
Computable Riesz Representation for Locally Compact

Hausdorff Spaces 1

Hong Lu
(Department of Mathematics, Nanjing University, Nanjing 210093, PR.China

luhong@nju.edu.cn)

Klaus Weihrauch
(Faculty of Mathematics and Computer Science, University of Hagen

58084 Hagen, Germany
klaus.weihrauch@fernuni-hagen.de)

Abstract: By the Riesz Representation Theorem for locally compact Hausdorff spaces,
for every positive linear functional I on K(X) there is a measure µ such that I(f) =R

f dµ, where K(X) is the set of continuous real functions with compact support on the
locally compact Hausdorff space X. In this article we prove a uniformly computable
version of this theorem for computably locally compact computable Hausdorff spaces
X. We introduce a representation of the positive linear functionals I on K(X) and a
representation of the Borel measures on X and prove that for every such functional I
a measure µ can be computed and vice versa such that I(f) =

R
f dµ.
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1 Introduction

Measure and integration can be introduced in two ways: by starting either from
a measure and introducing integration as a derived concept or from a “con-
tinuous” linear real valued operator, an abstract integral, on a space of func-
tions and considering measure as a derived concept [Coh80, Ped89]. Funda-
mental theorems relating these two approaches are, for example, the Daniell-
Stone theorem [Bau74] or various versions of the Riesz representation theorem
[GP65, Con90, Coh80, Rud74]. In this article we study the computational content
of one of these theorems, the Riesz representation theorem for locally compact
Hausdorff spaces [Coh80]. For this purpose we use the representation approach
(TTE), which has turned out to be particulary natural and flexible among the
various models for studying computability in Analysis and related fields [Wei00].

There are only few publications on computable measure theory in the frame-
work of TTE [Wei99, Mül99, Wu05, WD05, SS06, WD06, WW06, LW07, Sch07].
In the following four cases the “dual” space is studied:
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1. A computable version of the Daniell-Stone theorem, which characterizes a
computable abstract integral on Stone vector lattices of functions f : X → R

by a computable measure space, has been proved in [WW06].

2. A computable version of the Riesz representation theorem that characterizes
the continuous functionals on C[0; 1] by functions of bounded variation has
been proved in [LW07].

3. A computable version of the Riesz representation theorem for computable
Hilbert spaces that characterizes the dual space of l2 by itself has been proved
in [BY06].

4. In this article we prove a computable correspondence between the positive
functionals on the space K(X) of the continuous functions with compact
support on a computable Hausdorff space X and the Borel measures on X .

These four theorems differ by the structure considered on the basic set X : (1)
a set X without structure, (2) the real interval [0; 1], (3) the natural numbers,
(4) a Hausdorff space. In all the cases the operators on the space of functions
are in some sense continuous. Finally, the characterization is by means of (1)
“computable measure spaces”, (2) functions of bounded variation, (3) the func-
tion space itself, (4) “computable Borel measures”. In (2) instead of measures
functions of bounded variation are considered for (Riemann-Stieltjes) integra-
tion. Functions of bounded variation correspond to real-valued measures (μ(I)
can be negative). But neither such measures nor their relation to the functions of
bounded variation have been studied in computable analysis. Computable Borel
measures have been studied in [Wei99, Mül99, SS06, Sch07]. But their relation
to the computable measure spaces considered in [Wu05, WD05, WD06, WW06]
is not yet known.

In this article we prove a computable version of the following theorem [Coh80,
Rud74].

Theorem 1 (Riesz representation). Let X be a locally compact σ-compact
Hausdorff space. Then for every positive linear functional I : K(X) → R on the
space of the continuous real functions with compact support there is a (unique)
regular Borel measure μ on X such that

I(f) =
∫

f dμ for all f ∈ K(X) . (1)

We introduce “effective” locally compact Hausdorff spaces and prove that
there are computable operators mapping I to μ and vice versa such that (1) holds
true. In Section 2 we summarize concepts from Computable Analysis, which we
will use in this article. Computability on locally compact Hausdorff spaces has
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been introduced in [GX07]. The definitions and some results are put together in
Section 3. In TTE, computability is defined relative to given representations. In
Section 4 we introduce natural representations of the space of positive linear op-
erators I : K(X) → R and of the regular Borel measures on the given topological
space X . Finally in Section 5 we prove that with respect to these representations
the functions I �→ μ and μ �→ I such that I(f) =

∫
f dμ are computable.

2 Computable Analysis

In this article we use the framework of TTE (Type-2 theory of effectivity), see
[Wei00] for more details. A partial function from X to Y is denoted by f : ⊆X →
Y . We assume that Σ is a fixed finite alphabet containing the symbols 0 and 1
and consider computable functions on finite and infinite sequences of symbols Σ∗

and Σω, respectively, which can be defined, for example, by Type-2 machines,
i.e., Turing machines reading from and writing on finite or infinite tapes. We
use the “wrapping function” ι : Σ∗ → Σ∗, ι(a1a2 . . . ak) := 110a10a20 . . . ak011
for coding words such that ι(u) and ι(v) cannot overlap properly unless u = v.
We consider standard functions for finite or countable tupling on Σ∗ and Σω

denoted by 〈 · 〉 . By “�” we denote the subword (infix) relation.
We use the concept of multi-functions. A multi-valued partial function, or

multi-function for short, from A to B is a triple f = (A, B, Rf ) such that Rf⊆A×
B (the graph of f). Usually we will denote a multi-function f from A to B by
f : ⊆ A ⇒ B. For X⊆A let f [X ] := {b ∈ B | (∃a ∈ X)(a, b) ∈ Rf} and for
a ∈ A define f(a) := f [{a}]. Notice that f is well-defined by the values f(a)⊆B

for all a ∈ A. We define dom(f) := {a ∈ A | f(a) 	= ∅}. In the applications
we have in mind, in every computation the multi-function f : ⊆ A ⇒ B maps
every a ∈ dom(f) to some b such that (a, b) ∈ Rf . But generally there is no
method to select a specific one. f(a) can be interpreted as the set of all results
which are “acceptable” on input a ∈ A. In accordance with this interpretation
the “functional” composition g ◦ f : ⊆A ⇒ D of f : ⊆A ⇒ B and g : ⊆C ⇒ D

is defined by dom(g ◦ f) := {a ∈ A | a ∈ dom(f) and f(a)⊆dom(g)} and
g◦f(a) := g[f(a)] (in contrast to “non-deterministic” or “relational” composition
gf defined by g f(a) := g[f(a)] for all a ∈ A).

Notations ν : ⊆ Σ∗ → M and representations δ : ⊆ Σω → M are used for
introducing relative continuity and computability on “abstract” sets M . For a
representation δ : ⊆Σω → M , if δ(p) = x then the point x ∈ M can be identified
by the “name” p ∈ Σω.

For naming systems γi : ⊆Yi → Mi (i = 0, . . . , k), a function h : ⊆Y1 × . . .×
Yk → Y0 is a (γ1, . . . , γk, γ0)-realization of the multi-function f : ⊆M1 × . . . ×
Mk ⇒ M0, if γ0 ◦ h(p1, . . . , pk) ∈ f(γ1(p1), . . . , γk(pk)) whenever f(γ1(p1), . . . ,
γk(pk)) exists. The multi-function f is (γ1, . . . , γk, γ0)-continuous (–computable),
if it has a continuous (computable) (γ1, . . . , γk, γ0)-realization.
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For naming systems γ : ⊆Y → M and γ′ : ⊆Y ′ → M ′ (Y, Y ′ ∈ {Σ∗, Σω}), let
γ ≤t γ′ (t-reducible) and γ ≤ γ′ (reducible) iff the identity id : a �→ a (a ∈ M)
is (γ, γ′)-continuous and (γ, γ′)-computable, respectively. Define t-equivalence
and equivalence as follows: γ ≡t γ′ ⇐⇒ (γ ≤t γ′ and γ′ ≤t γ) and
γ ≡ γ′ ⇐⇒ (γ ≤ γ′ and γ′ ≤ γ), respectively. A set X⊆M is γ-r.e. iff there
is a Type-2 machine such that for all p ∈ dom(γ): the machine halts on input
p iff γ(p) ∈ M .

If the representations of the sets under consideration are fixed, we will say
simply “computable” instead of “(γ, δ)-computable” etc. Two representations
induce the same continuity or computability iff they are t-equivalent or equiva-
lent, respectively. If multi-functions on represented sets have realizations, then
their composition is realized by the composition of the realizations. In particular,
the computable multi-functions on represented sets are closed under composi-
tion. Much more generally, the computable multi-functions on represented sets
are closed under flowchart programming with indirect addressing [Wei08]. This
result allows convenient informal construction of new computable functions on
multi-represented sets from given ones.

Let νN and νQ be standard notations of the natural numbers and the rational
numbers, respectively and let ρ be the Cauchy representation of the real numbers.

For any two representations γ : ⊆ Σω → M and δ : ⊆ Σω → N there is a
canonical representation [γ → δ] of the set of (γ, δ)-continuous (total) functions
f : M → N [Wei00, Definition 3.3.13] which can be characrerized up to equiv-
alence as follows [Wei00, Theorem 3.3.14]: For every representation δ̃ of the of
(γ, δ)-continuous (total) functions f : M → N , the function

eval : (F, x) �→ F (x) is (δ̃, γ, δ)-computable ⇐⇒ δ̃ ≤ [γ → δ] . (2)

3 Computable Topology

For the basic concepts of topology the reader is referred, for example, to [Eng89]
or the corresonding sections in [Coh80] and [Rud74]. The definitions and results
on computability in this section are from [GX07, GSW07].

On a second countable T0-space, that is, a topological space with countable
base such that every point x ∈ X can be identified by its (open) neighbourhoods,
we introduce computability by means of a notation of a base.

Definition 2 (computable T0-space [GSW07]). A computable T0-space is a
tuple X = (X, τ, β, ν) such that (X, τ) is a topological T0-space, β is a base of τ

(U 	= ∅ for all U ∈ β) and ν : ⊆Σ∗ → β is a notation of the base with recursive
domain and computable intersection, i.e., there is an r.e. set B⊆(dom(ν))3 with

ν(u) ∩ ν(v) =
⋃

(u,v,w)∈B

ν(w) .
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In [GW05] computable T0-spaces are called “computable T0-spaces with com-
putable intersection” and the relation to the similar “computable topological
spaces” from [Wei00] is discussed.

In the following we assume that (X, τ) is a Hausdorff space (that is, for any
x 	= y there are disjoint open sets U, V ∈ τ such that x ∈ U and y ∈ V ) and that
the topology is locally compact (that is, for every point x there is some U ∈ τ

such that x ∈ U and the closure U of U is compact). On the set X , the set β∗ of
the finite unions of base elements, the topology τ , the set τ̃ of the closed subsets
of X and the set Cp(X) of compact subsets of X we introduce computability
via the following naming systems.

Definition 3 (some standard representations [GSW07, GX07]). Define

1. the representation δ : ⊆Σω → X by

δ(p) = x, iff {u | x ∈ ν(u)} = {u | ι(u) � p} .

2. the notation ν∗ : ⊆Σ∗ → β∗ by ν∗(w) :=
⋃{ν(u) | ι(u) � w},

3. the representation θ : ⊆Σω → τ by θ(p) :=
⋃{ν(u) | ι(u) � p},

4. the representation ψ : ⊆Σω → τ̃ by ψ(p) := X \ θ(p),

5. the representation κ : ⊆Σω → Cp(X) by

κ(p) = K, iff {u | K⊆ν∗(u)} = {u | ι(u) � p} .

Notice that in 1. and 5., a name p ∈ Σω is a list of all u such that x ∈
ν(u) and K⊆ν∗(u), respectively, while in 3. and 4. a name p must list only
sufficiently many base elements. The representations δ and κ are topologically
admissible [Wei00], θ and ψ are admissible representations of natural limit spaces
[Sch02, Sch03].

In the following let X = (X, τ, β, ν) be a computable locally compact Haus-
dorff space defined as follows.

Definition 4 [GX07]. A computable T0-space X = (X, τ, β, ν) is called

1. computable Hausdorff space, iff there is an r.e. set H⊆dom(ν) × dom(ν)
such that ν(u) ∩ ν(v) = ∅ for all (u, v) ∈ H , and for all x 	= y there is some
(u, v) ∈ H such that x ∈ ν(u) and y ∈ ν(v),

2. computable locally compact Hausdorff space, iff it is a computable Hausdorff
space and U is compact for all U ∈ β such that the function U �→ U is (ν, κ)-
computable.
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Notice that V is compact for all V ∈ β∗. The following results are from [GX07]:

− intersection is (θ, θ, θ)-computable on τ , (3)

− ν∗ ≤ θ , (4)

− V �→ V for V ∈ β∗ is (ν∗, κ)-computable, (5)

− κ ≤ ψ , (6)

− x ∈ U is (δ, θ)-r.e. , (7)

− K⊆U is (κ, θ)-r.e. . (8)

For A⊆X let χA : X → R be the characteristic function of A (χA(x) =
1 ⇐⇒ x ∈ A). For f : X → R let supp(f) := {x | f(x) 	= 0} be the the support
of f . Let K(X) be the set of all continuous functions f : X → R with compact
support. For compact K, open U and f ∈ K(X) such that range(f)⊆[0; 1] we
define

K ≺ f : ⇐⇒ χK ≤ f, and f ≺ U : ⇐⇒ supp(f)⊆U . (9)

Obviously, f ≤ χU if f ≺ U .
For a locally compact Hausdorff space with countable base, for every compact

set K and every open set U such that K⊆U there are some V ∈ β∗ and con-
tinuous f : X → R such that K⊆V ⊆V ⊆U and K ≺ f ≺ U (Urysohn theorem)
[Coh80, Eng89]. We need a computable version.

Lemma5. 1. The multifunction (K, U) |⇒ V mapping each compact K and
each open U such that K⊆U to some V ∈ β∗ such that K⊆V ⊆V ⊆U is
(κ, θ, ν∗)-computable.

2. (computable Urysohn) The multifunction (K, U) |⇒ f mapping each compact
K and each open U such that K⊆U to some f ∈ K(R) such that K ≺ f ≺ U

is (κ, θ, [δ → ρ])-computable.

Proof: 1. This has been proved in [GX07].
2. In [GX07] it is also shown that every computable locally compact Haus-

dorff space is computably T3. The computable Urysohn theorem for such spaces
has been proved in [GSW07]. �

4 The Representations of Functions, Functionals and
Measures.

Computable Analysis studies, which functions are computable with respect to
given representations. Since almost all representations of a set are completely
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useless the investigations are concentrated on “effective” representations, that is,
representations which are related to some given algebraic or topological structure
on the set. In many cases TTE can explain why some representations are useful
or “natural” (admissible representations [KW85, Her99, Wei00, Sch02]).

In our situation we have a bijection I ↔ μ and try to find reasonable or “nat-
ural” representations such that the function and its inverse become computable.
Such a problem may have many solutions. For example, the real function x �→ 3x

and its inverse are (ρ, ρ)-computable as well as (ρ<, ρ<)-computable [Wei00].
We still assume that X = (X, τ, β, ν) is a computable locally compact Haus-

dorff space. For a computable version of the Riesz representation theorem we
need representations of the set K(X) of continuous functions f : X → R with
compact support, of the set LP of linear positive functionals on K(X) and of the
set RBM of regular Borel measures.

We consider the representations from Definition 3. Since δ and ρ are admis-
sible representations for the topologies τ and τR (the standard topology on the
real numbers), respectively, a function f : X → R is continuous, iff it is (δ, ρ)-
continuous by Theorem 3.2.11 in [Wei00]. For the (δ, ρ)-continuous functions
we have the canonical representation [δ → ρ] which by (2) is tailor-made for
computing the evaluation (f, x) �→ f(x).

Let δ̂ be the restriction of [δ → ρ] to K(X), the continuous functions with
compact support. The representation [δ̂ → ρ] of the set of (δ̂, ρ)-continuous
operators is tailor-made for evaluation (I, h) �→ I(h). But in general range([δ̂ →
ρ]) does not contain all positive linear functionals I : K(X) → R.

Example 1. Consider the space X := (R, τR, J̃ , νJ) where νJ is a canonical nota-
tion of the set J̃ of open intervals with rational end-points, which is a computable
locally compact Hausdorff space. Let I(h) :=

∫
h dλ (λ the Lebesgue measure)

be the usual Riemann integral. Then I is positive and linear on K(R).
Suppose that Riemann integration I is (δ̂, ρ)-continuous, hence ([δ → ρ], ρ)-

continuous on the set K(R). Since δ ≡ ρ (δ from Definition 3), [δ → ρ] ≡ [ρ → ρ].
By [Wei00, Lemma 6.1.7], [ρ → ρ] ≡ δco where δco(p) = f iff p is a list of all
pairs (u, v) ∈ Σ∗×Σ∗ such that f [νJ(u)]⊆νJ(v) (compact-open representation).
Therefore, Riemann integration is (δco, ρ)-continuous on K(R). Since the repre-
sentation δco is admissible with respect to the compact-open topology on C(R, R)
[Wei00], integration must be continuous on the subset K(R) of C(R, R), in par-
ticular in the “point” f , f(x) = 0 for all x. Since I(f) = 0, f must have an open
neighborhood U in the compact-open topology such that I[U ]⊆(−1; 1). Since the
finite intersections of subbase elements {f ∈ C(R, R) | f [νJ(u)]⊆νJ (v)} form a
basis, there are open rational intervals I1, J1, . . . , Ik, Jk, such that 0 ∈ J1∩. . .∩Jk

and I(g) ∈ (−1; 1) whenever g ∈ K(R) and g[Im]⊆Jm for 1 ≤ m ≤ k. But there
is some g ∈ K(R) such that g[Im]⊆Jm for 1 ≤ m ≤ k and I(g) =

∫
g dλ > 1.

Therefore, Riemann integration I is a linear positive operator on K(R) which
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is not (δ̂, ρ)-continuous, hence not in range([δ̂ → ρ]). �

We solve the problem by adding to each [δ → ρ]-name of f ∈ K(R) informa-
tion about its support.

Definition 6. Define the representation δK of K(X) by

δK(p) = f ⇐⇒ (∃w, q)
(
p = 〈w, q〉, supp(f)⊆ν∗(w) and [δ → ρ](q) = f

)
.(10)

Lemma7. Every positive linear operator I : K(X) → R is in the range of
[δK → ρ].

Proof: We will show this in the proof of Theorem 10 below. �

In Theorem 1 the space must be σ-compact, that is, a countable union of
compact sets. In our case X is σ-compact since X =

⋃{U | U ∈ β}. The set of
Borel sets B(X) is the smallest σ-algebra containing the set τ of open sets. A
measure on B(X) is called a Borel measure. We consider regular Borel measures
as defined in [Coh80].

Definition 8 (regular Borel measure). A Borel measure μ : B(X) → R on
a Hausdorff space is regular, iff

1. μ(K) < ∞ for all compact K,

2. μ(U) = sup{μ(K) | K compact, K⊆U} for all open U ∈ τ ,

3. μ(A) = inf{μ(U) | A⊆U, U open} for all A ∈ B(X).

Let M be the set of all regular Borel measures on X.

We need an appropriate representation of M such that a name p of a measure
μ supplies sufficient information for computing the positive linear operator f �→∫

f dμ for f ∈ K(R) represented by δK . By Definition 8.3 a regular Borel measure
is uniquely defined by its values μ(U) for open sets U .

Since U =
⋃{V ∈ β∗ | V ⊆U}, μ(U) = sup{μ(V ) | V ∈ β∗, V ⊆U}, hence

the measure is defined already by its values on the countable set β∗. In [Wei99]
a representation of the probability measures on the unit interval is defined by
names, which for every rational open interval approximate its measure from
below. This information and the fact that the probability measure of the whole
space, the compact unit interval, is 1 allows to show that (μ, f) �→ ∫

f dμ for
continuous f becomes computable. Since our space is only locally compact we
need a list of arbitrarily big open sets with known measure. In the following
definition a name of a measure contains information to compute the measure of
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every open set from below and instead of the single compact space [0; 1] with
measure 1 in [Wei99] it contains information about an exhausting sequence θ(ri)
of open sets with their measures.

Definition 9 (representation of measures). Define a representation δM of
the regular Borel measures on X as follows: δM(p) = μ, iff there are q ∈ Σω and
ri, si ∈ Σω for i ∈ N such that

1. p = 〈q, r0, s0, r1, s1, . . .〉,
2. q is a list of all 〈u, v〉 such that νQ(u) < μ(ν∗(v)),

3. (∀w)(∃i) ν∗(w)⊆ θ(ri) and

4. μ ◦ θ(ri) = ρ(si).

For every compact set K there is some w such that K⊆ν∗(w). Therefore, if
p ∈ dom(δM), then for every compact K there is some i such that K⊆θ(ri). In
general the sets ν∗(w) as well as their closures ν∗(w) may have non-computable
measures even if μ corresponds to a computable operator I (Theorem 1).

Example 2. Consider the space X := (R, τR, J̃ , νJ) from Example 1. We define
a measure μ on the Borel subsets. Let a1, a2, . . . be a computable one-one enu-
meration of an r.e. set A⊆N, which is not recursive. Then the real number
xA =

∑
i≥1 2−ai is not computable [Wei00]. Let Y := {0, 1} ∪ {2−1, 2−2, . . .} ∪

{1 + 2−1, 1 + 2−2, . . .}. Define μ({y}) for y ∈ Y by

μ({0}) := μ({1}) := 1 − xA,

μ({2−i}) := μ({1 + 2−i}) := 2−ai (i ≥ 1)

and let μ(B) =
∑{μ({y}) | y ∈ B ∩ Y } for every Borel subset B of R. Then

μ((0; 1)) = xA and μ([0; 1]) = 2 − xA, which are non-computable real num-
bers. We observe that for rational numbers a < b, μ((a; b)) is ρ<-computable
(ρ<(p) = x iff p is a list of all a ∈, Q such that a < x [Wei00]) but computable
if and only if a 	∈ {0, 1}. It remains to show that integration I : f �→ ∫

f dμ

is (δK , ρ)-computable. By Theorem 10 below it suffices to show that μ is δM-
computable. By the above observation, a computable δM-name of μ can be
constructed straightforwardly. �

5 The Main Theorem

We can now formulate our main theorem by which a measure μ can be computed
from I and vice versa such that I(f) =

∫
f dμ for all f ∈ K(X). Since our space

X is σ-compact, by Theorem 1, the classical Riesz representation theorem, the
operators S and T in the following theorem are well-defined.
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Theorem 10 (computable Riesz representation). Let X be a computable
locally compact Hausdorff space.

1. The operator S : I �→ μ mapping each positive linear operator I to the regular
Borel measure measure μ such that I(f) =

∫
f dμ is ([δK → ρ], δM)-com-

putable.

2. The Operator T : μ �→ I mapping each regular Borel measure μ the the
positive linear operator I such that I(f) =

∫
f dμ for f ∈ K(X) is

(δM, [δK → ρ])-computable.

Proof: We start with the second part. Let supp(f)⊆L, L open and μ(L) finite.
Let c ∈ N such that −c < f(x) < c for all x ∈ X .

Let (J1, . . . , Jn) be a partition of the interval (−c; c) into disjoint intervals
and let Ai := f−1[Ji] ∩ L. Then

∑
i

inf(Ji)χAi ≤ f ≤
∑

i

sup(Ji)χAi .

Since the sets Ai are measurable,

∑
i

inf(Ji)μ(Ai) ≤
∫

L

f dμ ≤
∑

i

sup(Ji)μ(Ai) (11)

by monotonicity of integration.

Proposition11. For every open interval J⊆(−c; c) and every ε > 0 there is
some subinterval [a; b]⊆J such that a, b ∈ Q, a < b and μ(f−1[a; b] ∩ L) < ε.

Proof: Otherwise, there were m ≥ (μ(L) + 1)/ε disjoint subintervals J ′ of J

such that μ(f−1[J ′]∩L) ≥ ε for each of them, and hence μ(L) ≥ μ(f−1[J ]∩L) ≥
mε > μ(L) (contradiction). �(Prop. 11)

Proposition12. For every ε > 0 and every m > 4c/ε there are pairwise disjoint
open intervals I0, . . . , Im⊆(−c; c) with rational boundaries of length < ε such that

μ(L) − ε <

m∑
k=0

μ(f−1[Ik] ∩ L) ≤ μ(L) .

Proof: For k = 0, . . . , m let xk := −c + 2kc/m. Then x0 = −c, xm = c and
xk − xk−1 = 2c/m < ε/2 for k = 1, . . . , m.

By Proposition 11, for each k ∈ {1, . . . , m} for the interval (xk−1; xk) there
is some interval [ak; bk] such that ak, bk ∈ Q, ak < bk and μ(f−1[ak; bk] ∩ L) <
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ε/m. Define b0 := −c, am+1 := c and Ik := (bk; ak+1) for k = 0, . . . , m. Then
ak+1 − bk < ε and

μ(L) − ε = μ(f−1(−c, c) ∩ L) − ε

=
m∑

k=0

μ(f−1[Ik] ∩ L) +
m∑

k=1

μ(f−1[ai; bi] ∩ L) − ε

<

m∑
k=0

μ(f−1[Ik] ∩ L) + m
ε

m
− ε

=
m∑

k=0

μ(f−1[Ik] ∩ L) ≤ μ(L) . �(Prop. 12)

Proposition13. For ε > 0 and m > 4c/ε let I0, . . . , Im⊆(−c; c) be the intervals
from Proposition 12. Let Vk := f−1[Ik]∩L and let d0, . . . , dm be rational numbers
such that

(∀k) dk < μ(Vk) and
m∑

k=0

μ(Vk) −
m∑

k=0

dk < ε . (12)

Then
∣∣∣∣∣
∫

f dμ −
m∑

k=0

inf(Ik) dk

∣∣∣∣∣ ≤ (μ(L) + 4c) ε.

Proof: Let J := (−c, c) \ ⋃
k Ik and B := f−1[J ] ∩ L. Then μ(B) < ε by

Proposition 12 and
∣∣∣∣∣
∫

f dμ −
m∑

k=0

inf(Ik) dk

∣∣∣∣∣ =

∣∣∣∣∣
∫

L

f dμ −
m∑

k=0

inf(Ik) dk

∣∣∣∣∣
≤

∣∣∣∣∣
∫

L

f dμ −
m∑

k=0

inf(Ik)μ(Vk)

∣∣∣∣∣ +

∣∣∣∣∣
m∑

k=0

inf(Ik)μ(Vk) −
m∑

k=0

inf(Ik) dk

∣∣∣∣∣
≤

∣∣∣∣∣
∫

L

f dμ −
m∑

k=0

inf(Ik)μ(Vk)

∣∣∣∣∣ + c

m∑
k=0

(μ(Vk) − dk)

≤
∣∣∣∣∣
∫

L

f dμ −
m∑

k=0

inf(Ik)μ(Vk) − inf(J)μ(B)

∣∣∣∣∣ + | inf(J)|μ(B) + cε

≤
∣∣∣∣∣

m∑
k=0

(sup(Ik) − inf(Ik))μ(Vk) + (sup(J) − inf(J))μ(B)

∣∣∣∣∣
+| inf(J)|μ(B) + cε (by (11))

≤
∣∣∣∣∣

m∑
k=0

ε μ(Vk)

∣∣∣∣∣ + (sup(J) − inf(J))μ(B) + 2cε (length(Ik) < ε)

≤ εμ(L) + 4cε = (μ(L) + 4c) ε . �(Prop. 13)
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We explain how
∫

f dμ can be computed from f and μ with respect to the
representations δK and δM. Suppose δK〈w, p〉 = f and δM〈q, r0, s0, r1, s1, . . .〉 =
μ according to (10) and Definition 9. For the open real intervals with rational
end points we consider some standard notation ν′. It suffices to compute from
f , μ and n ∈ N some yn ∈ Q such that | ∫ f dμ − yn| ≤ 2−n.
(A1) Find some open set L ∈ τ and its measure μ(L) such that supp(f)⊆L.
(A2) Find some c ∈ N such that range(f)⊆(−c, c).
(A3) Find some l ∈ N such that (μ(L) + 4c)2−l < 2−n and let m := 4c · 2l + 1.
(A4) Find rational numbers d0, . . . , dm and pairwise disjoint rational subintervals

I0, . . . , Im of (−c; c) of length < 2−l such that

(∀k) dk < μ(f−1[Ik] ∩ L) and
m∑

k=0

μ(f−1[Ik] ∩ L) −
m∑

k=0

dk < 2−l .

(A5) Let yn :=
∑m

j=0 inf(Ij) dj and y := limn yn.

By Proposition 13, | ∫L f dμ−yn| ≤ (μ(L)+4c)2−l ≤ 2−n, therefore,
∫

f dμ =
limn yn.

We show that in this way,
∫

f dμ can actually be computed from f and μ.
(A1) Applying using (5) and (8) we can find some i such that ν∗(w)⊆θ(ri).

For L := θ(ri), supp(f)⊆L and μ(L) = ρ(si).
(A2) By (5) a κ-name of ν∗(w) can be computed.
The function (f, K) �→ f [K] is ([δ → ρ], κ, κR)-computable ([GW05], κR is

the cover representation of the compact subsets of R from Definition 3), and and
the multifunction M |⇒ c such that c ∈ N and M⊆(−c; c) is (κR, νN)-computable
([Wei00]). Therefore, we can compute some c ∈ N such that f [ν∗(w)]⊆(−c; c).
We are finished since range(f)⊆({0} ∪ f [ν∗(w)]⊆(−c; c).

(A3) Numbers l and m can be computed from μ(L) and c.
(A4) By Proposition 12, there are pairwise disjoint rational subintervals

I0, . . . , Im of (−c; c) of length < 2−l such that μ(L) − 2−l <
∑m

k=0 μ(f−1[Ik] ∩
L) ≤ μ(L). Then there are rational numbers dk < μ(f−1[Ik] ∩ L) such that

μ(L) − 2−l <
m∑

k=0

dk <
m∑

k=0

μ(f−1[Ik] ∩ L) ≤ μ(L) .

For these intervals and numbers,
∑m

k=0 μ(f−1[Ik] ∩ L) − ∑m
k=0 dk < 2−l. For

finding such rational intervals Ik and rational numbers dk it suffices to find
intervals and numbers such that μ(L)− 2−l <

∑m
k=0 dk and dk < μ(f−1[Ik]∩L)

for all k = 0, 1, . . . , m. This search can be done computably in the input data, if
we know that the set {(x, b) | x < b} is (ρ, νQ)-r.e. (this is well-known) and that
the set {(a, I, L′) | a < μ(f−1[I] ∩ L′)} is (νQ, ν′, θ)-r.e. in the input data.

The function (f, I) �→ f−1[I] is computable [GW05]. By (3) and (A1),
(f, I, L′) �→ f−1[I] ∩ L′ is computable. Since the measure μ is regular, for ratio-
nal a and open U , a < μ(U) iff a < μ(K) and K⊆U for some compact set K.
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By Lemma 5, K⊆U iff K⊆V ⊆V ⊆U for some V ∈ β∗. Therefore, a < μ(U) iff
a < μ(V ) and V ⊆U for some V ∈ β∗. Since a < μ(V ) for a ∈ Q and V ∈ β∗

is r.e. in the input data (Definition 9) and V ⊆U for V ∈ β∗ and U ∈ τ is r.e.
by (5,8), a < μ(U) is r.e. in the input data. Therefore, a < μ(f−1[I] ∩ L′)} is
(νQ, ν′, θ)-r.e. in the input data.

(A5) From the numbers dj and intervals Ij the sequence (yn)n and its limit∫
f dμ can be computed.

Therefore, (μ, f) �→ ∫
f dμ is (δM, δK , ρ)-computable, and hence by (2), the

operator T : μ �→ I is (δM, [δK → ρ])-computable.

By the classical Riesz Theorem, Theorem 1, for every positive linear func-
tional I there is some measure μ such that I(f) =

∫
f dμ. Therefore, by the

above result every positive linear operator I : K(X) → R is in the range of
[δK → ρ]. This proves Lemma 7.

Finally we show that the operator S : I �→ μ is computable. Suppose
[δK → ρ](t) = I. We must compute the sequences q, r0, s0, r1, s1, . . . ∈ Σω from
Definition 9 for a name of the measure μ.

First we show how to compute a sequence q which must be a list of all 〈u, v〉
such that νQ(u) < μ(ν∗(v)).

By Definition 8.2, μ(ν∗(v)) = sup{μ(K) | K compact, K⊆ν∗(v)}. Suppose,
K⊆ν∗(v). By Lemma 5.1 there is some W ∈ β∗ such that K⊆W⊆W⊆ν∗(v).
Therefore,

a < μ(ν∗(v)) ⇐⇒ (∃w) (ν∗(w)⊆ν∗(v) and a < μ(ν∗(w)) .

By Lemma 5.2 and (4,5) there is a computable function g such that for f :=
δK〈v, g(w, v)〉,

χν∗(w) ≺ f ≺ χν∗(v) if ν∗(w)⊆ν∗(v) ,

therefore, by integration and monotonicity of the integral

μν∗(w) ≤
∫

f dμ ≤ μν∗(v) if ν∗(w)⊆ν∗(v) .

Since
∫

f dμ = I(δK〈v, g(w, v)〉,

a < μ(ν∗(v)) ⇐⇒ (∃w)a < I(δK〈v, g(w, v)〉) .

Therefore, from a [δK → ρ]-name of I we can compute a list of all 〈u, v〉 such
that νQ(u) < μ(ν∗(v)).

It remains to compute a sequence (ri, si)i such that 3. and 4. in Definition 9
hold true.

Proposition14. By means of I from every W ∈ β∗ we can compute sets Y, Z ∈
β∗ and a number m ∈ N such that W⊆Y ⊆Y ⊆Z and μ(Z) − μ(Y ) ≤ m.
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Proof: By (5), W → W is (ν∗, κ)-computable. By the definition of the represen-
tation κ, Definition 3.4, from W we can find some U ∈ β∗ such that W⊆U . Ap-
plying Lemma 5.1 twice we can compute Y, Z ∈ β∗ such that W⊆Y ⊆Y ⊆Z⊆Z

⊆U . By Lemma 5.2 we can compute functions f1, f2 ∈ K(R) such that W ≺
f1 ≺ Y ⊆Y ⊆Z⊆Z ≺ f2 ≺ Y ⊆U , therefore, f1 ≤ χY ≤ χZ ≤ f2. By integra-
tion, I(f1) ≤ μ(Y ) ≤ μ(Z) ≤ I(f2). Determine m such that m > I(f2) − I(f1).
�(Prop. 14)

Proposition15. By means of I for all W, U ∈ β∗ and a ∈ Q such that W⊆U

and μ(U) − μ(W ) < a we can compute sets Y, Z ∈ β∗ such that W⊆Y ⊆Y ⊆Z

⊆Z⊆U and μ(Z) − μ(Y ) < a/2.

Proof: By Lemma 5 we can compute sets Y1, Y2, Z1, Z2 ∈ β∗ and functions
f1, f2 ∈ K(R) such that

W ≺ f1 ≺ Y1⊆Y 1⊆Z1⊆Z1 ≺ f2 ≺ Y2⊆Y 2⊆Z2⊆Z2 ≺ f3 ≺ U ,

hence
χW ≤ f1 ≤ χY 1

≤ χZ1 ≤ f2 ≤ χY 2
≤ χZ2 ≤ f3 ≤ χU .

By integration we obtain

μ(W ) ≤ I(f1) ≤ μ(Y 1) ≤ μ(Z1) ≤ I(f2) ≤ μ(Y 2) ≤ μ(Z2) ≤ I(f3) ≤ μ(U) .

Since μ(U) − μ(W ) < a, I(f2) − I(f1) < a/2 or I(f3) − I(f2) < a/2. Since
we know also upper bounds of the supp(fi) we know also δK-names of these
functions. Therefore, I(f1), I(f2) and I(f3) can be computed by means of the
given I, and we can computably verify one of the cases “I(f2) − I(f1) < a/2”
and “I(f3)− I(f2) < a/2”. In the first case choose Y := Y1 and Z := Z1, in the
second case Y := Y2 and Z := Z2. �(Prop. 15)

Proposition16. By means of I for every W ∈ β∗ we can compute an open set
V ∈ τ and a real number x such that W⊆V and μ(V ) = x.

Proof: By Proposition 14 from W we compute sets Y0, Z0 ∈ β∗ and a number
m ∈ N such that

W⊆Y0⊆Y 0⊆Z0⊆Z0 and μ(Z0) − μ(Y 0) < m .

By Proposition 15 for j = 1, 2, . . . we compute Yj , Zj ∈ β∗ such that

Y j−1⊆Yj⊆Y j⊆Zj⊆Zj⊆Zj−1 and μ(Zj) − μ(Y j) < m · 2−j

and by Lemma 5 simultaneously functions f0, f1, . . . ∈ K(R) such that

Y j ≺ fj ≺ Zj .
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Then μ(Y j) ≤ I(fj) ≤ μ(Zj). and for all i > j, |I(fj) − I(fi)| ≤ m · 2−j .
Therefore, x := limj I(fj) can be computed by means of I. Let V :=

⋃
j YJ .

Then V can be computed and μ(V ) = supj μ(Yj) = supj μ(Y j) = lim I(fj) = x.
�(Prop. 16).

Now it is easy to compute sequences ri, si for the name of μ according to
Definition 9. Let wi be the ith element of Σ∗ in a natural numbering. For com-
puting ri and si apply Proposition 16 to W := ν∗(wi) and find ri such that
V = θ(ri) and si such that x = ρ(si). �
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