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Abstract

We show that the span of the Beurling sequence is dense in the se-
quence space with a weighted inner product. Based on the condition
posed by Bagchi and Baez-Duarte, which is a strengthening condition of
Nyman-Beurling criteria, is equivalent to showing the Riemann hypothesis

does hold.
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1 Introduction

The Riemann hypothesis was raised by Riemann in 1859 [17]. The hypothesis is
about the zeros of the Riemann-Zeta function ¢, ¢ has the trivial zero, which are
negative integers, and the nontrivial zeros. Riemann posed a hypothesis that
the real part of the nontrivial zeros are %, which we call the Riemann hypothesis
From 1859 to now, many scholars attempted to prove or disprove the Riemann
hypothesis[16, 23, 13, 7, 21, 9, 11, 22], since the Riemann hypothesis had a big
impact on the field of mathematics, such as the distributions of prime numbers

[24], the large prime gap conjecture [10], etc. To prove or disprove the Riemann



hypothesis, many mathematicians try to formulate the Riemann hypothesis in
another way [18, 19, 20]. In particular, Nyman and Beurling show that the Rie-
mann hypothesis is true if and only if the space of the Beurling function is dense
in Hilbert space L?((0,1)) [15, 4]. Baez-Duarte has restated and strengthened
this condition to be the Riemann hypothesis is true if and only if the character-
istic function x(g,1] belongs to the closure of the space of the natural Beurling
function in the Hilbert space L?((0,00)) [1]. Bagchi reformulates the condition
to be if the constant sequence belongs to the closure of the span of the Beurling
sequence in the [?(N) with a weighted inner product [2].

There are numerous working on this approach[14, 25, 12, 3, 5, 8]. Our contri-
bution is proving that the constant sequence does belong to the closure of the

span of the Beurling sequence, thus proving the Riemann hypothesis.

2 The main result

The Hilbert space we consider is [?(N) := H over C with the norm induced by

the inner product.

Observe that bounded sequence belongs to H as well.

We adopt the notion in [2], we introduce the sequence v, = ({7}) = (1/1,2/1, ...
for I € N, where {x} is the fractional part function. It is easy to see that v, € H
for all I. Denote the span(vy;,l € N) = B, we call the B the space of the Beurling
sequences. Let v = (1,1,...) be the constant sequence, it is easy to see that it

belongs to H. In [2], it state the following theorem.

Theorem 2.1. The Riemann hypothesis is equivalent to v € B, and is equiva-

lent to B is dense in H.



Proof. See the proof of Theorem 1 of [2]. O

Let e; be the sequence with 1 in the i-th entry, zero otherwise. Let T': H —

H by T by T(e;) = (ijll Clearly this is linear map.

Define R; : N — N, by sending p to pmod .

First, we prove a inequality.
lemma 2.2. 0 < {vyg,v) < 1.

Proof. By direct calculation, {yx,vi) =

k=1 n
]%(Zn in+1 +Zn k+1<Rk< )) n(n1+1))

<=1+ k=100 )
Since Y7

n= 1nn+1)_1

<pk—14+(k-1)2300 0 n(nlJrl))
< EH(k—1+(k—1)?)

< B

Now we show T is a bounded operator.

Theorem 2.3. T is a bounded linear operator.

Proof. Let x = 220:1 anen € H. Tx = ZZO:1 (7117"1)27”4_1.
Tz = >0 >, %<’yn+l,’ym+l>. Which is less than or equal
Zn 1 Em 1 %&Yﬂﬁ‘l?’ynl"rl)
By Cauchy-Schwarz inequality,
T2l < 3202, Yoot Gtz e v -

By lemma 2.2,



IT2]2 < 35020 Sovey rbiede
= (o, e )

|a

Now we separate » CESHE into two parts, one part with all |a,| < 1, an-

o0 \an

other part is |a,| > 1. For the latter part, since ||z||*> = > 77, CERy

< 00,
and the latter part is less than or equal to ||z||?, so it converges. For another
part, since |a,| < 1, the sum is bounded by | — n+1) < 00, 80 it converges
too. So ||Tz|? is finite provided that ||z|| is finite. In particular > 7, %

is absolute converge.
lan| y2
| T||? T 2oz ogz)

Now we consider IGIER by the above estimation, it is less than o
n=1 n(n+1)
Now the denominator can be rewrite as (3" -, %%)2 By Cauchy-

Schwarz inequality, the denominator is less than or equal to (37— lan|” (o2, mntl)y

n=1 n(n+1) n=1 (n+1)4
then
lan]_y2
(z” 1 (7111)2) Z n(n+1)
0o lan |2 — n=1 (n+1)%
n=1 n(n+1)
1 . :

Since Y0 "f:r{)z converges, ||Tz||?/||z||? is bounded, so T is bounded. [

Now we show T is injective.
Theorem 2.4. T is injective, that is, ker(T) = {0}.

Proof. Let x =" | anen, € ker(T). Tz = 0 implies Y-, Tz Yt =0.

!
Ap_1

Each entry of Tx = 0 forms a equation. For the first entry, fo:? =1 =,

n

where al, = a,/(n + 1)?. For the second entry, > -, 2oy By combining

n

equation 1 and 2, af = a; =0.

Assume af, ...a}, = 0 for k is some positive integer. The equation in k + 1 entry
(k o (K n (K
is En - +17)lan L Z +1 ay, 1Rn( +1) — 0. Now Z +1 ap an( +1) —0, so
al k o (k
Y omepp1 o+ = 0. The equation of k4+2is Y ", ., %4—2’“2 %(Jﬂ) =

0, it is easy to see that aj_ ; = ar41 = 0 by comparing two equations. By strong

induction, a,, = 0, so x = 0. Thus the conclusion. O



Define Mobius function p : N — R by p(k) = 1 if k is a square-free number
with even number of prime factors, u(k) = —1 if k is a square-free number
with odd number of prime factors. u(k) = 0 otherwise. The following result is

standard.
lemma 2.5. ZZH floor( Lyu(i) = 1, where floor(z) is the floor function.
Proof. See [6]. O

Consider x € B, x can be represented as Y .- | Y /| GniYk+1 with some

restriction on a,x. We use this fact to prove a important theorem.

Theorem 2.6. v = (1,1,...) does belong to B.

p(k+1)
on -

Proof. We claim v = > 0% >V ankVet1 with ane = — Let my =

f%. We first show the right hand side is bounded.

To show that || Y07 | Y11 ankVe+1|| < oo, which means the quantity

’
<Z$:/):1 ZZ/:1 An/ k' Vk'+1, ZZO:1 ZZ:1 ank'Yk+1>v

is bounded. By the continuity of inner product,

= Z:;:l ZZ'I=1 210;1 Zzzl At ko e (Vi 41, Vit 1)
= T T T oo (7 B er, T2, Bepfle)
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Since my, are bounded, let M = supy, ./ (|mymy), then M Y07 3> | %{%ZH)

is finite. Since

0 oo n'(n'+1)n(n+1)
MZTL'=1 Zn—l on+n/+2 Z

oot Yoo Xt Xy G X0 KR/ (i 1)
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Then || Y07 | > | @nkVe+1|] is finite
Now apply T to both sides, T'(y) = >"7, ﬁ’ynﬂ = > @k Tkt

Vet1 = 557 Dopet Rig1(n)en, so,
Ty =30t ko1 87 2oimt B ()i

Now we find out the coefficients of ;41, which are 3577 | 3701 sy Ry (1) / (i+
1)2. Now we match the coefficients term by term,, which are Y o | > | Ty Ri (1) =
1. Let ang/(k + 1) = by, for convenience. Since the series absolute converge,
oo bt Ra(i) + >0 5 buaRs(i) + ... = 1. Let Y02, by = ¢ for convenience.

Then we have system of linear equations:

c1+co+...=1
202+263+...:1

Cl+303+...:1

Now using equation multiply by [ to minus the equation [, then the system

becomes:

Cl+62+...:1
201:1

261 + 362 =2

We denote the infinite matrix representing the system of equation without equa-

tion 1 be A. Then it is easy to see that it is a lower triangular matrix and the

-1 . .
diagonal is not zero.The ¢ is given by ¢; = li%%, A = (j+1)floor(;i% ).



We claim the ¢ = —my. Indeed,we use strong induction. Since 2¢; = 1,

¢ = % = —@. Assume the statement holds for all positive integer less
than [. Now ¢ = %}f”c", we obtain l+zi;iﬂoﬂiﬁ%)“(i+l), by lemma
2.5, it becomes l+1_“(1)(ll:11)_“(l+1), so ¢ = —%. By strong induction,
Cp = —“(:7:11) = m,, for all positive integer n.

Now we have shown that Ty = T(3" 7, Y 1, a@nkVk+1), by Theorem 2.4, we
conclude v = Y07 | S7 | GpiYk+1, Since Y-, aniyr+1 belongs to B for all
positive integer n, 7y is an infinite sum of vectors from B which has finite norm,

so it converges, So v € B.

Theorem 2.7. The Riemann hypothesis is true.

Proof. Since ~y does belong to B by Theorem 2.6, by Theorem 2.1, the Riemann

hypothesis is true. O
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