
1. Introduction 1

1. Introduction

This documentation is a cheat sheet for implementing a demo component
system of the Kubernetes-aided federated database system. The implementation
process follows the architecture of the demo system, as illustrated in Figure 1.1. In
particular, Section 3 describes the implementation of read-only database containers,
which corresponds to the database layer. Section 4 describes the implementation
of a containerized Node. js program that will connect to the database and expose
data through RESTful API’s, which corresponds to the data access layer. Section
5 describes the deployment and management of the containerized databases in
Kubernetes through KIND, which corresponds to the service layer. At last, Section
6 gives a minimal example about the intra-query parallelism experiment.

Data Access Layer

Pod

Other Services

●●● ●●●

Database Layer

API

Container

Database
Container

Centralised Catalog

Service

Pod

Query Engine

Service Layer

Figura 1.1: The essential parts and architecture of the demo system.

1.1. Environmental Preparation

Among the important points to consider is the operating system used for the
implementation, in this case Windows 10 was used, on an Omen HP 17-an003la
laptop, which has the following specifications:

https://support.hp.com/mx-es/product/omen-by-hp-17-an000-laptop-pc/15551440/document/c05931244
https://support.hp.com/mx-es/product/omen-by-hp-17-an000-laptop-pc/15551440/document/c05931244

2 2. Relevant Tools

Product number 1GX66LA
Product name OMEN by HP - 17-an003la

Intel® Core™ i7-7700HQ
Microprocessor (base frecuency 2,8 GHz,

6 MB cache, 4 cores)
Standard memory 16 GB SDRAM

DDR4-2133 (2 x 8 GB)
NVIDIA®

Video graphics GeForce® GTX 1070
(8 GB GDDR5 dedicated)

Network interface LAN 10/100/1000 GbE
Operative system Windows 10 Home 64

Cuadro 1.1: Specifications of the physical machine components.

Additionally, it is necessary to take into account that for the implementation
of the database container a dataset to preference was used, more specifically it
corresponds to a 2017 Amazon Spot Service instance price history. So if you
require testing with other datasets, it will be necessary to make changes to the
database table creation and add the dataset to the respective directory.

2. Relevant Tools

It requires the installation and download of a set of tools essential for the
development and implementation of the proposed cluster design.

2.1. Node.js

Nodejs is an asynchronous event-driven JavaScript runtime environment
designed to create scalable network applications. To install it within Windows,
it is necessary to access the following link, which will allow us to download the
installer or the binary in its version v16.16.0.

2.2. Docker Desktop

Tool that provides an Integrated Development Environment, or by its
abbreviation, IDE, is necessary to install for the management of our images,
containers and creation of cluster nodes. To obtain it, you can download the
installer from the following link, with version v20.10.16 of Docker Engine.

https://zenodo.org/record/4583508#.YNTJP-hKiUm
https://nodejs.org/en/download/
https://docs.docker.com/desktop/install/windows-install/

3. Implementation of the Database Layer 3

2.3. Kubectl

It is an interface that simplifies in a standardized way, the execution of command
lines on Kubernetes deployments. To download the binary of this tool, you can do
it from the following link, in its version v.1.24.0

2.4. KIND

A tool used to run local Kubernetes clusters using Docker container "nodes".
To download the binary of this tool, the following link will take us to its download
in version v0.14.0. Finally, it will be necessary to rename the file from "kind-
windows-amd64"to "kind".

It is important that both the Kubectl and KIND binaries are in the same
directory when starting the cluster creation.

2.5. Jupyter Notebook using Anaconda

Jupyter Notebook is an open source web interface that allows code execution
through the browser in multiple languages. By following the following tutorial,
you will be able to install and configure Jupyter Notebook through Anaconda.

3. Implementation of the Database Layer

The database layer is realised by the implementation of a read-only database
container with preloaded data. Since it supports stateless data access at runtime
and once the container is deployed, it is able to process read requests.

For its implementation, we start by entering the Windows 10 command console
to create a new directory in which to work, such as:

> md "Implementations"

> cd "Implementations"

\Implementations> md "Preloaded db"

\Implementations> cd "Preloaded db"

For the creation of this read-only database container image, the definition of 4
files is required:

https://dl.k8s.io/release/v1.24.0/bin/windows/amd64/kubectl.exe
https://kind.sigs.k8s.io/dl/v0.14.0/kind-windows-amd64
https://www.geeksforgeeks.org/how-to-install-jupyter-notebook-in-windows/

4 3. Implementation of the Database Layer

3.1. Dockerfile

It should be noted that, the name of the dataset that was added in the directory
is exactly the same in the Dockerfile. Following the example where the dataset is
named "2M.txt", the Dockerfile should look like below:

Dockerfile

FROM ubuntu:18.04

COPY . /home/diicc/mydockerbuild

WORKDIR /home/diicc/mydockerbuild

RUN apt-get update -y

RUN apt-get install --assume-yes apt-utils

RUN chmod a+x ./install_mysql.sh ./load_data.sh ./select_data.sh

RUN ./install_mysql.sh

RUN ./load_data.sh

RUN rm -f ./install_mysql.sh ./load_data.sh ./2M.txt

CMD ./select_data.sh

3.2. Silent MySQL installation

This script will perform a silent installation of MySQL, but without considering
the creation of the database or users.

install_mysql.sh

export DEBIAN_FRONTEND=noninteractive

MYSQL_ROOT_PASSWORD='1q2w3e4r'

echo debconf mysql-server/root_password password $MYSQL_ROOT_PASSWORD |

debconf-set-selections

echo debconf mysql-server/root_password_again password $MYSQL_ROOT_PASSWORD |

debconf-set-selections

apt-get -qq install mysql-server > /dev/null # Install MySQL quietly

service mysql start

apt-get -qq install expect > /dev/null

tee ~/secure_our_mysql.sh > /dev/null << EOF

spawn $(which mysql_secure_installation)

expect "Enter password for user root:"

3. Implementation of the Database Layer 5

send "$MYSQL_ROOT_PASSWORD\r"

expect "Press y|Y for Yes, any other key for No:"

send "y\r"

expect "Please enter 0 = LOW, 1 = MEDIUM and 2 = STRONG:"

send "2\r"

expect "Change the password for root ? ((Press y|Y for Yes, any other key for

No) :"

send "n\r"

expect "Remove anonymous users? (Press y|Y for Yes, any other key for No) :"

send "y\r"

expect "Disallow root login remotely? (Press y|Y for Yes, any other key for No

) :"

send "y\r"

expect "Remove test database and access to it? (Press y|Y for Yes, any other

key for No) :"

send "y\r"

expect "Reload privilege tables now? (Press y|Y for Yes, any other key for No)

:"

send "y\r"

EOF

expect ~/secure_our_mysql.sh

rm -v ~/secure_our_mysql.sh # Remove the generated Expect script

echo "MySQL setup completed. Insecure defaults are gone. Please remove this

script manually when you are done with it (or at least remove the MySQL

root password that you put inside it."

mysql -version

sed -i 's/127.0.0.1/0.0.0.0/g' /etc/mysql/mysql.conf.d/mysqld.cnf

sed -i '/max_allowed_packet*/c\max_allowed_packet=1073741824' /etc/mysql/mysql.

conf.d/mysqld.cnf

sed -i '/key_buffer_size*/c\key_buffer_size=100M' /etc/mysql/mysql.conf.d/

mysqld.cnf

sed -i '/max_connections*/c\max_connections=400' /etc/mysql/mysql.conf.d/

mysqld.cnf

sed -i '/\[mysqld\]/a\# Skip reverse DNS lookup\nskip-name-resolve' /etc/mysql

/mysql.conf.d/mysqld.cnf

service mysql stop

6 3. Implementation of the Database Layer

3.3. Loading the dataset into the database

This script is responsible for creating a database with its respective table, users
and associated access permissions, and then load the data from the dataset, which
must match the one copied in the directory, to the database, and stop the MYSQL
system until deployment.

load_data.sh

service mysql start

rootpsw='1q2w3e4r'

usertest='mydb'

passtest='#1A2b %3C4d5E!'

tabletest='mytab'

mysql -uroot -p$rootpsw <<MYSQL_SCRIPT

CREATE DATABASE $usertest;

CREATE USER '$usertest'@'localhost' IDENTIFIED BY '$passtest';

CREATE USER '$usertest'@' %' IDENTIFIED BY '$passtest';

GRANT ALL PRIVILEGES ON *.* TO '$usertest'@'localhost' WITH GRANT OPTION;

GRANT ALL PRIVILEGES ON *.* TO '$usertest'@' %' WITH GRANT OPTION;

FLUSH PRIVILEGES;

MYSQL_SCRIPT

echo "MySQL user created."

echo "Username: $usertest"

echo "Password: $passtest"

mysql -u$usertest -p$passtest -D$usertest <<MYSQL_SCRIPT

CREATE TABLE $tabletest (SPOTINSTANCEPRICE VARCHAR(18), PRICE VARCHAR(15),

FECHA VARCHAR(30), INSTANCE VARCHAR(25), MACHINE VARCHAR(25), ZONE VARCHAR

(25));

LOAD DATA LOCAL INFILE '/home/diicc/mydockerbuild/2M.txt' INTO TABLE

$tabletest CHARACTER SET utf8 FIELDS TERMINATED BY '\t' LINES TERMINATED

BY '\n';

MYSQL_SCRIPT

service mysql stop

4. Implementation of the Data Access Layer 7

3.4. Internal start of the service

With all the above ready, this will be the script that will basically be in charge
of enabling the start of the MySQL service when the container is deployed.

select_data.sh

service mysql start

tail -F /var/log/mysql/error.log

Each time you want to make a new deployment of the container with a different
dataset, it is necessary to take the precaution of making the respective name
changes in the Dockerfile and load_data.sh files.

With the base files ready and being located in the "Preloaded db"directory
path, we can finally create our Docker image and upload it to the Docker Hub
repository using the command lines:

\Implementations\Preloaded db> docker build -t nicosaldias/preloadeddata:2m .

\Implementations\Preloaded db> docker push nicosaldias/preloadeddata:2m

4. Implementation of the Data Access Layer

When the database container is ready, it is necessary to define an application
that takes care of the process of generating query traffic to the database. For this,
we propose the implementation of a containerized program in Node.js, so that
through a RESTful API.

Starting, inside the CMD console, we will create the directory in which we will
work:

\Implementations\Preloaded db> cd ..

\Implementations> md Node-app

\Implementations> cd Node-app

4.1. App definition

We will create a new Node.js app and we will install 3 dependencies to establish
connections with MySQL databases and to allow the return of data as an API.

8 4. Implementation of the Data Access Layer

\Implementations\Node-app> npm init -y

\Implementations\Node-app> npm install express mysql promise-mysql

Modify the "package.json"file in the scripts variable, as follows:

package.json

{

"name": "Node",

"version": "1.0.0",

"description": "",

"main": "index.js",

"scripts": {

"start": "node single_connection.js"

},

"keywords": [],

"author": "",

"license": "ISC",

"dependencies": {

"express": "^4.18.1",

"mysql": "^2.18.1",

"promise-mysql": "^3.3.2"

}

}

Thus, our application will be able to run using the "npm startçommand. Now
we only have to define which queries our application will make, these were defined
in the following file:

sigle_connection.js

var http = require('http'),

express = require('express'),

app = express(),

server = http.Server(app),

mysql = require('mysql');

const { url } = require('inspector');

const os = require('os');

console.log('Server Started');

4. Implementation of the Data Access Layer 9

const max = 25000;

const min = 0;

app.use(express.json());

server.listen(3000)

function get_connection(){

return mysql.createConnection({

host:'localhost',

user:'mydb',

password:'#1A2b %3C4d5E!',

database:'mydb',

port:3306

})

}

function aleatorio(min,max){

var num = Math.floor(Math.random() * ((max+1) - min) + min);

return num;

}

app.get('/message', function(req,res){

res.send('Hola mundo!');

});

app.get('/pod', function(req,res){

res.send(os.hostname());

});

app.get('/count', function(req,res){

var conn = get_connection()

conn.connect(function(err){

if(!err){

conn.query('SELECT COUNT (*) FROM mytab',function(err2,records,

fields){

if(!err2){

res.send(records)

console.log(os.hostname());

10 4. Implementation of the Data Access Layer

}

conn.end()

})

}

else{

res.send(err)

}

})

});

app.get('/select', function(req, res){

var url_min = parseInt(req.query.min);

var url_max = parseInt(req.query.max);

var conn = get_connection()

console.log(url_min);

console.log(url_max);

conn.connect(function(err){

if(!err){

conn.query('SELECT * FROM mytab LIMIT ?,?',[url_min,url_max],

function(err2,records,fields){

if(!err2){

res.send(records)

console.log(url_min);

console.log(url_max);

}

conn.end()

})

}

else{

res.send(err)

}

})

});

app.get('/selectall', function(req,res){

var conn = get_connection()

conn.connect(function(err){

if(!err){

conn.query('SELECT * FROM mytab',function(err2,records,fields){

if(!err2){

res.send(records)

4. Implementation of the Data Access Layer 11

console.log(os.hostname());

}

conn.end()

})

}

else{

res.send(err)

}

})

});

app.get('/randomselect', function(req,res){

var conn = get_connection()

var ran = aleatorio(min,max);

console.log(ran);

conn.connect(function(err){

if(!err){

conn.query('SELECT * FROM mytab LIMIT ?',[ran],function(err2,

records,fields){

if(!err2){

res.send(records)

console.log(os.hostname());

}

conn.end()

})

}

else{

res.send(err)

}

})

});

To test that the application runs correctly, we test the commands:

\Implementations\Node-app> npm start

\Implementations\Node-app> CTRL + C

This application is capable of responding to the following requests:

http://localhost:3000/selectall: To read all the data in the table

http://localhost:3000/randomselect: To read a random number of rows

12 5. Implementation of the Service Layer

from the table

http://localhost:3000/pod: Responses with the name of the host of the
app

http://localhost:3000/count: Returns the number of rows of the table
has

http://localhost:3000/select?min=’x’&max=’y’: Returns the y rows
after skip reading the first x rows.

4.2. Dockerfile

To containerize this application, it is necessary to define the Dockerfile that
will allow us to create the image and later upload it to the repository.

Dockerfile

FROM node:14

WORKDIR /app

COPY package.json /app

RUN npm install

COPY . .

EXPOSE 3000

CMD ["npm","start"]

To prevent the Docker image that our application includes the dependencies
and installations performed, we can create this ’.dockerignore’ file. .dockerignore

node_modules

Finally, we create the image of our Node.js app and upload it to the Docker
Hub repository.

\Implementations\Node-app> docker build -t nicosaldias/node-db:api .

\Implementations\Node-app> docker push nicosaldias/node-db:api

5. Implementation of the Service Layer

In order to deploy and manage the database container and the API container
together, it is necessary to make use of Kubernetes clusters and its deployment
and services mechanisms.

5. Implementation of the Service Layer 13

We start by exiting the directory we use for the Node.js app, and create a new
one for the cluster launch and its deployments. It is important to remember that
inside this directory must also be the kubectl and kind binaries.

\Implementations\Node-app> cd ..

\Implementations> md Cluster

\Implementations> cd Cluster

5.1. Cluster configuration

We will define a cluster composed of 3 nodes, 1 node that will play the role of
control-plane, to manage the complete state of the cluster and 2 worker nodes,
which will be in charge of running the containers with our applications inside
pods.

kind-cluster.yaml

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

- role: worker

- role: worker

We launch the cluster using the command:

\Implementations\Cluster> kind create cluster --name mycluster --config kind-

cluster.yaml

In case you need to delete the newly created clusters, you can use the following
command, paying attention to the name parameter that specifies which cluster
will be deleted.

\Implementations\Cluster> kind delete cluster --name mycluster

5.2. Deployments

For the deployment of our applications we considered defining a namespace
under which our pods and services will be selected, 2 multi-container pod
deployments, composed of a read-only database container and the Node.js app,
and finally, 2 NodePort services to expose these replicas later on.

14 5. Implementation of the Service Layer

node-db.yaml

apiVersion: v1

kind: Namespace

metadata:

name: node

apiVersion: apps/v1

kind: Deployment

metadata:

name: node-db-deploy1

namespace: node

labels:

app: node1

spec:

replicas: 1

selector:

matchLabels:

app: node1

template:

metadata:

labels:

app: node1

spec:

containers:

- name: node

image: nicosaldias/node-db:api

ports:

- containerPort: 3000

- name: db

image: nicosaldias/preloadeddata:2.8k

env:

- name: MYSQL_ROOT_PASSWORD

value: 1q2w3e4r

ports:

- containerPort: 3306

apiVersion: apps/v1

kind: Deployment

metadata:

5. Implementation of the Service Layer 15

name: node-db-deploy2

namespace: node

labels:

app: node2

spec:

replicas: 1

selector:

matchLabels:

app: node2

template:

metadata:

labels:

app: node2

spec:

containers:

- name: node

image: nicosaldias/node-db:api

ports:

- containerPort: 3000

- name: db

image: nicosaldias/preloadeddata:2.8k

env:

- name: MYSQL_ROOT_PASSWORD

value: 1q2w3e4r

ports:

- containerPort: 3306

apiVersion: v1

kind: Service

metadata:

namespace: node

name: node-service1

spec:

ports:

- port: 3000

targetPort: 3000

protocol: TCP

type: NodePort

selector:

app: node1

16 6. The Intra-query Parallelism Experiment

apiVersion: v1

kind: Service

metadata:

namespace: node

name: node-service2

spec:

ports:

- port: 3000

targetPort: 3000

protocol: TCP

type: NodePort

selector:

app: node2

We apply this configuration to the cluster and wait about 4 minutes for the
deployment to complete and the pods to be running:

\Implementations\Cluster> kubectl apply -f node-db.yaml

\Implementations\Cluster> kubectl get all -o wide -n node

5.3. Exposing the deployments

For the external traffic to be processed by our application instances, it is
necessary to expose the services we have just deployed to the localhost of our
physical machine, for this we will expose individually the 2 services, assigning
them different access ports.

It is important to consider that each of these commands must be executed in
different command consoles.

\Cluster> kubectl port-forward service/node-service1 3000:3000 -n node

\Cluster> kubectl port-forward service/node-service2 3001:3000 -n node

6. The Intra-query Parallelism Experiment

If we want to compare the use of sequential read processes, to one that makes
use of multiple concurrent threads by splitting the request into 2, we can use
the following codes written in Python to measure the data read latency on the
instances within the newly implemented cluster.

6. The Intra-query Parallelism Experiment 17

In this code we make use of a single worker node, which is represented by the
service ’node-service-1’ and is assigned port 3000. So we start by making a query
to find out how many rows the database table has and then make a complete read
of the existing data, returning finally the time it took to read the data.

sigle-process-request.ipynb

import time

import threading

import requests

import math

def count():

#start=time.perf_counter()

receive = requests.get('http://localhost:3000/count')

wjdata = receive.json()

rows = int(wjdata[0]['COUNT (*)'])

#thread_end = time.perf_counter() - global_start

#end=time.perf_counter()

#print('Count global:',thread_end,'\n')

#print('Count:',end-start,'\n')

return rows

def select_all(num):

#start=time.perf_counter()

receive = requests.get('http://localhost:3000/selectall')

thread_end = time.perf_counter() - global_start

#end=time.perf_counter()

print('Thread global',num,':',thread_end,'\n')

#print('Thread',num,':',end-start,'\n')

global_start = 0

global global_start

global_start = time.perf_counter()

count()

select_all(0)

On the other hand, for this version we tried to make use of 2 concurrent threads

18 6. The Intra-query Parallelism Experiment

in order to divide the number of rows to read within the table, that is why the
function test1 is assigned port 3000, which refers to the service ’node-service-1’
that will receive the requests to read the first half of the table and the function
test2, which is assigned port 3001, referring to the service ’node-service-2’ that
will process the final half of the data in the table.

multithreaded-requests.ipynb

import time

import threading

import requests

import math

def count():

receive = requests.get('http://localhost:3000/count')

data = receive.json()

rows = int(data[0]['COUNT (*)'])

return rows

def test1(num,half):

parametros = {'min': '0','max': half}

receive = requests.get('http://localhost:3000/select', params=parametros)

thread_end = time.perf_counter() - global_start

print('Thread global',num,':',thread_end,'\n')

def test2(num,half,total):

parametros = {'min': half,'max': total}

receive = requests.get('http://localhost:3001/select', params=parametros)

thread_end = time.perf_counter() - global_start

print('Thread global',num,':',thread_end,'\n')

global_start = 0

global global_start

global_start = time.perf_counter()

#get the number of rows in the table

number_rows =count()

6. The Intra-query Parallelism Experiment 19

first_half = int(number_rows/2)

second_half = int(number_rows - first_half)

#run the threads

t1 = threading.Thread(target=test1 , args=(1,first_half))

t2 = threading.Thread(target=test2 , args=(2,second_half,number_rows))

t1.start()

t2.start()

	Introduction
	Environmental Preparation

	Relevant Tools
	Node.js
	Docker Desktop
	Kubectl
	KIND
	Jupyter Notebook using Anaconda

	Implementation of the Database Layer
	Dockerfile
	Silent MySQL installation
	Loading the dataset into the database
	Internal start of the service

	Implementation of the Data Access Layer
	App definition
	Dockerfile

	Implementation of the Service Layer
	Cluster configuration
	Deployments
	Exposing the deployments

	The Intra-query Parallelism Experiment

