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Overview

• Force fields are sets of parameterized mathematical equations describing the
intra- and inter-molecular interactions; their use is very common in molecular
dynamics (MD).

• The reactive force field (ReaxFF) model bridges the gap between classical MD
models and quantum mechanical (QM) models by incorporating dynamic bonding
and polarizability; it has a very complex functional form with tens to hundreds of
parameters to be optimized depending on the target application.

• Existing parameter optimization methods for ReaxFF consist of black-box
techniques using genetic algorithms or Monte-Carlo methods; due to the
stochastic nature of these methods, the optimization process typically requires
hundreds of thousands to millions of error evaluations for complex tasks.

• JAX-ReaxFF is a novel software tool that leverages modern ML infrastructure to
enable fast optimization of ReaxFF parameters .

• JAX-ReaxFF calculates gradients of the loss function using the auto-
differentiation functionality in the JAX library, and utilizes highly effective local
optimization methods initiated from multiple guesses to avoid being trapped in
poor local minima.

• Leveraging the architectural portability of the JAX framework, JAX-ReaxFF can
execute efficiently on multi-core CPUs, graphics processing units (GPUs), or even
tensor processing units (TPUs).

• Overall, we are able to decrease ReaxFF parameter optimization time from days
to mere minutes.

Conclusions

• JAX-ReaxFF enables fast optimization of Reax force field parameters by
leveraging the computational infrastructure advances in machine learning.

• JAX-ReaxFF uses several innovative techniques for high performance on
architectures with GPUs. Clustering similar geometries together to maximize
the SIMD parallelism while limiting the padding for alignment yields high
parallelism, especially for single step evaluations.

• As described in Algorithm 1, by using single step energy evaluation-based
approximations to the error function and gradient information about the search
space, we are able to decrease the convergence time significantly with the help
of GPU acceleration.

• We have empirically showed that even though the local optimizer is not fully
aware of the geometry optimization, the overall algorithm converges with
minimal changes in the parameter space as the algorithm progresses.

• JAX-ReaxFF provides a utility not available in other competing tools – its auto-
differentiation functionality enables the study of the new functional forms for
the ReaxFF model without explicitly implementing the force calculations or the
optimizer, since both forces and parameter gradients can automatically be
calculated by JAX.

Figure 2: JAX-ReaxFF execution flow graph.

Clustering and alignment for SIMD parallelization

• To speedup the computation, we utilize just-in-time compilation via XLA to
create a static computational graph and map it to the desired computational
device. JAX-JIT requires array sizes to be known and arrays to be properly
aligned.

• A modified version of K-Means algorithm (with a unique distance metric) is
designed to automatically cluster and align computationally similar geometries
together to minimize the padding.

• The distance between geometry gi and cluster Cj is given as:

n1, n2, n3, n4, and n5 are the max numbers of atoms, 2-body interactions, 3-
body interactions, 4-body interactions, and periodic boxes within cluster C,
respectively. w1 through w5 are indicators of the relative computational costs.
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Cobalt 12 146 130 0 0 0 144
Silica 67 302 221 5 26 0 265
Disulfide 87 231 10 0 255 4401 219
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Introduction and Background

Figure 1: Flow graph of calculations performed in ReaxFF

Method Lowest 
Error

Median 
Error

Avg. # Single 
Step Eval.

# True 
Eval.

Avg. CPU 
Time (min)

Avg. GPU 
Time (min)

LBFGSB 1368 2334 480 20 23.5 1.2
SLSQP 1191 2253 513 20 24.8 1.3
Gen. Alg. 1346 1645 - 200k 3913 -
CMA-ES 1150 1894 - 45k 880 -
MCFF 1422 2104 - 45k 880 -

Table 3: Cobalt training results

Table 2: Training data sets

Method Lowest 
Error

Median 
Error

Avg. # Single 
Step Eval.

# True 
Eval.

Avg. CPU 
Time (min)

Avg. GPU 
Time (min)

LBFGSB 3901 5214 1865 20 25.0 1.6
SLSQP 3870 4498 2962 20 31.9 2.0
Gen. Alg. 3577 3748 - 200k 1632 -
CMA-ES 3749 4753 - 45k 367 -
MCFF 5059 6584 - 45k 367 -

Table 4: Silica training results

• These results show that the training errors of the force fields optimized using
JAX-ReaxFF are on par with or better than those from the literature, while the
training time decreases by one to three orders of magnitude.

• The relatively good median training errors obtained from multiple runs also
indicate that JAX-ReaxFF could produce various force fields with comparable
performance.

• The main benefit is that the overall training times are significantly lower which
enables researchers to quickly iterate over ideas, try different weighting of the
training items, or use different data for their target applications.

Method Lowest 
Error

Median 
Error

Avg. # Single 
Step Eval.

# True 
Eval.

Avg. CPU 
Time (min)

Avg. GPU 
Time (min)

LBFGSB 6513 12906 2017 20 13.5 1.2
SLSQP 4744 43712 1059 20 22.2 2.0
Gen. Alg. 19285 20384 - 200k 1632 -
CMA-ES 8052 11371 - 45k 367 -
MCFF 8507 11893 - 45k 367 -

Table 5: Disulfide training results

Type Training Item Target Description

Charge ID1 1 0.5 Charge for atom 1 in the corresponding 
molecular structure (elementary units)

Energy

ID1/1 - ID2/2 - ID3/3 50

Scaled energy difference between 
specified geometries (kcal/mol)ID1/1 -150

ID3/2 - ID1/3 30

Geometry

ID1 1 2 1.25 Distance between atoms 1 and 2 (˚A) 

ID2 1 2 3 120 Valence angle between atoms 1, 2 and 3 
(in degrees)

ID3 1 2 3 4 170 Torsion angle between atoms 1, 2, 3 and 
4 (in degrees)

Force
ID1 1 0.5 0.5 0.5 Forces on atom 1 (kcal/mol ˚A)

ID2 1.0 Root mean squared grads. (kcal/mol ˚A)

Different training items are combined into a loss (fitness) function, where m is the 
model, xi is the prediction, yi is the ground truth as given in the reference dataset, 
and σ -1

i  is the weight assigned to each training item.

Table 1: Commonly used training item types in ReaxFF training. Identifiers (e.g., 
ID1, ID2 and ID3) denote geometries, i.e., atomic structures or molecules.

Gradient-based local optimization

• Some geometries might require energy minimization. JAX needs to trace the
energy minimization routine to calculate the gradients which is error-prone due
to the complexity.

• To remedy this problem, we separate the geometry optimization and use two
different error calculations. The first one calculates the error without energy
minimization (surrogate error) and the second one calculates the true error with
energy minimization.

• The surrogate error helps us easily calculate the gradients and accelerate the
training.

A mix of materials and molecules with different properties and various types of
items (single point energies, partial charges, geometry optimization, force
matching) in their training datasets have been used for evaluation.

Amorphous Silica (SiO2)Cobalt (Co) FeS2 (Fool’s Gold) [1]

Validation

Force field optimization ensures a good fit to the loss function, but this does not
guarantee high fidelity simulations in practice. To validate the fitted cobalt, silica
and disulphide ReaxFF parameters, the optimized force fields were evaluated in
actual MD simulations.

JAX-ReaxFF was compared against previously published methods, i.e. CMA-ES,
MCFF and GA that were reported in [2], using two different local optimization
methods: LBFGSB and SLSQP. Comparison criteria include the number of loss
function evalautions and average execution time. Only JAX-ReaxFF can benefit
from GPU acceleration, which is automatically enabled by JAX.

Property 2010 Force field 2019 Force field JAX-ReaxFF Force field
Density 2.19 2.31 2.23
Si Coordination 3.99 3.94 3.97
O Coordination 1.99 1.97 1.99

Table 6: Silica properties calculated using three different force fields. The
experimental value for silica density is 2.2 g/cm3. Silicon and Oxygen coordination
numbers are 4 and 2, respectively.

Figure 3: Final configurations of pure Co fcc crystals after annealing loop with
1000K-3000K temperature range. ReaxFF simulations performed using the new
JAX-ReaxFF force field can preserve the crystal structure; this is the expected
behavior. However, in simulations with the EAM force field, which is a popular
model for metals, the crystal structure is heavily distorted.

Figure 4: Potential energy
graphs of energy minimized
molecules including Sulfur
bonds with dfferent
restraints, calculated with
the new JAX-ReaxFF force
field and previously
published force fields closely
match each other.


