ L
∂ pi

=− q
q−1

pi
q−1+λo=0  →  pi=( q−1

q
λo)

1
q−1

∑
i

pi=n( q−1
q

λ o)
1

q−1=1  →  nq−1( q−1
q

λo)=1  →  λo=
q

q−1
1

nq−1

Therefore:

p
i
=( q−1

q
q

q−1
1

nq−1 )
1

q−1= 1
n

The distribution is the uniform distribution, as in the case of the Shannon entropy.

As told in [3], is is extremized, for all values of q, in the case of equiprobability.

From  [14]:  “The  concept  of  entropy  is  closely  linked  with  the  concept  of  uncertainty,
information,  chaos,  disorder,  surprise  or  complexity.  Indeed,  there  are  often  different
interpretations of entropy in different fields. For instance, in statistics, entropy is regarded as a
measure  of  randomness,  objectivity  or  unbiasedness,  dependence,  or  departure  from  the
uniform  distribution.  In  ecology,  it  is  a  measure  of  diversity  of  species  or  lack  of
concentration. In water engineering, it is a measure of information of uncertainty. In industrial
engineering,  it  is  a  measure  of  complexity.  In  manufacturing,  it  is  a  measure  of
interdependence. In management, it is a measure of similarity. In social sciences, it is measure
of equality”. 

We have seen that the uniform distribution is maximizing the Shannon and Tsallis entropies.
It means that it is maximizing the randomness. If we add constraints to the distribution, we
reduce randomness and increase the departure from uniformity (equiprobability).

__________________________________________________________________________________
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8. Maximizing q-entropy (canonical ensemble)

In Ref. [3], C. Tsallis wanted to extremize T q under the conditions:

∑
i

p
i
=1  ; ∑

i

p
i
ε
i
=U

q

where  ε i and  Uq are known real numbers. In [3], they are referred to as generalized
spectrum and generalized internal energy. 

The  function  used by Tsallis is the following:

L
q
=T

q
+α∑

i

p
i
−α β (q−1)∑

i

p
i
ε
i

The function had been written in this way for convenience.

Imposing ∂ Lq / ∂qi=0 , in [3] it is told that we can find:

pi=
[1−β (q−1)ε i]

1/(q−1)

Z
q

 with Zq≡∑
i

[1−β (q−1)ε i]
1/(q−1)

9. Maximizing κ-entropy

Let us consider again the natural constraint ∑
i

p
i
=1 for the Kaniadakis entropy. Let us use

the Lagrange multiplier  λo ,  and consider n the number of occurrences.

L=−∑
i

pi
1+κ− pi

1−κ

2κ
+λ o(∑i pi−1)

∂ L
∂ pi

=− 1
2κ

(1+κ ) p
i
κ + 1

2κ
(1−κ ) p

i
−κ+λ

o
=0

pi
2κ +

2κ λo

1+κ
pi
k+1−κ

1+κ
=0  →  pi

κ=f (λo ,κ )  →  pi=(f (λo ,κ ))1/κ=
1
n

Therefore we have the uniform distribution  in this case too.
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10. Joint entropy

Let us consider the joint entropy H (A ,B)  of two independent subsystems A,B. We have
the additivity for the Shannon entropy, but a generalized additivity for Tsallis and Kaniadakis
entropies.

(4)     S (A ,B)=S( A )+S(B )

It means:

S(A ,B)=−∑
i , A
∑
j ,B

pi p j ln( p i p j) = −∑
i
∑
j

pi p j(ln p i+ ln p j)

−∑
i

pi ln pi∑
j

p j = −∑
j

p j ln p j∑
j

pi = −∑
i , A

pi ln pi −∑
j ,B

pi ln p j

where we used ∑
i

pi=1 ,  ∑
j

p j=1 . 

For q-entropy:

(5) T ( A ,B )=T ( A )+T (B )+(1−q )T ( A )T (B )

1
q−1 (1−∑i pi

q) +
1

q−1 (1−∑j p j
q) − 1

q−1 (1−∑
i

pi
q) (1−∑j p j

q)

=
1

q−1 (1−∑i ∑j pi
q p j

q) = T (A ,B)

Let us note that the two independent subsystems  A,B  must have the same entropic parameter q.

In the case of  κ-entropy:

(6 ) K ( A ,B )=K ( A )ℑ(B)+K (B )ℑ(A )      with  ℑ=∑
i

pi
1+κ+ pi

1−κ

2

In fact: 

 −∑
i

pi
1+κ−pi

1−κ

2κ ∑
j

p j
1+κ+ p j

1−κ

2
−∑

j

p j
1+κ−p j

1−κ

2κ ∑
i

pi
1+κ+ pi

1−κ

2

__________________________________________________________________________________
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= −∑
i
∑
j

pi
1+κ p j

1+κ−pi
1−κ p j

1−κ

2κ
=K (A ,B)

Note that for the generalized additivity of κ -entropy, we need another  function containing
probabilities  (see [15] and references therein).  As in the case of q-entropy, the parameter
κ must be the same. 

For the uniform distribution: 

ℑ=∑
i

pi
1+κ+ pi

1−κ

2
=1

2
(n−κ+nκ )

11. The κ-entropy  expressed by means of an Euler infinite product expansion

Before discussing the link between entropies, let us stress an expansion discussed in [16],
which is also helping us in understating the role of function ℑ as a generalization of unit.  

As previously seen, the Kaniadakis entropy has the discrete form: 

Kκ=−∑i

pi
1+κ−pi

1−κ

2κ

Let us consider a term in the sum and use in it the Euler number and logarithm: 

pi
1+κ−pi

1−κ

2κ
=

pi
2κ

( pi
κ−pi

−κ )=
pi

2κ
(eκ ln pi−e

−κ ln pi)=
pi

2κ
(eui−e

−ui)

where we defined ui=κ ln pi .

In  [17]  we can  find mentioned  a  useful  formula  [18],  which is  an Euler  infinite  product
expansion:

eu−e−u=2u(1+ u2

π 2)(1+ u2

22π 2)(1+ u2

32π 2 )...=2u∏
j=1

∞ (1+ u2

j2π 2)
Then the κ-entropy can be written as:

__________________________________________________________________________________
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Kκ=−∑i

pi
1+κ−pi

1−κ

2κ
=− 1

2κ∑i
2 piui∏

j=1

∞ (1+
ui

2

j2π 2 )

= − 1
2κ ∑i

2 piκ ln pi∏
j=1

∞ (1+
(κ ln pi)

2

j2π 2 )=−∑
i

(pi ln pi)∏
j=1

∞ (1+(κ ln pi)
2

j2π 2 )
So we can write:

Kκ=−∑
i

( pi ln pi)∏
j=1

∞ (1+(κ ln pi)
2

j2π 2 )
And here we can see clearly that κ-entropy becomes Shannon entropy for κ →0 :

lim
κ→0

Kκ=SShannon=−∑
i

pi ln pi

12. The κ-logarithm

Kaniadakis proposed a new form of logarithm, in the framework of his  κ-calculus (see Ref. 
[19] for all details about the calculus). The κ-logarithm is used to define the entropy (3):

Kκ=−∑
i

pi lnκ pi

where 

lnκ pi=
pi
κ−pi

−κ

2κ

As a consequence, using the Euler function previously seen, we can tell that [16]:

lnκ pi=(ln pi)∏
j=1

∞ (1+(κ ln pi)
2

j2π 2 )
Again, when κ →0 the κ-logarithm becomes the logarithm.
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13. Generalizing the unit

Let us add the following too: in the generalized additivity of κ-entropy, (6), it appears another 
function:

ℑκ=∑i

pi
1+κ+ pi

1−κ

2

In [17] we find another Euler formula [20]: 

eu+e−u=2(1+ 4u2

π 2 )(1+ 4 u2

32π 2)(1+ 4u2

52π 2)...=2∏
j=0

∞ (1+ 4 u2

(2 j+1)2π 2)
And then [16]:

ℑκ=∑i

pi
1+κ+ pi

1−κ

2
=∑

i

pi
2 [2∏j=0

∞ (1+
4(κ ln pi)

2

(2 j+1)2π 2)]
In the case that  κ→0 , we have ℑκ→1 .

We will consider again the κ-logarithm in the following discussion, but before let us show the 
relationship between Tsallis and Kaniadakis entropy.

Here we have used two infinite products for Euler’s book. In [21], other expressions by means
of infinite products are given.

14. Basic relationship between κ-entropy and q-entropy

Let us consider to apply the q-entropy and κ-entropy to the same discrete distribution. 

For the κ-entropy, we have that [9]:  

(7 ) Kκ=
T1+κ+T 1−κ

2

In (7) we used the Tsallis entropies:

T (q=1+κ )=−1
κ ∑i

pi
1+κ+1

κ
    and   T (q=1−κ )=1

κ ∑i
pi

1−κ−1
κ

__________________________________________________________________________________
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Then:

   K=1
2 {−1

κ ∑i
pi

1+κ+1
κ
+1
κ ∑i

pi
1−κ−1

κ }=− 1
2κ {∑i pi

1+κ−∑
i

pi
1−κ}

Eq.(7)  is  a simpler  form of  an expression given in  [22],[23].  However,  besides  this  link,
because  of  the  generalized  additivity  possessed  by the  Kaniadakis  entropy,  we need also
another relationship, concerning function ℑ . It is: 

(8) ℑκ=
κ
2 (−T1+κ+T 1−κ+

2
κ )

 In fact:

ℑ=κ
2 {1κ ∑i pi

1+κ−1
κ
+1
κ ∑i

pi
1−κ−1

κ
+2
κ }=∑i

pi
1+κ+ pi

1−κ

2

In (7) and (8), we have the Kaniadakis functions expressed by the Tsallis entropy. 

Let us consider again the uniform discrete distribution. We have already seems that:

T=Tq=
n1−q−1

1−q
=lnq

T (n)        and    Kκ=
1

2κ
(nκ−n−κ )=lnκ n

Eq. (7), which is Kκ=
T1+κ+T 1−κ

2
, becomes Kκ=

1
2κ

(nκ−n−κ )= 1
2
(− n−κ−1

κ + n
κ−1
κ ) .

Of course, we can also write q-entropy expressed by means of κ-entropy. 

2K+ 2
κ
ℑ  = T1+κ+T 1−κ+(−T 1+κ+T 1−κ+

2
κ )

And then:

(9)    Kκ+
1
κ
ℑκ=T1−κ+

1
κ

Let us have: κ=1−q . 

(10 ) T q=K1−q+
ℑ1−q−1

(1−q )

__________________________________________________________________________________
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We can have also:

2Kκ−
2
κ
ℑκ=T 1+κ+T1−κ−(−T1+κ+T 1−κ+

2
κ )

So that:

(11) Kκ−
1
κ
ℑκ=T 1+κ−

1
κ

Let us have: κ=q−1 . We have again Eq. (10).

15. Generalized product of ℑ

Let us consider two subsystems A and B. We can find a relationship between the joint Tsallis
and Kaniadakis entropies. Using (10), we obtain [9]: 

(12)    T q( A ,B )=K1−q( A , B )+
ℑ1−q (A ,B)−1

1−q

From (12), when q→1 , we have:

   Tq→1(A ,B)=Kκ→0( A ,B )=S(A)+S(B)

When  the subsystems are independent, for Tsallis entropy we have Eq.5, and then:

(13)     T q(A ,B) =

K1−q (A ,B)+
ℑ1−q( A ,B )−1

1−q
 = K1−q (A )+

ℑ1−q( A )−1

1−q
+K1−q(B)

+
ℑ1−q(B)−1

1−q
+(1−q ) (K1−q( A )+

ℑ1−q( A )−1

1−q )(K1−q (B)+
ℑ1−q(B)−1

1−q )
To continue, we can assume:  

(14 ) ℑ1−q (A ,B)=ℑ1−q( A ) ℑ1−q(B )+(1−q )2 K1−q( A )K1−q(B )

This relationship was proposed in [24], but it is  clear that it can obtained from (13). In fact:

__________________________________________________________________________________
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K1−q (A ,B)+
ℑ1−q( A ,B)

1−q
=

(1−q )K1−q( A )K1−q(B )+K1−q (A )ℑ1−q(B)+ℑ1−q( A )K 1−q(B )+(1−q )
ℑ1−q( A )

1−q

ℑ1−q (B )
1−q

Remembering that  K1−q (A ,B)=K1−q (A )ℑ1−q (B)+ℑ1−q( A )K 1−q(B ) ,  Eq.(13) becomes
(14):

ℑ1−q (A ,B)
1−q

= (1−q )K1−q( A )K1−q(B )+(1−q)
ℑ1−q( A )

1−q

ℑ1−q(B )
1−q

And here we can find the generalization of the product:

ℑκ (A , B) = κ 2Kκ (A )Kκ (B)+ℑκ ( A )ℑκ (B )

16. Conditional entropies

In [9], it had been proposed a detailed discussion of conditional Kaniadakis entropy too. If the
entropic parameter has a low value, a formula previously given in [25] can be considered an
approximation of the expression obtained in [9]. 

The conditional Tsallis entropy is given by [26]:

(15)     Tq( A|B )=
T q( A ,B )−Tq(B)
1+(1−q)T q(B)

In [9], we have given for Kaniadakis entropy: 

(16)   Kκ ( A|B )=
Kκ ( A ,B )−Kκ (B)ℑκ ( A|B)

ℑκ (B )

(17)   ℑκ (A|B )=
ℑκ (A ,B)−κ 2Kκ ( A|B)Kκ (B )

ℑκ (B)

In the case that κ →0 , we find from (16) the expression of  conditional Shannon entropy,
which is given by S( A|B )=S( A ,B )−S(B) .

__________________________________________________________________________________
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17. Entropic measures

The Tsallis and Kaniadakis approaches are two generalizations of statistical mechanics, which
had  been involved  in  the  discussion  of  several  phenomena  [27],[19].  Among the  several
possible examples, one is coming from astrophysics. It is related to polytropes, the polytropic
solutions of the Lane–Emden equation.  This is an equation which gives the pressure as a
function of density [28],[29],[30].  Since Boltzmann distribution yields unphysical results, a
generalized entropy, the Tsallis entropy, was used in [31] instead of Boltzmann entropy. The
use of Kaniadakis entropy had been proposed in [32]. In [33], we compared the two entropic
measures related to the polytropic solutions given in [31],[32]. 

As previously seen, the Tsallis entropy is:

1
q−1 (1−∑i pi

q)= 1
q−1(∑i p i−∑

i

pi
q)= 1

q−1∑i p i(1− pi
q−1)

In Ref. [31], it is used letter  f for probability. From now on, we will use this notation. In
[31], the measure from q-entropy is given as: 

(18)     Cq( f )=
f ( 1−f q−1)

q−1

We can write Eq.(18) in the following manner: 

(19)     Cq( f )=
f−f q

q−1
= 1

2(q−1)
( f 2−q−f q )− 1

2(q−1)
( f 2−q+f q )+ f

q−1

Of course, (18) and (19) are the same equation. Let us write the κ-entropy again:

Kq−1=−∑
f

f 1+q−1−f 1−q+1

2(q−1)
     so that:  k q−1=−

f q−f 2−q

2(q−1)

ℑq−1=∑
f

f q+f 2−q

2
    so that:    gq−1=

f q+ f 2−q

2

Therefore, the Kaniadakis measures are linked to Tsallis measure by:   

__________________________________________________________________________________
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tq( f )=Cq( f )=
( f−f q )
q−1

=k1−q−
g1−q

q−1
+ f
q−1

Let us remember that:

Tq=∑f
tq , K1−q=∑f

k1−q , ℑ1−q=∑f
g1−q , 1=∑f

f

18. q-logarithm and κ-logarithm

Following  the  previously  given  approach,  let  us  consider  again  the  logarithms.  In  the
frameworks of Tsallis and Kaniadakis approached, the q-logarithm and the  κ-logarithm are
defined as: 

   lnq
T ( f )= f 1−q−1

1−q
       ;      lnκ

K( f )= f κ−f−κ

2κ

First, let us note that: 

   lnq
T ( f )= f 1−q−1

1−q
=e(1−q)ln f−1

1−q
  

     lnκ
K( f )= f κ−f−κ

2κ
= eκ ln f−e−κ ln f

2κ
= 1
κ sinh (κ ln f )

Let us write the κ-logarithm  with κ=1−q :    ln1−q
K ( f )= f 1−q−f q−1

2(1−q )
.

Then, as we did before:

    lnq
T ( f )= f 1−q−1

1−q
= 1

2(1−q)
( f q−1+f 1−q )+ 1

2(1−q)
(−f q−1+ f 1−q)− 1

1−q

= ln1−q
K ( f )+ f

1−q+ f q−1−2
2(1−q)

In [33], it has been used the measure  gq−1  for a further expression of the link between
logarithm. Here, let us propose the following approach: 

__________________________________________________________________________________
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lnq
T ( f )=ln1−q

K ( f )+ f 1−q+f q−1−2
2(1−q )

 =  ln1−q
K ( f )+ e

(1−q) ln f +e−(1−q) ln f−2
2(1−q)

(20)    lnq( f )
T  = ln1−q

K (f )+ 1
1−q

[cosh((1−q) ln f )−1]

Let us remember that ln1−q
K ( f )= 1

1−q
sinh((1−q)ln f ) ,  and then:

lnq
T (f )= 1

1−q
sinh((1−q) ln f )+ 1

1−q
[cosh ((1−q) ln f )−1]

We could define  a function :

ξ 1−q
K (f )= 1

1−q
[cosh((1−q) ln f )−1]

that is:

ξ κ
K( f )= 1

κ [cosh (κ ln f )−1]

Eq. (20), which is  giving the relationship between q- and κ- logarithms, turns out into:

lnq
T (f )=ln1−q

K ( f )+ξ 1−q
K (f )

For what concerns the logarithms, let us note the following properties:

lnq
T (f a f b)=lnq

T (f a)+ lnq
T ( f b)+(1−q )lnq

T (f a) lnq
T ( f b)

lnκ
K (f a f b)=lnκ

K (f a)√1+κ 2 lnκ
K ( f b)+lnκ

K (f b)√1+κ 2 lnκ
K (f b)

In fact:

lnκ
K (f a f b)=

1
κ sinh (κ ln (f a f b)) = 

1
κ sinh (κ ln f a+κ ln f b)

__________________________________________________________________________________
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=
1
κ sinh (κ ln f a)cosh(κ ln f b) + 

1
κ cosh (κ ln f a)sinh(κ ln f b)

= lnκ
K (f a)cosh (κ ln f b) + cosh (κ ln f a) lnκ

K ( f b)

=  lnκ
K (f a)√1+κ 2 lnκ

K ( f b) + lnκ
K (f b)√1+κ 2 lnκ

K (f a)

Being (cosh(κ ln f ))2−(sinh (κ ln f ))2=1 .

19. q-exponential and κ-exponential

In the framework of Tsallis approach, the q-exponential is defined as: 

   eq
T ( f )=[1+(1−q) f ] 1 /(1−q)

     

We have that:

    eq
T ( lnq

T (f ))=[1+(1−q) f
1−q−1
1−q ]

1 /(1−q )

=f .

Let  us stress that  the  q-exponential  in the framework of the Tsallis  entropy is  not the  q-
exponential given by the q-calculus, also known as “quantum calculus” [34].

In the framework of Kaniadakis theory, the κ-exponential is given by:

   eκ
K ( f )=[√1+κ2 f 2+κ f ] 1 /κ

Let us note that:

   eκ
K ( f )=[earsinh(κ f )] 1 /κ

Therefore,  we have    eκ
K ( lnκ

K ( f ))=f .

Now, let us consider  (eq
T ( f ))(1−q)=[1+(1−q) f ] , that is: (eq

T ( f ))(1−q)−1=(1−q) f .

We can write: 

(e1−q
K ( f ))(1−q)=[√1+(1−q)2 f 2+(1−q) f ]

__________________________________________________________________________________
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and use in it the q-exponential. We can find:

e1−q
K ( f )=[√1+((eq

T ( f ))(1−q)−1)2+(eq
T ( f ))(1−q)−1]1/(1−q)

Then:

(28)    e1−q
K (f )=[earsinh((eq

T ( f ))(1−q)−1)]1/(1−q)

In [33], other expressions had been given.

20. Remark

Let  us  stress  once  more  that  the  q-exponential  is  not  the  q-exponential  of  the  quantum
calculus. For the discussion of the two  q-exponentials defined in the quantum calculus, see
please Ref. [35] and [36], besides [34].

21. Generalized calculus

As we have previously seen, the κ-logarithm and the κ-exponential can be written as:

   lnκ
K ( f )= 1

κ sinh(κ ln f )  ;    eκ
K ( f )=[earsinh(κ f )] 1 /κ

It means that these functions are coming from a deformation of a calculus based on the Euler
exponential function. In his κ-calculus, [19], Giorgio Kaniadakis has generalized the sum, and
therefore the product too, by means of this deformation based on hyperbolic functions, so
that:

x⊕ y= 1
κ sinh (arsinh (κ x)+arsinh (κ y))

Actually,  we  can  see  that  if  we  have  a  function   G(x) ,  which  is  invertible
G−1(G(X ))=1 , we can use it as a deformation generator [37], to generate a consequent

algebra [37],[38]. Therefore, we can use the generator  G  to define the formal group law
Φ(x , y ) , such as in [39]:

(29) Φ(x , y )=G(G−1(x)+G−1( y))

or: 

__________________________________________________________________________________
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x⊕ y=G(G−1(x)+G−1( y ))

The simplest example of a formal group law is the following:

Φ(x , y )=x+ y=G(G−1(x)+G−1( y ))=exp( ln(x)+ln( y))

Let us stress that the binary operation between two elements of a given set x⊕ y has been
defined  by  Giorgio  Kaniadakis  as  the  “generalized  sum”,  using  the  analogy  of  the
generalization of entropy.

In [40], I discussed some generalized sums based on transcendental functions.  We can apply
the same approach to the sequences of integer numbers, such as the Mersenne, Fermat, Cullen
and Woodall Numbers [41], or to the calculus of the q-integers [42], (other applications  are
given in [43] and [44]). Actually, let us stress that the framework of generalized calculus is
the  group  theory;  in  this  framework,  the  groupoids  related  to  the  integer  sequences  of
Mersenne, Fermat, Cullen, Woodall and other numbers  possess different binary operators. As
an application of the given approach, several different integer sequences can be obtained by
means  of  the  same  binary  operators,  and  therefore  can  be  used  to  represent  the  related
groupoids.

Eq. (29) is the same expression of the Lazard universal formal group law [45],[46]. In [47],
the formal group law is considered the Rényi entropy, which is the first example of a new
family of infinitely many multi-parametric entropies, defined as Z-entropies. 
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