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Abstract: 

Tesla, Google, and Waymo are all attempting to develop self-driving cars that can navigate 
real-world roadways. Many analysts anticipate that fully driverless cars will be on the road in our cities 
within the next five years and that practically all automobiles will be autonomous within 30 years. 
Automatic driving is a massive and complicated endeavor that incorporates various technology. 
Environment perception, behavior judgment, path planning, and motion control are the four essential 
automated driving technologies. Collecting and analyzing environmental and in-car data is the initial 
step in environmental perception, which is the foundation and premise of autonomous driving in 
intelligent vehicles. The optimization of image processing and the selection of hardware technologies 
are the key topics of this thesis. As a result, a self-driving bike is created to demonstrate the proposed 
software and hardware co-designed machine learning. Moreover, the proposed soft and hardware co-
designed machine learning model is implemented on a development board to obtain greater energy 
savings and more precise data processing. To achieve this, we also propose a new implementation 
based on existing Xilinx software to minimize the development cost, which differs from typical FPGA 
transplanting technology. 
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CHAPTER 1 

INTRODUCTION 

With a series of autonomous system technological developments worldwide over the last 

decade, the race to commercialize Autonomous Cars has become more competitive than ever. Tesla, 

Google, and Waymo are all working on self-driving cars that can travel on public roads. Many 

analysts predict that fully autonomous cars will be on the road in our cities within the next five years 

and that by the year 2030, nearly all autos will be fully autonomous. Furthermore, Tesla has spent 

nearly a decade developing and enhancing its Automated Driving Systems (ADSs), which employ 

various advanced engineering technologies such as machine learning and computer vision. These 

cutting-edge technologies have considerably aided their self-driving vehicles in gaining a better grasp 

of the world, making the best decisions, and performing the best actions at the right moment. Many 

scholarly articles have been produced in the last decade because of the development of autonomous 

driving, and their citations are growing at an exponential rate. We can easily observe that the number 

of publications and citations each year has been steadily increasing since 2010, reaching a new high 

last year. The majority of autonomous driving overview articles, on the other hand, concentrate on a 

single technology topic, such as Advanced Driver Assistance Systems (ADAS), vehicle control, and 

visual environment perception. See Figure 1. As a result, there is a strong incentive to give readers a 

thorough survey of the literature on autonomous driving, covering systems and algorithms, open-

source datasets, industry leaders, autonomous vehicle applications, and current issues. 

 

Figure 1. Shows the suggested architecture for an onboard pedestrian detection system, as illustrated 
using a visible-spectrum camera sensor [31] 
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CHAPTER 2 

BASIC PRINCIPLES AND DESIGN FRAMEWORK 

I decided to build an autonomous driving bicycle to realize better the optimization of 

environmental information collection and processing in autonomous cars. Because it is impossible to 

transfer experimental algorithms and optimizations straight to an existing self-driving car, one 

advantage is the cost and time savings. Second, despite reducing four to two rounds, the core 

implementation approach and required hardware will not be much different, with only driving, steering, 

and environmental data collecting, and processing being realized. Third, it is more convenient for 

selecting and troubleshooting hardware. See Figure 2. After all, in regular cars, the upper application 

logic of the general controller VCU is more sophisticated, and the single-chip microcomputer was 

chosen to recreate the above fundamental tasks more efficiently. Finally, we will determine where we 

can enhance efficiency and reduce power consumption by changing the hardware based on the 

natural effect of this bicycle, and the final improvement method and experimental data will be 

demonstrated at the end of the thesis. 

 

Figure 2. Design scheme flowchart 
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Self-Driving Bicycle 

A study on balancing a self-driving bicycle will be presented in this section. Bicycles, unlike 

other self-driving cars, face a particular issue when it comes to balance. Due to the little contact 

surface between the bike and the ground, the bicycle collapses under its own weight when standing. 

We can regulate the velocity of the wheel to offset the torque caused by its own weight by connecting 

a fast-spinning wheel controlled by a motor to the bike frame; the bike is balanced. Our algorithm, 

which receives the bike's roll angle, its falling rate, and the spinning velocity of the wheel to create an 

electric signal for the motor, controls the rotational motion of the wheel and the motor. Our simulation 

indicates that our algorithm can return the bike to its vertical balancing position from a tilting 

inclination of 1.5 degrees. After that, the bike with the wheel and the motor was put together for more 

testing. In actuality, the vibration from the motor interacts with the sensor, causing significant data 

errors. To reduce the error produced by motor vibration, we utilize a two-layer filter. The experiment 

data reveals that the wheel can return the bike to its vertical position. However, our method is still not 

stable enough to retain the bike in its balanced posture owing to inappropriate controller coefficients. 

As a result, a new simulation will be run with more precise specifications in order to arrive at a set of 

more suited coefficients. 

An unstable and nonlinear system is a self-balancing bicycle robot based on the concept of an 

inverted pendulum. The following three main components are required to stabilize the system in this 

work: (1) a controller that controls the motion, which is the dynamic model of a reaction wheel (2) an 

IMU sensor that detects the tilt angle of the bicycle, and (3) a reaction wheel that produces 

reactionary torque to balance the bicycle robot. I used reaction wheel control in my design, which is 

when the speed of a reaction wheel is increased or decreased in order to generate a reactive torque 

about the spin axis, which is parallel to the bicycle frame. When the bicycle begins to fall to one side, 

a motor on the reaction wheel provides a reactive force on the bicycle, which restores the bicycle's 

balance. This system's merits include its low cost, simplicity, and absence of ground reaction, while 
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its disadvantages include its increased energy consumption and inability to generate large levels of 

torque. 

Conservation of Angular Momentum 

One of the universal laws of physics. For example, a particle moving in a central force field is 

always affected by force through the center of force. Since the moment between the force and the 

center of force is zero, according to the angular momentum theorem, the angular momentum of the 

particle to the center of force is conserved [1]. Thus, the trajectory of a particle is a plane curve, and 

the sagittal diameter of the particle to the center of force sweeps over an equal area in equal time. If 

the sun is regarded as the center of force, and the planet as a particle, the above conclusion is 

Kepler's second law, one of Kepler's three laws of planetary motion [2]. In a system of particles not 

affected by external forces or external fields, the internal forces interacting with each other obey 

Newton's third law, so the principal moment of internal forces at any point is zero, and the 

conservation of angular momentum of the system is derived [3]. If the algebraic sum of the moment of 

a fixed axis of a system subjected to an external force is zero, then the angular momentum of the 

system with respect to that axis is conserved [4]. Conservation of angular momentum is also an 

important basic law in microphysics. In the process of decay, collision, and transformation of 

elementary particles, the conservation law, which reflects the universal law of nature, also includes 

the conservation law of angular momentum. In 1931, W. Pauli speculated that antineutrinos were 

produced when free neutrons decayed according to the conservation law, which was confirmed by an 

experiment in 1956 [5]-[7]. 
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Dynamic Model 

 

Figure 3. Dynamic model sketch map [1] 

Notations: 

𝐽_1- Mass moment of Inertia of the Bike about its CoG [𝑘𝑔 𝑚^2] 

𝐽_2- Mass moment of Inertia of the wheel about its center [𝑘𝑔 𝑚^2] 

𝑚_1, 𝑚_2 - Mass of the bike and the wheel [𝑘𝑔] 

𝑙_1 - Height of the bike’s CoG [𝑚] 

𝑙_2- Height of the wheel’s center [𝑚] 

𝜏_𝑚 - Torque generates by the driving motor [𝑁𝑚] 

𝜔 – Angular velocity of the wheel [𝑟𝑎𝑑/𝑠] 

Applying Lagrange Equations for the bike and the wheel, see Figure 3, we have the following 

system of the equation [7], [8], [10], [14]: 

[
𝑚1𝑙1

2 + 𝑚2𝑙2
2 + 𝐽1 + 𝐽2 𝐽2

𝐽2 𝐽2
] [�̈�

�̇�
] + [

−(𝑚1𝑙1 + 𝑚2𝑙2)𝑔 0
0 𝑏𝑚

] [�̇�
𝜔

] = [
0
1

] 𝜏𝑚 (1) 

However, the torque from the motor is calculated by 

𝜏𝑚 =
𝐾𝑇

𝑅
𝑉𝑚 −

𝐾𝑇𝐾𝑏

𝑅
𝜔 (2) 

Where: 
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• 𝐾𝑇 - Torque constant [𝑁𝑚/𝐴] 

• 𝐾𝑏 - Back EMF Const [
𝑉

𝑟𝑎𝑑

𝑠

] 

• 𝑅 – Motor resistance [Ω] 

• 𝑉𝑚- Supplied Voltage [𝑉𝑜𝑙𝑡𝑠] 

Thus:  

[
𝑚1𝑙1

2 + 𝑚2𝑙2
2 + 𝐽1 + 𝐽2 𝐽2

𝐽2 𝐽2
] [�̈�

�̇�
] + [

−(𝑚1𝑙1 + 𝑚2𝑙2)𝑔 0

0 𝑏𝑚 +
𝐾𝑇𝐾𝑏

𝑅

] [�̇�
𝜔

] = [
0

𝐾𝑇

𝑅

] 𝑉𝑚 (3) 

Or matrix form: 

𝑴 �̇� + 𝑽 𝝊 = 𝑺 𝑉𝑚 (4) 

Balancing Controller Design Flow 

From the mathematical equation, we introduce these state-space variables, see Figure 4: 

• 𝑥1 = 𝜃 

• 𝑥2 = �̇�1 = �̇� 

• 𝑥3 = 𝜔 

We have the following state-space equation: 

�̇� = 𝑨 𝑿 + 𝑩 𝑢 (5) 

Where:  

�̇� = [�̇�1 �̇�2 �̇�3]𝑇,    𝑨 = −𝑴−𝟏𝑽,   𝑩 = 𝑴−𝟏 𝑺 (6) 

 

Figure 4. Flowchart of a combination of IMU and motor driver apply on the bicycle 
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Control law: 𝑢 = −𝑲 𝑿 

Where 𝑲 is designed based on Linear Quadratic Regulation (LQR) Control, which means that 

𝑲 is chosen to minimize the following performance index [8][9][14]:  

𝐽 = ∫ (𝑿𝑇𝑸𝑿 + 𝑢𝑅𝑢)𝑑𝑡
∞

0
 (7) 

2-Layer Filter Solution 

During the trial process, we applied the controller motor onto the bicycle. It indicates strong 

vibration when it has been activated to control the balance. After research, I figure out it’s because of 

the “noise” element. Therefore, I added a 2 – layer filer which adds a Kalman filter in the function of 

controlling the balance motor, see Figure 5, which can erase the vibration [13], [14]. 

 

Figure 5. Two-Layer Filer Solution Framework 

Kalman Filter 

The Kalman filter is a technique for estimating variables in a variety of processes. A Kalman 

filter is a mathematical name for a filter that estimates the states of a linear system [10]-[12]. The 
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Kalman filter is not only practical but is also intellectually appealing since it can be proved that it is the 

filter that minimizes the variance of the estimation error among all feasible filters. Kalman filters are 

commonly used in embedded control systems because controlling a process necessitates a precise 

estimation of the process variables [12]. The Kalman filter uses feedback control to estimate a 

process: it guesses the process state at a given time and then receives input in the form of (noisy) 

measurements. As a result, the Kalman filter equations are divided into two categories: time update 

equations and measurement update equations. The time derivative equations are in charge of 

projecting the present state and error covariance estimates ahead (in time) in order to produce a 

priori estimates for the next time step [12]-[14]. The feedback—that is, adding a new measurement 

into the a priori estimate to generate an improved a posteriori estimate—is handled by the 

measurement update equations. Kalman filter consists of three equations,  

𝑲𝒌  =  𝑨𝑷𝒌𝑪𝑻(𝑪𝑷𝒌𝑪𝑻 + 𝑺𝒛)−𝟏 (8) 

�̂�𝒌+𝟏  = (𝑨�̂�𝒌 + 𝑩𝒖𝒌) + 𝑲𝒌(𝒚𝒌+𝟏 − 𝑪�̂�𝒌) (9) 

𝑷𝒌+𝟏 = 𝑨𝑷𝒌𝑨𝑻 + 𝑺𝒘 − 𝑨𝑷𝒌𝑪𝑻𝑺𝒛
−𝟏𝑪𝑷𝒌𝑨𝑻 (10) 

each one necessitates the use of a matrix. A –1 superscript in the above equations denotes 

matrix inversion, whereas a T superscript denotes matrix transposition. The Kalman gain is the K 

matrix, while the estimation error covariance is the P matrix. 

The state estimation (�̂�) formula is straightforward. The first element is simply A times the state 

estimate at time k plus B times the known input at time k to calculate the state estimate at time k + 1 

[9][11]. If we did not have a measurement, this would be the state guess. In other words, much like 

the state vector in the system model, the state estimate would propagate across time. The correction 

term is the second component in the (�̂�) equation, and it specifies the amount by which the 

propagating state estimate should be corrected owing to our measurement. If the measurement noise 

is considerable, 𝑆𝑧 will be large, thus K will be little, and we won't give the measurement y much 

credence when computing the following �̂�, according to the K equation [14]. On the other hand, if the 
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measurement noise is low, 𝑆𝑧 will be low; therefore K will be high, and we will give the measurement 

a lot of credence when computing the next �̂�. 

Machine Learning on Self-driving Bicycle 

Use OpenCV to detect color, edges and lines segments. Then compute steering angles, so 

that bicycle can navigate itself within a lane. Lane detection’s job is to turn a video of the road into the 

coordinates of the detected lanes. Once the line segments are classified into two groups, I just take 

the average of the slopes and intercepts of the line segments to get the middle line. Once I have the 

coordinates of the lanes, the handle of the bicycle will be steeled by the control signal based on the 

angle of the middle line. NVIDIA Jetson nano is a convincing GPU that process efficient real-time 

images. A webcam is a sensor for image data collection. Servo motor controls the handle, which 

receives the steering signal from the lane navigation function to keep the handle straight, turn left, or 

turn right. The object detection function will process the machine learning model, which compares 

with the real-time sensor information and sends a signal to the D.C. motor to control the back wheel 

for running forward, backward, and stops. I set human and stop signs in my algorithm as a stop 

signal, which enables bicycles to avoid a collision. 
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CHAPTER 3 

SELF-DRIVING BICYCLE CONTROL MODULE SIMULATION 

To test the proposed control module for the self-driving autonomous bicycle, we perform 

careful experiments using MATLAB software, see Figure 6. The experiments are designed for several 

testing aspects: 1) IMU motor design; 2) Brushless DC design; 3) Reaction Wheel with Stabilize Data 

Processing. 

The simulation clearly depicts operational data when the self-balance motor activates and how 

the two-way filter technology helps to steady the motor and eliminate the "noise." 

 

Figure 6. Self Balancing Motor has been installed on a normal bicycle combined with Motor Driver, 
IMU control unit sensor, and a six cells battery; balancing function and filters are applied on an 
ARDUINO MEGA; Servo Motor controls the direction; D.C. motor controls run/stop status; Jason 
Nano + TPU compute machine learning model with collected data from the Camera. 

IMU Data Processing 

Accelerometers are used to detect and report particular forces, while gyroscopes are used to 

monitor and report angular rates. These elements combine to form an inertial measurement unit 
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(IMU). See Figure 7, MATLAB can gather time at stationary/motor runs, and roll angel at 

stationary/motor runs using IMU and save the data as an excel file. 

 

Figure 7. MATLAB script of IMU with the motor running 

See Figure 8, we can see that when the motor is running at 8000 RPM, the roll angle is moving 

and changing over time, indicating that the rotating motor is operating correctly and causing the 

bicycle to return to its normal position. However, even when the balancing motor is not operating, the 

blue line can still be seen to be in motion, demonstrating that the IMUs experience vibration because 

of their operation. Therefore, we have to resolve the issue and stop the noise. I conducted some 

mechanical investigation and found a solution called the Kalman Filter to address the issue. 

BLDC (Brushless DC) Motor Simulation 

After setting up the mass moment of inertia of the rotor and friction coefficient of the motor, we 

can simulate the torque and speed for the BLDC based on the precise specs such as motor 

resistance, Brushless DC velocity constant, torque constant, and back emf constant (from the motor 

datasheet), see Figure 9. Finding issues and conducting experiments with various types of data with 

the aid of simulation training is quite helpful in determining the essential components of the balancing 

wheel. 
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Figure 8. Simulation plot of IMU detection data 

 

Figure 9. MATLAB script of IMU with the motor running 

See Figure 10, it demonstrates that with motor speed increases, torque production decreases. 

Therefore, the balance wheel needs additional torque at the start of the launch. Additionally, as the 

system runs longer, less torque will be needed, which will result in lower power usage. 
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Figure 10. Simulation plot of motor running 

Reaction Wheel with Stabilize Data Processing 

The basic simulation functions for the Kalman filter are shown here. Several initial data points 

are needed, including the mass of the reaction wheel, the acceleration due to gravity, the mass of the 

bike, the motor's specifications, and the position of the bike's center of gravity. I can calculate the 

dynamic model elements, including the overall mass of each of the aforementioned components, 

using all of this data. The dynamic model matrices, which also include state-space matrices, must be 

calculated next. See Figure 11, the simulation program will produce a result that demonstrates how 

the Kalman filter is lowering the noisy vibration using all the calculated data. 

Finally, see Figure 12, the Kalman filter below show a decent result. The left top graph of Roll 

Angel/Time shows Kalman filter simulation results. When the balancing wheel is triggered after 10 

seconds, roll angel creates a significant floating change before tending to level out once more in less 

than three seconds, as shown in the top right graph, Roll Rate/Time. The duty cycle has a 

considerably more frequent % change in the first 10 seconds, according to the bottom right graph, 

which matches the Roll Rate/Time data result. Finally, the bottom right graph shows that the trend of 
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the response wheel RPM is comparable to the Kalman Roll Angle and kindly reflects the initial data 

finding. 
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Figure 11. MATLAB script of Kalman filter solution applies on reaction wheel 
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Figure 12. Simulation plots show the time vs. Roll Angle, Roll Rate, Duty Cycle and Reaction Wheel 
RPM with a 2-way Filter Solution 
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CHAPTER 4 

IMAGE PROCESSING BASED ON MACHINE LEARNING FOR 
SELF-DRIVING BICYCLE 

After establishing the bicycle's skeleton, I need now enable the bicycle to see and think. The 

lane process and object detection parts make up most of my code. To fulfill the goals in these two 

parts, I used Raspberry Pi, OpenCV, and TPU (Tensor Process Unit). 

Lane Processing 

Perception (lane detection) and Path/Motion Planning are the two components of a lane keep 

assist system (steering). Lane detection's task is to convert the coordinates of identified lane lines 

from a video of the road. One approach to do this is to use the computer vision library OpenCV, which 

I installed. However, we must first be able to recognize lane lines in a single image before we can 

detect them in a video. 

For computer vision work, I used Python and OpenCV. The term "open-source computer 

vision" stands for "open-source computer vision." You can use OpenCV's extensive collection of 

functions. The OpenCV library has a lot of documentation. 

The Canny edge detection command is a potent tool for detecting picture edges. The image is 

first turned to grayscale. Each pixel has a gray value between 0 and 255, and the color of the lane is 

usually distinct from that of the road surface. For detection, we can apply color mutation from the road 

surface to the lane surface. Calculate the gradient after that. The strength of the point's gradient 

correlates to the brightness of each pixel; edges are created by tracing the pixels under the maximum 

gradient. The edges of the object are used to determine its form. 

The shape of the thing is determined by sensing the object's boundaries. The parameters for 

the OpenCV Canny function are as follows: edges=cv2.Canny(gray, low_threshold, higy_threshold) 

Gray scale map as input, border map as output. The strength of the boundary to be identified 

is determined using low and high thresholds. The difference in the values of neighboring pixels in the 

image can be used to calculate the edge's intensity. It's the level of grayness. I see bright spots, black 

areas, and all the gray in between when I look at a grayscale image. See Figure 13, the edge is 
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defined by a quick change in brightness. Because my graph is just a mathematical function of x and 

y, we can use it to perform arithmetic operations on it just like any other function. 

 

Figure 13. Edges of the lanes 

We could, for example, take its derivative, which is simply a measure of the function's change. 

A minor derivation entails a minor alteration. The bigger change, bigger derivation. Because the 

graph is two-dimensional, taking both derivatives with respect to x and y makes logical. This is known 

as gradient, and it is calculated by measuring how quickly the pixel values of each point in the image 

change, as well as in which direction they change the most quickly. 

When I calculate gradients, result gets thick edges. I use the Canny method to discover each 

pixel after the strongest gradient by streamlining these edges. The stronger edges are then extended 

to include pixels up to the lower threshold given by the Canny function. We already have an 8-bit 

image after converting to grayscale, thus each pixel may take 2^8 = 256 different values. Pixel values 

range from 0 to 255 as a result. The derivative (basically, the difference in value between each pixel) 

will be in the tens or hundreds in this range. 

One lane line in the image: In most cases, the camera should be able to view both lane lines. 

However, there are moments when the automobile begins to drift out of the lane, either due to faulty 

steering logic or a steep bend in the lane. The camera can only capture one lane line at this time. As 

a result, len(right fit)>0 and len(left fit)>0 must be checked in the code above. 

Vertical line segments: As the car turns, vertical line segments are occasionally recognized. 

We can't average the slopes of vertical lines with the slopes of other line segments, even though they 
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aren't erroneous detections. I choose to overlook them for the sake of simplicity. Because vertical 

lines are uncommon, they have little effect on the lane recognition algorithm's overall performance. 

Alternately, the image's X and Y coordinates may be flipped, resulting in vertical lines with a slope of 

zero, which could be included in the average. However, see Figure 14, since the camera is usually 

oriented in the same direction as the lane lines, rather than perpendicular to them, the horizontal line 

segments would have an infinite slope. Another option is to represent the line segments in polar 

coordinates, then average the angles and distances from the origin. 

 

Figure 14. Live video demo on the path 

Now that I know where the bicycle is going, I need to convert it to a steering angle so we can 

tell the automobile to turn. A steering angle of 90 degrees means you're going straight, 45–89 

degrees mean you're turning left, and 91–135 degrees mean you're turning right on the bicycle I 

developed. 

When I construct the model and print the parameters list, it displays that there are around 

250,000 parameters, see Figure 15. This is a good way to ensure that each layer of my model is 

produced according to my expectations. 
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Figure 15. Training model parameter list [28] 

The R² measure is another way to assess how well our model worked. See Figure 16, the 

model functions well if the R² is near 100 percent. As you can see, even with 200 photographs, my 

model has an R² of 93 percent, which is rather impressive, owing to the usage of image 

augmentation. 

 

Figure 16. Training loss vs. Validation loss [29] 
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Object Detection 

Object identification, a practical application of deep learning algorithms, is the technology of 

utilizing a computer to scan, analyze, and comprehend images in order to recognize targets and 

objects of various patterns. There are four steps in the standard picture recognition process: image 

acquisition, image preprocessing, feature extraction, and image recognition are all steps in the image 

recognition process. The key features of an image are used to recognize it. Each image has its 

unique characteristics, such as the sharp point on the letter A, the circle on the letter P, and the acute 

angle at the center of the letter Y. The study of eye movement in image identification reveals that the 

line of sight is constantly focused on the image's primary elements, such as the location where the 

image's contour curvature is the largest or the contour direction changes abruptly, which contains the 

most information. The eye's scanning path is continually changing from one feature to the next. As a 

result, in the picture recognition process, the perceptual mechanism must filter out redundant input 

data and extract the essential data. Simultaneously, there must be a brain mechanism that integrates 

the information gathered in phases into a complete perceptual image. Artificial intelligence's field of 

image recognition is crucial.  

In order to construct computer systems that simulate human image recognition activities, 

various image recognition models have been proposed. For instance, consider the template-matching 

model. According to this paradigm, in order to recognize an image, one must have the image's 

memory pattern from a previous experience, also known as a template. The image is recognized if 

the present stimulus fits the template in the brain. For example, if there is a template A in the brain, 

and the letter A's size, orientation, and shape are identical to the template A's, the letter A will be 

recognized. This model is straightforward and straightforward to use in practice. 

However, this approach highlights that before a picture can be recognized, it must be perfectly 

congruent with the template in the brain. People can recognize both images that are perfectly 

consistent with the template in the brain and those that are not entirely consistent with the template. 

People can distinguish not only a single letter A, but also the letter A printed, handwritten, 
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misdirected, and in various sizes. See Figure 17, people can recognize a vast number of images at 

the same time; however it is impossible if each image has a corresponding template in the brain. 

Image segmentation can be done in a variety of ways, including threshold segmentation, edge 

detection, region extraction, and segmentation using theoretical tools. Gray image segmentation, 

color image segmentation, and texture image segmentation are the three types of image 

segmentation. The edge detection operator was proposed in 1965 [21], and it spawned a slew of 

classic edge detection methods. 

 

Figure 17. Trained imaged dataset detection and prediction 

However, with the rapid growth of image segmentation based on histogram and wavelet 

transforms, as well as VLSI technology, image processing research has advanced significantly in the 

last 20 years. Image segmentation approaches include a variety of theories, methodologies, and 

tools, including image segmentation based on mathematical morphology, wavelet transform 

segmentation, and genetic algorithm segmentation, among others. 
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YoloV5 

In the field of object detection, YOLO is a common deep learning-based detection approach. It 

has a good global receptive field, grid division, anchor frame matching, and a technique for detecting 

multi-semantic fusion [27]. YOLO model directly predicts the bounding box and probabilistic likelihood 

of picture objects with CNN, which dramatically improves detection accuracy when compared to 

classic object recognition methods. 

Input, Backbone, Neck, and Head are all elements of the YOLOv5 basic model. The network's 

input section uses mosaic data augmentation, adaptive picture scaling, and adaptive anchor 

computation to process the image to be detected. The processed images are initially supplied into the 

focus structure in Backbone before being sliced, see Figure 18. 

The focus accomplishment of a given task the input image information's integrity while also 

reducing the input size. After that, numerous Conv, C3 modules, and an SPP module extract features 

to create a new set of feature maps. A path aggregation network is used to aggregate the neck part of 

the network, which promotes feature fusion [27]. Bounding boxes are formed, and expected targets 

are categorized in the head section. 

 

Figure 18. P.R. Curves (Precision-Recall Curves) [33] 
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The YOLO (You Only Look Once) algorithm was created to detect an object in real-time. To 

detect, the detection system employs a repurposed classifier or localizer. Starting with the YOLO 

version, YOLOv2, YOLOv3, and ending with YOLOv5, YOLO has several variants, see Figure 19 

[28]-[30]. However, there has not been much work on applying the YOLOv5 algorithm to the library 

attendance system. As a result, it is critical to act. 

 

Figure 19. The top right is the rectangles that are labeled (x,y,w,h) is the label of each instance label 
[33] 

In the YOLO series, YOLOv4 and YOLOv5 were released. YOLOv5 is built on the PyTorch 

framework and has a detection speed of up to 140 frames per second. YOLOv5 is faster and more 

accurate than the preceding YOLO series, and its model is light and ideal for deployment on 
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embedded devices [29]. The same Mosaic data improvement technology as YOLOv4 is used in 

YOLOv5. The detection efficiency of small targets is increased by stitching the input images using 

random scaling, random cropping, and random layout, see Figure 20 [33]. 

 

Figure 20. The plot of confusion matrix [33] 

Tensor Processing Unit (TPU) 

At the end of the Google, I/O 2016 speech, Google mentioned a Tensor Processing Unit, or 

TPU, as one of the things they have done with A.I. and machine learning. The principle behind deep 

learning is to build layers, with the output of one layer feeding into the next. An input layer, numerous 

hidden layers, and an output layer make up a deep neural network. There are numerous neurons in 

each layer, and there are connection weights between them. Each neuron is modeled after a human 

nerve cell, while the connections between nodes are modeled after nerve cell connections. When 

compared to a CPU, the performance of a neural network may be considerably enhanced by 

employing a specific chip to speed up neuron processing. That's how Google's TPU is built, with a 

single command capable of doing several neuron calculations. 
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The difference between the _edgetpu.tflite file and the regular.tflite file is that the 

_edgetpu.tflite file will perform all (99%) model inferences on the Edge TPU rather than the Pi's CPU, 

see Figure 21. In practice, this implies that the Edge TPU can process roughly 20 320x240 resolution 

photos per second (called FPS, Frames Per Second), but the Pi CPU alone can only handle about 1 

FPS, see Figure 22. Twenty frames per second are (almost) real-time. 

 

Figure 21. TPU required the PYCPRAL library to activate 

 

Figure 22. TPU functions required to run through the code 
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CHAPTER 5 

HARDWARE IMPROVEMENT FPGA 

The programmable Logic component of a typical FPGA, termed P.L., is the only part that can 

be changed (Programmable Logic). The Zynq series, on the other hand, is a single FPGA device with 

one or more ARM cores. PS refers to the SOC component (Processing System) [15][18][19]. In fact, 

you can build SOC directly on P.L., such as using ARM's Cortex-M3 kernel I.P., Micro Blaze. 

However, compared with directly solidified and embedded a mature ARM kernel circuit, it still 

consumes too many on-chip resources to build a kernel with similar performance to P.L. Since there 

are two parts on a chip that needs to be programmed, P.L. needs to describe the hardware 

architecture as a bitstream, and P.S. needs to run a standalone or operating system (such as Linux) 

[16], [17], [22]. This involves the problem of developing two areas separately, see Figure 23. 

Those who are familiar with Pure P.L. devices such as Spartan, Kintex, and Virtex know that 

P.L. parts can be programmed, debugged, and run using Verilog language in Vivado software of Silas 

[20]. Those of you who have played with Zynq also know that you can add P.S. I.P. cores when you 

choose to use Zynq chips in Vivado. Once the hardware is exported, you can write programs that run 

bare-metal or on the operating system in the Silas SDK [19], [22]. You can also use Petalinux to load 

a hardware description file and generate a Linux operating system that matches your current 

hardware.  

 

Figure 23. Traditional FPGA application flowchart 
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Because I am aware of the benefits and capabilities of FPGA, which include, first and 

foremost, increased parallelism, concurrency, and pipelines are used to accomplish this. (A): 

Concurrency is the process of allocating computing resources repeatedly such that many modules 

can run at the same time. This is comparable to multicore and SIMD technology now in use. 

However, unlike SIMD technology, FPGA concurrency can occur across multiple logic functions 

rather than being confined to the execution of the same function at the same time. For example, 

SIMD allows you to perform several adds simultaneously, but an FPGA can perform multiple 

additions, multiplications, and whatever logic you can imagine [20]. (B): Pipelining involves splitting 

jobs down into pieces and running them all at the same time. In truth, it is comparable to a CPU, 

except that CPUs deal with flow between instructions, whereas FPGAs deal with flow between jobs or 

threads. Second, it is adaptable. FPGA internal logic, known as Lookup Table logic, can be thought of 

as a hardware circuit [22]. The term "customizable" refers to the ability of users to create their own 

logic circuits when resources permit. Tasks execute quicker on hardware circuits than on software 

circuits in most cases. For example, in a CPU, two area instructions, two-bit and instructions, one 

shift instruction, one compare instruction, and one write back instruction are required to compare the 

size of 32 bits higher and 32 bits lower than a 64 bit, however with an FPGA, just one comparator is 

required. Finally, it is possible to alter it. The term "reconfigurable" refers to the ability to modify the 

logic inside the FPGA to meet specific needs, lowering development costs. At the same time, reusing 

resources using FPGA saves the server more space than utilizing numerous fixed ASIC modules 

[17][18]. To summarize, the next stage is to move all prior engineering to FPGA, which will ensure 

great efficiency and low power consumption. Below is an example of previous research of neural 

network application on FPGA in the traditional way that experimental hardware measurement is 

based on FPGA evaluation board Xilinx Ultrascale+ KCU116 with the XCKU5P computing unit being 

connected to a P.C. through PCI Express.  

The PCI Express allows the FPGA to access the DDR4 ram as temporary storage for the input 

data and model [15][19][22]. The LUT and Flip-Flop (F.F.) resources are demanded to process the 
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on-chip computation. Off-chip memories are also required for our design because it is not realistic to 

store the model in the on-chip register only. The F.F. is used as the shared register and buffer, while 

the piped-lining rate is not possible to raise due to the dependency of the data. The F.F. utilization is 

20-30% and varies with the model compressing ratio. The BRAM utility remains the same because of 

using tensor shape manipulation that is designated to hold more space for redundancy and not tightly 

allocate the data and model. To process the convolution, I designed MAC (Multiply Accumulate) as 

processing units that consist of multiple DSPs. I observed that the higher the parallelism channel lane 

deployed, the higher DSP utilization will be obtained [20]. See Figure 24. To raise the speed of the 

process, I can invest more DSP resources for the design. I measured the power consumption within 

two places: on-chip and off-chip. The on-chip power is drained by all on-chip resources and the 

connection between the chip and the I/O supply by the evaluation board. Off-chip power is consumed 

by the DDR4 memory that is connected through the PCI-E to the FPGA [22].  

 

Figure 24. Schematic design of traditional FPGA method from previous research 

While porting the engineering, however, I discovered a more convenient and efficient FPGA 

performance. This new feature may be used to design not just standard applications but also other 
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neural network models that are now available on the market. VITIS AI, VITIS, PETALINUX, and DPU 

are all used in the new technique. 

Vitis IDE Instruction 

For Vitis, an important concept is a platform, which is not just a description of the hardware 

derived from Vivado, but a more general concept, which includes the concept of hardware and 

software integration.[23] On this platform, you can perform many comprehensive operations. The 

hardware can be exported using Vivado. See Figure 25, using Vivado after installing Vitis, you can 

either invoke the Vitis IDE directly after compiling the hardware part or create a new project from the 

Vitis IDE and choose to use the existing platform that you have added.  Or select the XSA (Xilinx 

Shell Archive) file exported from Vivado to create a new platform. The XSA file is exported by Vivado 

and is the abbreviation of Xilinx Shell Archive [24][25]. It mainly contains the hardware information of 

the platform and is used as the input of the Vitis platform Project. The platform is a more complex and 

generalized concept that includes hardware and software and can support different design processes 

such as hardware acceleration and embedded design. In the software part, we can also write bare-

metal or operating system applications directly in Vitis IDE and compile and debug them. In this way, 

the Vitis IDE itself is actually very similar to previous SDKs. 

Vitis A.I. 

Vitis A.I. is currently command-line only and runs only on Linux, meaning that in order to use 

this feature, you must have a Linux version of Vitis installed and a large enough running resource. As 

shown in the overview, The Vitis A.I. can load either hardened models from the Model Zoo on Github, 

or customized Model files from users. The Vitis A.I. tool consists of several components, see Figure 

26, an A.I. compiler, quantizer, optimizer, analyzer, and deploys the final model on the Deep Learning 

Processing Unit (DPU) on the P.L. side. The P.S. side, or in the case of the Alevo accelerator card, 

the P.C. side, can be called through the Xilinx Runtime Library (XRT) interface [23]-[26]. 
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Figure 25. Overview Platform of VITIS [26] 

Deep-learning Processor Unit (DPU) 

The DPU (deep-learning processor unit) is a programmable engine designed specifically for 

deep neural networks. It is a set of parameterizable I.P. cores that come pre-installed on the 

hardware and don't need to be routed. It's made to help deep learning inference algorithms, which are 

commonly used in computer vision applications, including image/video classification, semantic 

segmentation, and object detection/tracking, run faster. The Vitis A.I. specialized instruction set is 

included with the DPU, allowing for the efficient development of deep learning networks. Various 

prominent convolutional neural networks, including VGG, ResNet, GoogLeNet, YOLO, SSD, and 

MobileNet, are supported and accelerated using an efficient tensor-level instruction set [24], [25].  
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Figure 26. VITIS AI design process  
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CHAPTER 6 

APPLICATION DEVELOPMENT AND PROCEDURES 

After introducing the related software and concepts that will be used above, I will show the 

whole system process, which is mainly divided into hardware layer and software layer. The FPGA 

model I used was produced by XILINX company Zynq® UltraScale+™ MPSoC ZCU104. It helps 

designers quickly launch designs for automotive, industrial, video, and communications applications. 

It helps designers quickly launch designs for embedded vision applications such as surveillance, 

advanced driver assistance systems (ADAS), machine vision, augmented reality (A.R.), unmanned 

aerial vehicles, and medical imaging. Support for all major peripherals and interfaces for various 

application development. Very suitable for the above self-balancing cycling project. 

The hardware layer mainly includes VIVADO to establish the corresponding FPGA hardware 

information, configure PETALINU, and finally establish the VITIS Platform. The purpose of VIVADO is 

to create a base project to tell VITIS which resources are available and which resources can be set 

within the platform. See Figure 27. When VITIS is called, it is designed to automatically connect to 

VIVIADO based on its I.D. 

 

Figure 27. Basic VIVADO IP Core Design with Zynq UltraScale+ MPSoC 



34 

 

Developers may use PetaLinux tools to synchronize the software platform with the hardware 

design when new features and devices are added. See Figure 28 and Figure 29, the PetaLinux tools 

will create a bespoke Linux Board Support Package for you, complete with device drivers for Xilinx 

embedded processor I.P. cores, kernel, and boot loader settings. Software engineers may 

concentrate on their value-added applications rather than low-level development duties with this 

capability. 

 

Figure 28. Petalinux Configuration screenshot 

 

Figure 29. Petalinux generation process screenshot 

On the software layer, VITIS AI generates a DPU kernel through training, quantification and 

compilation of the neural network model and imports it into the previously established DPU platform 

so that the actual effect of the neural network model can be realized on FPGA, see Figure 30. 
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Figure 30. Flowchart of VITIS AI procedure 

1. Prepare a trained model. This step is a common A.I. model. After the training, pruning is 
required, and it will be very slow for YOLOV5 without pruning. See Figure 31. Therefore, 
what I did was to put the trained model into VITIS AI and prune again. Because we have 
a post-training model ready, so we don't have to retrain. 

2. Quantification based on the neural network that has been used to quantize the previous 
.pth file to the .xmodel file. See Figure 32. After the first quantization, the model has 
98.75% accuracy. 

 

Figure 31. VITIS AI main quantification functions 
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Figure 32. Screenshot of VITIS AI quantification process 

3. Compile. After generating the xmodel file now needs to compile with the hardware file 
we prepared before in the hardware section from VIVADO together generate to a new 
xmodel, see Figure 33, and this one is good to use now because it also contains FPGA 
hardware fingerprint information (arch.json) 

 

Figure 33. Screenshot of VITIS AI compile process 

4. Integration. Before the final step, I need to create a VITIS platform first, also based on 
the VIVADO application I created in the hardware section. See Figure 34, Figure 35, 
and Figure 36. Finally, after I have prepared both the hardware information and 
software model, I need to import VITIS AI into VITIS first (otherwise will not generate the 
DPU core). 

 

Figure 34. Establishment of VITIS platform (all directory paths are according to previous steps) 
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Figure 35. Import VITIS AI into the VITIS platform (most important step) 

 

Figure 36. Establishment of DPU Core 
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CHAPTER 7 

APPLICATION RESULT 

As a result, once I build the DPU core, I need to burn all the files from Petalinux, VITS AI, and 

VITIS into an S.D. card. Then boot the FPGA system from the S.D. card; therefore, I reach out that 

using FPGA just raspberry pi and Navida Xavior to run neural network model by command lines 

below are two examples: Resnet50 and Mnsit model. See Figure 37 and Figure 38. It is a pity that I 

was supposed to run a YOLOV5 model, but after all the research I did, there is no complete 

quantization of YOLOV5 now, so I can’t generate xmodel file. 

 

Figure 37. Resnet50 model running with DPU core (Probability reach 98%) 

 

Figure 38. Mnist CNN model running with DPU core (Throughput = 3570.97fps, total frames = 2253, 
total time = 0.63 secs, Accuracy: 98.9%)  
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CHAPTER 8 

CONCLUSION 

To summarize, my contribution is I apply FPGA as a low device since most of the battery 

power needs to support the balancing wheel of the autonomous bicycle. On top of the image 

processing algorithm, I completed both software-hardware co-design regarding the existing machine 

learning model, as see in Table 1. Furthermore, investigating a new method of FPGA application 

configuration called Deep-learning Process Unit (DPU), in the above bicycle project, can maintain 

balance and navigation automatically. The whole achievement not only succeeded in realizing the 

bicycle by combining angular power conservation and induction motor to achieve single auto balance, 

but also in realizing the autonomous navigation technology by using neural network learning. The 

training and simulation of neural networks are expertly employed in the part of automatic navigation to 

build a relatively stable and mature model that can not only detect the status of roads without streaks 

with high resolution but also identify more than 98 percent of the difficulties, as see in Table 2. On top 

of that, thanks to a hardware upgrade, I could run a neural network model on an FPGA using my new 

method. Below, two tables briefly conclude my analysis of strength/weakness and software 

comparison of the new DPU block compared to the traditional FPGA method. 

Table 1. Comparison of Deep Learning Hardware Acceleration Methods 

Accelerated methods Advantage Disadvantage 

CPU 
A universal system structure, can work 
independently 

Low computing efficiency, low 
energy efficiency ratio 

GPU 
Good parallel computing ability, 
general graphics processing 

High energy consumption, high 
bandwidth requirements 

FPGA 
High flexibility, large design space, 
strong parallel ability 

High design demand, high cost 

DPU (This Article) 
The high energy efficiency ratio, 
simple development process 

Low flexibility, massive steps 
involved 
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Table 2. FPGA & DPU Development and Software Tool Chain 

Hardware Traditional FPGA Develop DPU (This Article) 

Compile Language Verilog/VHDL/C/C++ Python3 

Compile Steps Synthesis, I.P. Blocks Train, Quantization, Compile 

Compile Result Bitstream Xmodel, arch.json 

Debug Method Simulation SD Card 

Required Software Vivado Vivado, Vitis, Vitis AI, Petalinux 

 

However, the project may have advanced further if a single FPGA had been used to control 

both the bike's auto-balancing and auto-navigation functions. This one, on the other hand, will be 

more focused on FPGA modularization and stratification, which is a wholly different notion. However, 

once this technology is implemented, we can anticipate that using only one FPGA for multi-functional 

applications at the same time will be very spectacular, and the power and energy savings will be 

unfathomable. Unfortunately, despite our knowledge of FPGA's extensive capabilities, mastering it 

will be challenging and time-consuming. It is not only because of the difficult framework of FPGA 

design and application but also because the development of neural networks is changing all the time, 

making hardware reality difficult to follow, which is why the summary of what involves the application 

of this new method in my paper is not extensive, causing some difficulty in my paper. As development 

prices decrease and applications become more widely available, FPGA will become the backbone of 

hardware in the field of neural network learning. 
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