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We deal with the probiem of segmenting static images, a procednre known to be difficnlt in the case of very 
noisy patterns, The proposed approach rests on the transfonnation of a static image into a data flow 'in which 
the nrst image points to be processed are the brighter ones. This solution, inspired by human perception, in 
which strong luminances elicit reactions from the visual system before weaker ones, has led to the notion of 
asynchronous processing. The asynchronous processing of image points has required the design of a specific 
architectnre that exploits time differences in the proces!;>ing of information. The results ohtained when very 
noisy images are flegmented demonstrat,e the strengths of this architecture; they also suggest extensions of 
the approach ro other computer vision problems, 

Key W.fJrds: segmentatiou, as)"Tlchronous proce.'3sing, noulinear diffnsjon, visnal data now, latency, human 
visual system. 

1. INTRODUCTION 
Segmentation plays an important role in a vlsion system, 
as it permits the identification of regions cnaracterized by 
a specific luminance. coloT. or tc;\"ture.1 .- 4 Although vari~ 
ous image features could be combined to help in the task 
of segmentation, in this paper we focus on finding regions 
by using only the luminance information. This problem 
is not new, as many authors have proposed techniques 
(for example" based on nonlinear diffusion) for extracting 
regions,5-.7 The novelty in this paper is the demonstra~ 
tion that classical techniques of s.egmentation can be sig­
nificantly improved if the luminance information is se.en 
and processe.d as a temporal data flow. 

How can luminance information be related to tempo­
ral delays? The answer is based on the notion of the 
]uminance~to-response~latency relationship, which has 
been inspired by the buman visual system.6: For decades 
it has been well known to psychologists that there exjsts 
a dependence of reaction time on stimulus intensity. in 
which stronger signals elicit responses before weaker 
ones,!} Visual illustrations of this phenomenon aTe the 
Pulfrich effect and the Hess effect. The Pulfrich effect'O 

described in 1922 by Carl Pulfrich, is easily experienced 
by an observer looking at a swinging pendulum bob while 
wearing two different lenses, one being dark and the 
other clear: the path of the boh swinging in the fronto~ 
parallel pJane of the observer appears approximately el­
liptical in depth. This stereoscopic visual illusion results 
from an increase in processing time in one eye (the one 
looking through the dark lens). which, as has recently 
been proposed, could directly affect the distribution of the 
activity of disparity~se)ective cortical cells in the visual 
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cortex,l1 In the Hess effect,12 first reported by Carl von 
Hess in 1904, an observer looks monocularly at two tar~ 
gets that are moving lateraHy at the sam.e velocity (also 
in the observer's frontoparallel plane). Wnen one target 
is reduced in luminance, the corresponding increase in 
visual latency causes a change in their relative apparent 
locations of the targets: the observer reports one target 
as though it were trailing the other. 

AJthough in this paper we concentrate on using the 
luminance-to-re8ponse~latency relat.ionship, it must be 
emphasized that ,,-laua} latencies in the human visual 
system are also dependent on other visual features (e,g" 
color,ls spatial frequencY,14 and contraBt151 The paper 
is organized as follows: Section 2 addresses the gen~ 
eral problem of processing information that is distributed 
in time, Section 3 presents our model of asynchronous 
segmentation, It is followed in Section 4 by experimen­
tru results that compare, for the same architecture, the 
results of" segmentation obtained with and without a 
luminanccnto---time relationship. Other possible applica~ 
Hans of our model arc discussed in Section 5. FinaIly. 
Section 6 presents some concluding remarks. 

2. PROCESSING A DATA FLOW 
From the point of view" of clasEical i.mage processing, Itl a 
static image is considered to be an array of image points 
that must be processed as a whole, or synchronously. 
Conversely, the introduction of a relationship between 
image variables and time leads to the notion of asyn­
chrony. Asynchrony indicates that image points are not 
processed as a whole but instead as a temporal sequence 
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Fig. 1, llluBtration of the effect of the luminance4o­
response~latency relationship. At time 0 no image points 
are considered, As time in<"'rease5, more and more image 
points are considered, those having a high luminance being 
taken into account first. 

or data flow. For a static image to be transformed into a 
data flow, the latency or delay associated with an image 
variable (luminance in our case) must be determined for 
every image point, or pixeL (In a more general manner, 
a delay might be associated with every primitive, such as 
edge element or region.) This transformation is schema­
tically illustrated in Fig. L In the fIgure, it is shown that 
the introduction of latencies creates a temporal sequence 
in which the mostaluminous image points can activate the 
processing stages before the darker ones can. 

Usually, for the human visual system the relationship 
of luminance to response latency is reported as being 
nonlinear and possibly approximated by an inverse cube­
root function. =-7 This function decreases rapidly at low 
luminances and slowly at high luminances. So far, this 
nonlinearity has not been found to be relevant for our 
model j and for that reason a linear approximation was 
chosen. For an image containing a range of luminances, 
the luminan(''e-to~respon8e~latency relationship yields a 
data flow that must be processed continuously. Practi~ 

cally; a sampling time is defined! and, consequently. the 
data flow is discretized into a temporal sequence of image 
points, 

How could segmentation benefit from asynchrony? It 
has been demonstrated elsewhere by means of the concept 
of mutual informationlB that the general problern of c1as~ 
sifying noisy symbols that are characterized by specific 
amplitudes (a problem similar to segmentation) is natu~ 
rally well suited to asynchronous processing. In particu­
lar, there is a period of time during which the available 
information, corresponding to the strongest amplitudes; 
has not yet been corrupted by noise of correspondingly 
lower amplitude. During this period of time the proba­
bility of misclassifying the information is minimized, Be~ 

cause we deal with an unsupervised classification, one of 
the main prohlems is to know when this optimum period 
occurs. It is at this point that we wish to design an archiw 
teeture that uses this optimum period without having to 
know it in advance. Also, we propose two strategies that 
are hased on temporal interactions between image points 
previously processed and those subsequently processed. 
The first and simplest strategy that would provide such 
int,eraction is to use a temporal integration at the out~ 
put of the processing stages, as illustrated in Fig. 2(a). 
This allows the solution appearing during the optimum 
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period to contribute to the final result, A second strat~ 
egy that would allow an interaction between the current 
image information content and the forthcoming one is 
to USe feedback in the processing stages, as shown in 
Fig. 2(b). A combination of temporal integration and 
feedback has been adopted in our model, leading to the 
architecture presented in the next section. 

3. MODEL OF ASYNCHRONOUS 
SEGMENTATION 
The segmentation of an image that has been transformed 
into a data flow is said to be asynchronous. One of the 
main features of asynchronous segmentation is its tem~ 
poral dimension~ which somehow complicates the struc­
ture of the different stages of processing, To make the 
understanding of our model easier. we have preceded 
the description of the equations by a general overview 
that qualitatively presents the mechanism of asynchro~ 
nous segmentation, 

A, General Overview 
Segmentation can be subdivided into two complementary 
tasks: (1) the detection of edges and (2) the extraction 
of regions delimited by edges. One possible strategy is 
thus to detect the high spatial frequencies contained in 
boundaries and then smooth the low spatial frequencies 
of homogeneous regions inside these boundaries, This 
scheme implies thai high and low spatial frequencies 
must be preserved. In our modeL we use a rotation~ 

ally symmetrical (so-called isotropic) filter that enhances 
edges. whatever the orientation, and preserves uniform 
regions. 

In accordance with the strategies described in 
Section 2, this filter is applied to a data flow that 
corresponds to image points of a given luminance and 
latency, and the result is temporally integrated (Fig. 3). 
A particular feature of such a temporal approach is 
that spatially connected image points in the original 
image may become disconnected at a certain time if their 
respective latencies differ, The output of the temporal 
integration 1S thus smoothed out so that iso1ated spots are 
spread into regions, this smoothing being done through 
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Fig. 2. Illustration of two strategies that allow early image 
points to interact with later ones. The hatched arrows indicate 
that a temporal component has been added to the spatial com~ 
ponents, forming a data. flow by associating latencies, or delays, 
with luminance values. (a) A temporal integration at the output 
of the processing stages memorizes the temporal evolution; (b) 
feedback permits a dynamic interaction between a Cllrrent state 
in the processing stages and incoming image points, 
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Fig, 3. ~odel of asynchronous seg'mentation, The first stage applies a bandpass isotropic filter to the data flow [(x"y, t). The 
reiult S{x,y,t} is tR.mporally integrated, and the output T(x,y,tl is fed to the diff'usiou sLage ~U(X,y\i)], which is dynamically 
controHed by the Lodge estimation V(x,y,f). 

a diffusion mechanism. If nothing stops the diffusion, 
the final result will be a uniform region covering an the 
image. Edges that have been enhanced by the isotropic 
fi1tering are used as a means of controlling the diffusion. 

One implication of using a data flow is that the quality 
of the edge location varies with time. To be convinced of 
thi3, one can imagine a noisy image containing a bright 
object on a dark background. Early in time very few 
image points can be used to estimate the edge location, 
leading to a pOOl' estimate. At the other extreme, when 
all image points are used ttime » 0), the estimate is 
also POOl' because of interference between the background 
and the object. IntuitivelYl an intermedlate time exists 
at which estimation is based on an optimum number of 
image points, that is~ many foreground and few hackw 
ground points (as already discussed in Section 2). One 
effect of the t€mporal integration is thus to keep track of 
the best estimate of the edge's location. 

Another way of improving the estimate of edge loca­
tion is to search for spots, at. the level of the diffusion 
stage) that are locally aligned along a specific orientation, 
a global approach called cooperation. The new estimate 
of edge location is in turn used to control the diffusion. 
achieving a feedback, as shown in Fig. 3. Such an archi­
tecture is thus in agreement with the conditions one needs 
to benefit from latencies; these conditions were presented 
in Section 2. The remainder of this section describes in 
a fonnal way the various stages of processing used in our 
model. 

B. I..uminance-towResponse~Latency Conversion 
The first stage of our model must convert and associate 
latencies to luminances in order to create the data flow, 
The range of luminances is normalized so that the maxi­
mum j of possible luminances over all images is related to 
t.he minimum latency T mlJl and ]'ero luminance is related 
to the maximum admissible latency 7'm.ax. 

The following strategy was used to process the image 
points asynchronously: At time 7-ero no image points are 
processed; at time t = "mil'::, all image points of maximum 
possible intensity are processed; in a general way. at time 
t = tn, all image points P(x,y) whose intensity meets 
the condition 1'rll,))[ + IJ(x1y)/I](Tmiu 7rn.}x) ::s iii are being 
processed, To correspond to the range of latencies found 
in biological systems,19 Tr::tin and 7 nv;x have been set to 2 IDS 

and 22 ms, respectively. 

c. Isotropic Filtering and Temporal Integration 
The following stage, the isotropic filtering, is the first 
stage that processes a data flow. The convolution (*) of a 

spatially distributed data flow l(x, y, t) with the isotropic 
filter is expressed by the following equations (adapted 
from Grossberg et (1 5 ); 

R
' ) - [BC (x, y) DE(x,y)] * l(x,y,t) > '1') 
(X,y,t-A+(CI' 'l'E( ,)".T( t) , , ,X,Y T X,Y J - ~ x,y, 

C(x, y) ~ K, exp[ ~'(x2 + y2)1"']' (2) 

E{x t y)=K2 expr-(x2 + yZ)f;e2] , (3) 

where Band D define a positive and a negative satu~ 
ration, respectively; AJ Kh and K2 are constants, and 
(£ and f3 are the radii of the Gaussian distributions. 
To stay close to the way that the human visual system 
perceives light, we normalize by the denominator the 
difference of the two weighted Gaussians C(x,y) and 
E(x,y) in the numerator to compute a local contrast in 
a manner approximating that of a Weber law, known in 
psychophysics as the law for the perception of contrasts 
over a large range of luminances.2o To ensure that 
R(x,y, t) is different from zero for homogeneous regions, 
we can show that the condition (BKtfx'l/WK,f3') > 1 
must be verified. Because the convolution of the 
image with this filter is dependent on the contrast di~ 
rection (black to white or white to black), the response 
R(x,ytt) is half-wave rectified in order to keep only 
the contrast information, Half~wave rectification, given 
by 8(x,y,t) - max[O,R(x,y,t)], keeps only positive re­
sponses and suppresses all negative responses, The next 
stage temporally integrates the output of this rectification 
by summing the values obtained after every time interval: 

T(x,y, t) J~' 8(x,y, t')dt*, (4) 

D. Diffusion 
The diffusion-mechanism stage has two main controlling 
pieces of information: (1) inpnts from the data flow and 
(2) control by the contour estimates, These two con~ 
straints can be- better understood if we consider an ana!~ 
ogy wit.h the heat-diffusion equation. In the context of 
the heat~diffusion equation, the first constraint is equiv~ 
alent to saying that a surface is locally heated at difrer~ 
ent locations, the temperature and the number of sources 
varying with time, The second constraint implies t.hat 
the thermic conductances are not constant and can differ 
from one spatial orientation to another (the diffusion is 
thus so~called anisotropic). Such a diffusion can be de­
scribed by the following equation: 

~1t U(x,y,t) - div[c(x,y, t)VU(x,y,t)] + T(x,y,t), (5) 
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where the divergence operator div and the gradient 
operator V' are applied to the space variables. c(x,y.t) 
is the conductance coefficient, and U(xty.t) represents 
the spatiotemporal evolution of the diffusing quantity. 
The data flow is represented in this equation by the term 
T(x,y, t), which in our model is the result of isotropic 
filtering after temporal integratioIL Diffusing a filtered 
version of the original image is not new and has been de~ 
scribed elsewhere.'''" The novelty i. rather in the diffu­
sion of a fIltered image that i.. time dependent [T(x,y, t)]. 

Tbe conductance coefficient c(x,y, t) in Eq. (5) is critical 
for control of the diffusion. particularly to stop smooth­
ing where there is a contour. This coefficient is thus 
a functi.on of the estimate of the location of the con­
tours and must be small when a large spatial gradient 
(corresponding to an edge) is present in order for the dif­
fusion within the edges to he constrained. A simple es~ 
timate of the contour location [V(x,Y. t)] could be given 
by the spatial gradient of U(x,y, t). However, because 
the asynchronous approach may yield isolated spots dur­
ing the early part of the simulation, a gradient estimate 
of contour would be poor. For that reason, the contour 
location is estimated in a more global way by use of orir 
ented Gabor filters (see below). These filters tend to 
respond well to points aligned along their own specific ori­
entations. The function relating the edge strength to the 
conductance must be carefully chosen so as to blur small 
discontinuities and sharpen the contours.6 Besides the 
choice of this function, there is the prohlem of defining 
what is a small discontinuity. To address this problem 
we use a function g(-), defined by 

o 
e(x, y, t) = g[V(x,y, t)] = '1~"" V() (6) + € x,y,t 

that blurs all discontinuities, and we use the mechauism 
of competition to sharpen edges. Competition is defined 
within a local neighborhood where the strongest edge 
(response of the Gabor filters) suppresses all the weaker 
responses. Note that the two parameters 8 and E are 
critical ror the control of the blurring (in particular, its 
propagation rate with time). 

E. Edge Estimation 
Contour locations are estimated by combining the re­
sponse of oriented Gabor filters. For orientation k the 
edge estimation V'(x,y,t) is produced by convolving the 
current result of diffusion with a Gabor filter a'(x,y): 

V'(x,y,t) IU(x,y,t). a'(x,y)l, (7) 

the definition of the Gabor filter G'(x,y) being 

G'(x,y) if!exp(x cos k + y sin kl"/?'] 
X exp[( -x sin k + y cos k)2 h'l 
X sin[211'(x + y)]. (8) 

where ( and 1/ define the shape of the filter and if! de­
fines its amplitude. The absolute value of the right-hand 
term in Eq. (7) is taken in order that V'(x,y,t) be inde­
pandent of the sign of contrast. A local competition is 
then applied along n orientations (detsils can be found 
elsewhere1B) to keep the strongest responses Vk(X~y~t)~ 
which are finally combined to determine V(x,y,t); 

V(x,y,t) ~..!:. LV'(x,y,t). (9) 
n • 
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F. Implementation 
Discretization of the above equations did not present a 
major problem. The diffusion equation [Eq. (5)] can be 
spatially discretized on a square lattice by use of a neigh~ 
borhood of the four-nearest-neighbors 1'1: 

it Uij(J) = L [Upq(t)- Uij(t)]Cpq + Tij(t) , (10) 
{p,q)EN 

where cpq are the conductance coefficients that are related 
to the horizontal and vertical estimations of the contour 
locations (see Fig. 7 below); 

V,~'ffi(t} ..!:. 2.: V't/(t}eos(k) , (11) 
n k 

1 '"'-- k -- L. V ij (tlsin(k). 
n • 

(12) 

The convolution (isotropic and Gabor filtering), du­
fusion~ and competition are well suited to parallel im~ 
plementation. Indeed, a parallel implementation of our 
model on a Connection Machine CM2a (8192 processors, 
256.MByte memory) was shown to be very efficient. 

The parameters for the different processing stages were 
as follows: isotropic filtsring: A 100, B 90, D 60, 
Ki = 4, K. = 1, " - 1.2, fJ - 2.4: diffusion: 8 = 10,000, 
• = 1; edge estimation: t/' = 0.63, [ 0.37,1/ 0.68; ten 
nearest neighbors for the competition; n 2, except for 
processing of the image pebbles (see ~'ig. 9 below), where 
n = 8. 

4. Experimental Results 
The role of the latencies can be demonstrated experi­
mentally when very noisy images are processed. We con­
sidered 128 X 128 pixel images containing an object of 
luminance LIon a background of luminance Lz with 
the condition L2 < L1 and where every image point has 
been perturbed by additive white noise. According to our 
model the probability timt the first image points to be pro­
cessed are those pertaining to the object is higher than the 
probability that these image points are those pertaining 
to the background. This principle is illustrated in Fig. 4, 
in which the evolution of diffusion is shown at different 
times. The original image; one half set to luminance 124 
(background) and the other half set to luminance 130 
(object), is perturbed by additive Gausstan white noise 
with a signal-to-noise ratio (SNR) of 0 dB. At time 5 ms 
[Fig. 4(b) 1 the strongest responses of the diffusion are 
those produced by the object. The boundary separating 
the object from the background is already apparent. At a 
later time [10 IDS, Fig. 4(c)], image points from the back­
ground have also been processed, but their delayed actions 
prevent them from spatially interfering with the object; 
thus a well-defined boundary results, particularly at time 
20 IDS [Fig. 4(d)]. This result can be compared with syn­
chronous processing, shown in Fig. 5, in which all condi~ 
tions are identical to the asynchronous processing (same 
architecture, same parameters, same diffusion, same sam~ 
piing time for the diffusion) except for the lack of delays 
in the arrival of the image points, Synchronous process~ 
ing results in a very noisy image, which is particularly 
apparent when a threshold is applied to label the figure 
and the background, as shown in Fig. 6. For both results 
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(a) 

J 
(b) 

(e) 

(d) 
Fig. 4. Temporu1 evolution of asynchronons diffusion: (a) origi­
nal image (J 28 x 128 pixels:) with one half set to luminance 124 
and tbe other half SE't to 130, both perturbed by additive Gaussian 
white noise with a s';.andard de,,"iation of 6, The SNR is ° dB. 
The average of three lines, which are delimited by the two arrows 
in the original image. is ilhown at. the right. 'l'he other image!' 
are the result" of ~he diffuilion (time increment 1 fiS; at times 
(b) 5 ms, H:) 10 ms, and (d) 20 ms. This sequence of images 
shows how the boundary becomes less noisy as time progTesses, a 
consequence of the contint1a: interaction between early and later 
image points. 

(asynchronous and synchronous), the mean value has 
been chosen as threshold. Figure 61a) shows the effect of 
thresholding the image presented in Fig. 4(d): while the 
border separating the figure from the background is not 
straight, the surfaces are noiseless. In contrast, Fig, 6(b) 
shows that thresholding the image presented in the left~ 
hand panel of Fig" 5 results in noisy regions in which fjg~ 
ure and background are not well defined. 
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Two questions pertaining to the dyna.mic nature of the 
process must be addressed. First, at which time must 
the simulation 00 stopped? Second, what is the influence 
of the choice of the samp1ing~time value? 

To answer the first question, one must remember that 
at time t 7 maJi aU the visual information has been pro~ 
ces8ed. Nevertheless, this situation does not prevent the 
simulation from continuing, becatho;;e the diffhsion is still 
actlve, Also the criterion that is used to determine when 
the simulation must be stopped is the smoothness of the 
surfaces resulting from the difiusion, a process known to 
be slower than the sharpening of edges.'! An empirical 
criterion chosen in the simulation was to take the final 
time as three times 1'm3:o.' 

To answer the second question, Oile must remember 
that, ideaHy, the sampling time should be very small if we 
want.ed to ::;imulate a continuous data flow. Practically, 
there IS a trade-off between the approximation of a con­
tinuous data flow and the affordable execution time. For 
the images considered in our simulations, a sampling time 
of the order of 1 ms yielded good results. In Fig. 7 two 
simulations with different sampling times are compared. 
The original image, shown in Fig. 7(a); contains a rectan­
gle of luminance 130 on a background of luminance 124. 
Object and background are perturbed by addltive uniform 
noise (white noise) to give a SNR of -10 dB. In the sim­
ulations shown in Figs, 7(b) and 7(C) the data flow has 
been sampled with a sampling time of 1 ms and 0,4 ms, 

Fig. 5. Result of synchronous processing (at time 20 ms) of the 
imag-e shown in Fig, 4(a), The right-hand box showl) the average 
uf three lines, the same as those defined in Fig. 4(aJ Since all 
information is processed at the same time, the ooi.se caunoL be 
reduced. and thus the boundary is poorly defined. This resnlt is 
to be compared with the asynchronous diffi~8ion reSl.lt presented 
in Fig. 4(d). 

Ca) Cb) 
Fig, 6. Labeling, Thl? resnlts of (aJ ft:Jynchronous lind (b) Byn~ 
chronous diffusion at time 20 rns [shown in Figs. 4(d) and 5, 
respectivelsl are thrc!'!ho~ded. All values s:nallerthan the mean 
value at'e interpreted as the background (dark), the other values 
bei!lg interpreted as the foreground (whit(», Although the con­
tour in la) is not straight, segmontation is much less noisy in (a; 
than in (0). 
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(a) 

(b) 

(c) 
Fig. 1, Effect of sampling of the data flow on the resulL 'Two 
different sampling riU1.(>s were uHcd, 'Ine original image, shown 
in (a) at the ;eft, has a rectangle of luminance value 130 (delim­
ited by dashed tines) on a background of luminance value 124. 
both perturbed by additive uniform white noise with a standard 
deviation of 65.7; the SNR is ~10 dB. Results of diffusion at 
time 15 ms are "hown for a sampling time of (b) 1 ms and (c; 
0.4 mB. The right-hand cOlumn shows line 54, identified by an 
arrow in the original image. From a comparison of (b) and (c) 
it is apparent that a dat,-'l flow sampled with a smaller sampling 
time gives a better boundary; this result stems from the greater 
interactiou permitted between image points. 

respectively (the l$ampHng time of the diffusion equation 
was the same for these two simulations), The results of' 
the diffusion at time 15 ms demonstrates that a smaller 
sampling time }i.elds better contourS j because the spatial 
interferences between object and background are corre~ 
spondingly reduced. An extreme cond:ition 1S given for 
a sampling time of value 1'max corresponding to the s;yn­
chronolls case) whose result is .shown in Fig. 8. This re­
sult shows poor boundaries compared with those shown 
in .Fig. 7(c). 

The use of a smaH sampl:ing time implied that the over~ 
all processing had to be reiterated many t:imes (the nnm~ 
ber of iterations being given by the ratio between the 
final-time and sampling-time values), Also, the execn~ 
tion time for the above simulations was of the order of 
a few minutes on a ConnectioIl lVlachine, compared with 
a few hours on a serial machine (Sun spare station II, 
32-MByte memory). The speedup obtained through par-
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alIelization for a 128 X 12B pixel image was 30 times for 
the isotropic filtering, 40 times for the diffusion, 85 times 
for the compeiition, and 108 times for the Gabor filtering, 

5. OTHER APPLICATIONS 
Applications of our model to other classes of images is cnr­
rently limited by the quality of the edge-estimation stage. 
In particular) the competition stage does not satisfacto­
rily sharpen edges in complex images. Furthermore, the 
Gabor filters should be replaoed by more-sophisticated 
cooperative mechanisms. Despite these limitations, we 
consider a real image of pebbles to illustrate another as­
poet of Our temporal approach, M shown in Fig. 9, the 
processing of t.his image was stopped at time 10 ms. At 

Fig.8. Reswt of the synchronous processing of the image shown 
in Fig, 7(a) (the right-hand box shows line 54). This result 
represent.s the limiting case in which the .sampling time of the 
data flow js so coarse that all information is processed at the 
same time, thus uot allowing for any interadion among image 
point.s. The boundary is to be compared with the Orle obtained 
with an asynchronous segmentation, as shown in Fig. 7(c), 

(a) 

(b) 
Fig. 9. Aaynchronous processing of a real image: (a) a photo~ 
graph of pebbles (128 X 128 pixels); (b) the result of diffusion 
at time 10 ms {sampling time 0.3 ms}. At this time, only the 
most~luminous pebbles have been processed. 
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this time the brightest pebbles appear as isolated objects, 
This effect, which results from the asynchronous process­
ing, could be used as the basis of a focus-of-atttention 
mechanism. 

Such a principle of attaching a delay to each image 
primitive could ease the image analysis by pruning out 
the background as well as objects whose features do not 
elicit early (or late) responses, This pruning would be 
beneficial, as it would permit a reduction in the amount 
of visual information to be processed at each instant. 

This principle can be extended to other visual features 
(such as color) or to other levels of processing. For in­
stance, in previous research, the relationship of curva­
ture to response latency was explored.22: In addition, an 
indexing mechanism for object discrimination :is currently 
being developed.23 On a related issue, an amplitude-to­
response-latency relationship was used in a neural model 
of the winner-take-aU function,24 which was appHed W 
model motion processing in the brain ,25 

6. CONCLUSIONS 

Luminance-ba-Sed segmentation was shown in this pa­
per to improve in the case of additive white noise if the 
processing of image points is delayed proportionally to 
their huninance. How can this principle be generalized 
to other visual cues? 1'0 answer this question, we dis­
cuss the projection mapping of a two-dimensional spatial 
image onto a thxee-dimensional spatiotemporal domain. 
This projection allows neighboring regions of differing 
luminances to become separated along the temporal di­
mension. In the caS8 of the noisy images used in our 
simulations, it was speculated that such temporal pro­
cessing is optimum in the sense that the probability of 
misclassifYing an object from a background is minimized. 
For the general case, intuition dictates that this process­
ing strategy would prevent regions of differing properties 
from interfering with each other. Because the temporal 
precedence of' visual features coming out of the early 
stages of a visual system could also be used to attract 
attention to particular regions perceived first (or second), 
and thus reduce the amount of visual information to be 
processed at each time, asynchrony is believed to be a gen­
eral property that penuits optimization of the processing 
of visual information, 
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