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Abstract

We show that the span of the Beurling sequence is dense in the se-

quence space with a weighted inner product. Based on the condition

posed by Bagchi and Baez-Duarte, which is a strengthening condition of

Nyman-Beurling criteria, is equivalent to showing the Riemann hypothesis

does hold.

Mathematics Subject Classification: 11Mxx, 46Cxx

1 Introduction

The Riemann hypothesis was raised by Riemann in 1859 [17]. The hypothesis is

about the zeros of the Riemann-Zeta function ζ, ζ has the trivial zero, which are

negative integers, and the nontrivial zeros. Riemann posed a hypothesis that

the real part of the nontrivial zeros are 1
2 , which we call the Riemann hypothesis

From 1859 to now, many scholars attempted to prove or disprove the Riemann

hypothesis[16, 23, 13, 7, 21, 9, 11, 22], since the Riemann hypothesis had a big

impact on the field of mathematics, such as the distributions of prime numbers

[24], the large prime gap conjecture [10], etc. To prove or disprove the Riemann
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hypothesis, many mathematicians try to formulate the Riemann hypothesis in

another way [18, 19, 20]. In particular, Nyman and Beurling show that the Rie-

mann hypothesis is true if and only if the space of the Beurling function is dense

in Hilbert space L2((0, 1)) [15, 4]. Baez-Duarte has restated and strengthened

this condition to be the Riemann hypothesis is true if and only if the character-

istic function χ(0,1] belongs to the closure of the space of the natural Beurling

function in the Hilbert space L2((0,∞)) [1]. Bagchi reformulates the condition

to be if the constant sequence belongs to the closure of the span of the Beurling

sequence in the l2(N) with a weighted inner product [2].

There are numerous working on this approach[14, 25, 12, 3, 5, 8]. Our contri-

bution is proving that the constant sequence does belong to the closure of the

span of the Beurling sequence, thus proving the Riemann hypothesis.

2 The main result

The Hilbert space we consider is l2(N) := H over C with the norm induced by

the inner product.

⟨a, b⟩ =
∑∞

n=1
a∗
nbn

n(n+1) .

Observe that bounded sequence belongs to H as well.

We adopt the notion in [2], we introduce the sequence γl = ({n
l }) = (1/l, 2/l, ...)

for l ∈ N, where {x} is the fractional part function. It is easy to see that γl ∈ H

for all l. Denote the span(γl, l ∈ N) = B, we call the B the space of the Beurling

sequences. Let γ = (1, 1, ...) be the constant sequence, it is easy to see that it

belongs to H. In [2], it state the following theorem.

Theorem 2.1. The Riemann hypothesis is equivalent to γ ∈ B, and is equiva-

lent to B is dense in H.
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Proof. See the proof of Theorem 1 of [2].

Let ei be the sequence with 1 in the i-th entry, zero otherwise. Let T : H →

H by T by T (ei) =
γi+1

(i+1)2 . Clearly this is linear map.

Define Ri : N → N, by sending p to pmod i.

First, we prove a inequality.

lemma 2.2. 0 < ⟨γk, γk⟩ < 1.

Proof. By direct calculation, ⟨γk, γk⟩ =

1
k2 (

∑k−1
n=1

n
n+1 +

∑∞
n=k+1(Rk(n))

2 1
n(n+1) )

< 1
k2 (k − 1 + (k − 1)2

∑∞
n=k+1

1
n(n+1) )

Since
∑∞

n=1
1

n(n+1) = 1,

< 1
k2 (k − 1 + (k − 1)2

∑∞
n=k+1

1
n(n+1) )

≤ 1
k2 (k − 1 + (k − 1)2)

≤ k−1
k < 1.

Now we show T is a bounded operator.

Theorem 2.3. T is a bounded linear operator.

Proof. Let x =
∑∞

n=1 anen ∈ H. Tx =
∑∞

n=1
an

(n+1)2 γn+1.

||Tx||2 =
∑∞

n=1

∑∞
m=1

a∗
nam

(n+1)2(m+1)2 ⟨γn+1, γm+1⟩. Which is less than or equal

to
∑∞

n=1

∑∞
m=1

|a∗
nam|

(n+1)2(m+1)2 ⟨γn+1, γm+1⟩.

By Cauchy-Schwarz inequality,

||Tx||2 ≤
∑∞

n=1

∑∞
m=1

|a∗
nam|

(n+1)2(m+1)2 ||γn+1||||γm+1||.

By lemma 2.2,
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||Tx||2 <
∑∞

n=1

∑∞
m=1

|a∗
nam|

(n+1)2(m+1)2

= (
∑∞

n=1
|an|

(n+1)2 )
2.

Now we separate
∑∞

n=1
|an|

(n+1)2 into two parts, one part with all |an| < 1, an-

other part is |an| ≥ 1. For the latter part, since ||x||2 =
∑∞

n=1
|an|2

n(n+1) < ∞,

and the latter part is less than or equal to ||x||2, so it converges. For another

part, since |an| < 1, the sum is bounded by
∑∞

n=1
1

n(n+1) < ∞, so it converges

too. So ||Tx||2 is finite provided that ||x|| is finite. In particular
∑∞

n=1
|an|

(n+1)2

is absolute converge.

Now we consider ||Tx||2
||x||2 , by the above estimation, it is less than

(
∑∞

n=1
|an|

(n+1)2
)2∑∞

n=1
|an|2

n(n+1)

.

Now the denominator can be rewrite as (
∑∞

n=1
|an|√
n(n+1)

√
n(n+1)

(n+1)2 )2. By Cauchy-

Schwarz inequality, the denominator is less than or equal to (
∑∞

n=1
|an|2

n(n+1) )(
∑∞

n=1
n(n+1)
(n+1)4 ),

then

(
∑∞

n=1
|an|

(n+1)2
)2∑∞

n=1
|an|2

n(n+1)

≤
∑∞

n=1
n(n+1)
(n+1)4 .

Since
∑∞

n=1
n(n+1)
(n+1)4 converges, ||Tx||2/||x||2 is bounded, so T is bounded.

Now we show T is injective.

Theorem 2.4. T is injective, that is, ker(T ) = {0}.

Proof. Let x =
∑∞

n=1 anen ∈ ker(T ). Tx = 0 implies
∑∞

n=1
an

(n+1)2 γn+1 = 0.

Each entry of Tx = 0 forms a equation. For the first entry,
∑∞

n=2

a′
n−1

n = 0,

where a′n = an/(n+ 1)2. For the second entry,
∑∞

n=3

2a′
n−1

n = 0. By combining

equation 1 and 2, a′1 = a1 = 0.

Assume a′1, ...a
′
k = 0 for k is some positive integer. The equation in k+ 1 entry

is
∑∞

n=k+1

(k+1)a′
n−1

n +
∑k+1

n=2

a′
n−1Rn(k+1)

n = 0. Now
∑k+1

n=2

a′
n−1Rn(k+1)

n = 0, so∑∞
n=k+1

a′
n−1

n = 0. The equation of k+2 is
∑∞

n=k+2

(k+2)a′
n−1

n +
∑k+2

n=2

a′
n−1Rn(k+2)

n =

0, it is easy to see that a′k+1 = ak+1 = 0 by comparing two equations. By strong

induction, an = 0, so x = 0. Thus the conclusion.
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Define Mobius function µ : N → R by µ(k) = 1 if k is a square-free number

with even number of prime factors, µ(k) = −1 if k is a square-free number

with odd number of prime factors. µ(k) = 0 otherwise. The following result is

standard.

lemma 2.5.
∑l+1

i=1 floor(
l+1
i )µ(i) = 1, where floor(x) is the floor function.

Proof. See [6].

Consider x ∈ B, x can be represented as
∑∞

n=1

∑n
k=1 ankγk+1 with some

restriction on ank. We use this fact to prove a important theorem.

Theorem 2.6. γ = (1, 1, ...) does belong to B.

Proof. We claim γ =
∑∞

n=1

∑n
k=1 ankγk+1 with ank = −µ(k+1)

2n . Let mk =

−µ(k+1)
k+1 . We first show the right hand side is bounded.

To show that ||
∑∞

n=1

∑n
k=1 ankγk+1|| < ∞, which means the quantity

⟨
∑∞

n′=1

∑n′

k′=1 an′k′γk′+1,
∑∞

n=1

∑n
k=1 ankγk+1⟩,

is bounded. By the continuity of inner product,

=
∑∞

n′=1

∑n′

k′=1

∑∞
n=1

∑n
k=1 an′k′ank⟨γk′+1, γk+1⟩

=
∑∞

n′=1

∑n′

k′=1

∑∞
n=1

∑n
k=1 an′k′ank⟨

∑∞
i′=1

Rk′+1(i
′)

k′+1 ei′ ,
∑∞

i=1
Rk+1(i)
k+1 ei⟩

=
∑∞

n′=1

∑n′

k′=1

∑∞
n=1

∑n
k=1

mk′mk

2n+n′
∑∞

i′=1

∑∞
i=1 Rk′+1(i

′)Rk+1(i)⟨ei′ , ei⟩

=
∑∞

n′=1

∑n′

k′=1

∑∞
n=1

∑n
k=1

mk′mk

2n+n′
∑∞

i=1 Rk′+1(i)Rk+1(i)/(i(i+ 1))

Sincemk are bounded, letM = supk,k′(|mk′mk|), thenM
∑∞

n′=1

∑∞
n=1

n′(n′+1)n(n+1)

2n+n′+2

is finite. Since

M
∑∞

n′=1

∑∞
n=1

n′(n′+1)n(n+1)

2n+n′+2 ≥∑∞
n′=1

∑n′

k′=1

∑∞
n=1

∑n
k=1

|mk′mk|
2n+n′

∑∞
i=1 k

′k/(i(i+ 1)) ≥∑∞
n′=1

∑n′

k′=1

∑∞
n=1

∑n
k=1

mk′mk

2n+n′
∑∞

i=1 Rk′+1(i)Rk+1(i)/(i(i+ 1))
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Then ||
∑∞

n=1

∑n
k=1 ankγk+1|| is finite

Now apply T to both sides, T (γ) =
∑∞

n=1
1

(n+1)2 γn+1 =
∑∞

n=1

∑n
k=1 ankTγk+1.

γk+1 = 1
k+1

∑∞
n=1 Rk+1(n)en, so,

Tγ =
∑∞

n=1

∑n
k=1

ank

(k+1)

∑∞
i=1 Rk+1(i)γi+1.

Now we find out the coefficients of γi+1, which are
∑∞

n=1

∑n
k=1

ank

(k+1)Rk+1(i)/(i+

1)2. Now we match the coefficients term by term,, which are
∑∞

n=1

∑n
k=1

ank

(k+1)Rk+1(i) =

1. Let ank/(k + 1) = bnk for convenience. Since the series absolute converge,∑∞
n=1 bn1R2(i) +

∑∞
n=2 bn2R3(i) + ... = 1. Let

∑∞
n=l bnl = cl for convenience.

Then we have system of linear equations:

c1 + c2 + ... = 1

2c2 + 2c3 + ... = 1

c1 + 3c3 + ... = 1

.

.

.

Now using equation multiply by l to minus the equation l, then the system

becomes:

c1 + c2 + ... = 1

2c1 = 1

2c1 + 3c2 = 2

.

.

.

We denote the infinite matrix representing the system of equation without equa-

tion 1 be A. Then it is easy to see that it is a lower triangular matrix and the

diagonal is not zero.The cl is given by cl =
l−

∑l−1
i=1 Alici
All

, Aij = (j+1)floor( i+1
j+1 ).
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We claim the cl = −ml. Indeed,we use strong induction. Since 2c1 = 1,

c1 = 1
2 = −µ(2)

2 . Assume the statement holds for all positive integer less

than l. Now cl =
l−

∑l−1
i=1 Alici
All

, we obtain
l+

∑i−1
i=1 floor( l+1

i+1 )µ(i+1)

l+1 , by lemma

2.5, it becomes l+1−µ(1)(l+1)−µ(l+1)
l+1 , so cl = −µ(l+1)

l+1 . By strong induction,

cn = −µ(n+1)
n+1 = mn for all positive integer n.

Now we have shown that Tγ = T (
∑∞

n=1

∑n
k=1 ankγk+1), by Theorem 2.4, we

conclude γ =
∑∞

n=1

∑n
k=1 ankγk+1, since

∑n
k=1 ankγk+1 belongs to B for all

positive integer n, γ is an infinite sum of vectors from B which has finite norm,

so it converges, So γ ∈ B.

Theorem 2.7. The Riemann hypothesis is true.

Proof. Since γ does belong to B by Theorem 2.6, by Theorem 2.1, the Riemann

hypothesis is true.
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