
UVOS Manual

UVOS MANUAL

UNICORE Team

Document Version: 1.6.0
Component Version: 1.6.0
Date: 21 01 2013

This work is co-funded by the EC EMI project under the FP7 Collaborative Projects Grant
Agreement Nr. INFSO-RI-261611.

This work was co-funded by the EC Chemomentum project under the FP6 Grant Agreement Nr.
IST-033437.

UVOS Manual

Contents

1 Introduction 1

2 UVOS Overview 2

2.1 Example . 2

3 Entities 3

3.1 Which type of identities shall be used? . 3

4 Attributes 4

5 Authentication 5

6 UVOS access authorization 5

6.1 Authorization overview . 6

6.2 The simple (default) authorization scheme . 8

7 VO registrations (applications) 9

8 Email notification 9

9 UVOS usage scenarios 10

9.1 PULL authorization . 10

9.2 PUSH authorization . 11

9.3 Web portal authentication . 12

10 Installation 12

10.1 Installation from the archive . 13

10.2 Installation from RPM package (RedHat distributions) 13

10.3 Installation from the DEB package (Debian distributions) 13

10.4 Database installation . 14

11 Upgrading UVOS server 15

11.1 Update using yum . 15

11.2 Version specific notes . 16

11.3 Generic upgrade instructions for tar.gz installations 16

UVOS Manual

12 Configuration 17

12.1 Database configuration . 17

12.2 Server configuration . 18

12.3 Mail notification configuration . 34

12.4 Defining attribute types . 42

12.5 Attribute release policy (aka attribute filtering) 42

13 Server operation 44

14 APPENDIX - permission requirements 44

UVOS Manual 1

UNICORE VO Service (UVOS) is a client-server system, developed to be used as an additional
tool for large distributed systems, providing a solution for grid users management. Grid sys-
tems, especially UNICORE grid middleware, are the mainspring of the UVOS system. UVOS
can be used with different systems, however is designed primarily to support UNICORE grid
middleware.

For more information about UVOS visit http://uvos.chemomentum.org.

1 Introduction

UNICORE VO Service (UVOS) is a client-server system, developed to be used as an additional
tool for large distributed systems. Grid systems, especially UNICORE grid middleware, are the
mainspring of the UVOS system. Although UVOS can be used with different systems, for the
purpose of this document we will use the term grid system to refer to supported systems.

The fundamental UVOS features are:

• storing identities of grid users and other identifiable components (for example servers),

• organising identities in hierarchical groups,

• assigning arbitrary attributes to users in various ways,

• registrations requests (or VO applications) support. UVOS exposes those features as remotely
accessible operations through the web service mechanism. This provides internal system
access authorisation and authentication.

Typical usage patterns of the UVOS system include:

• grid node access authorization support, which enables granting access to members of a par-
ticular group or owners of selected attributes

• mapping grid user identity onto another one (usually in different format),

• storing dynamic and static information about grid entities. For more detailed information
about possible ways UVOS can be deployed see usage scenarios description Section 9.

The UVOS system is build upon well established standards. For instance, all query operations
used by clients are available through the SAML 2 protocol. Moreover, the following optional
SAML profiles are implemented to ensure interoperability:

• SAML Attribute Query Deployment Profile for X.509 Subjects,

• SAML Attribute Self-Query Deployment Profile for X.509 Subjects,

• OGSA Attribute Exchange Profile Version 1.2,

• XACML Attribute Profile.

http://uvos.chemomentum.org

UVOS Manual 2

2 UVOS Overview

UVOS is a component that acts as an information point and organises entities within a hierar-
chical group structure. Top level groups of this structure are called virtual organisations. Each
entity is assigned a list of group membership and a set of attributes. An attribute is composed
of a name and a set of values, which can be empty. In addition, a single entity can possess
multiple representations, for example in two different formats. These equivalent incarnations of
the same entity are called identities, and are usually invisible for an outside user.

2.1 Example

What follows is a comprehensive example of the UVOS database. It serves as an illustration of
various concepts which are presented in more detail later on. Please note that you can find a
script in the UVOS server distribution which creates the following example, so you can easily
experiment with it.

Groups hierarchy:

[UVOS root]
|-Math-VO
| |-Staff
| | |-Admins
| | | |-u:UNICORE example user(DN)
| | | |-u:Eve(email)
| | |-u:Amy(email)
| | |-u:Ben(email)
| |-Scientists
| | |-u:Ben(email)
| | |-u:Andrew(DN)
| | |-u:Chris(email)
| |-UUDB
| |-SiteA
| |-SiteB
|-QSAR-VO

|-u:Ben2(DN)
|-u:Tom(DN)
|-u:UNICORE example user(X509Cert)

Two top level groups, called VOs, are defined in this example. The first one (Math-VO) has
a complicated structure with subgroups, while the second (QSAR-VO) is very simple, with no
subgroups. The users are presented with u: prefix, along with their identity type in brackets. In
this example there are two equivalent identities (in other words: entity with two representations)
of "UNICORE example user": of DN type and of X509Certificate type. "UNICORE example
user" is the identity taken from the demo certificate which is distributed with UNICORE 6
quickstart package.

UVOS Manual 3

3 Entities

Distinct members of the UVOS system are called entities. Every entity has a unique label and
usually one token that defines it. The token must be in one of the supported formats, which are:

• X.509 certificate,

• DN - distinguished name,

• Email address.

A token along with it’s type is called an identity. As explained an entity typically possesses one
identity, but it can also have more, even if they are of the same type. For instance, an entity with
the label "Jimmy Page" can have three identities: X.509 certificate issued by VeriSign, another
X.509 certificate issued by ICM Warsaw University and an Email address jpage@example.com.

It is worth pointing out that all of the identities that compose an entity share the same charac-
teristics (attributes, group membership, permissions, etc.). The UVOS works using entities, so
that any of it’s identities can be given as a representation.

3.1 Which type of identities shall be used?

There are several things that influence the answer to the above question. We will give some
simple rules which apply in typical UNICORE (or in general grid) situation.

First of all we can observe that DN and X.509 certificate are quite similar, namely certificate
contains (in a certificate subject field) a user’s DN. Also the fact is that grid sites ask for DN
type identity when authenticating or authorizing users.

So if it is enough administrator can use DN-type identities and forget about certificates. How-
ever it is often more comfortable for VO administrators to have a full entity certificate as it
carries more data about the user. So in UVOS prior to 1.3 version, administrator usually created
both identities - DN and X.509 - under a single entity. From the version 1.3 on it is not needed,
as server was extended to use certificate also when asked for DN type identity (and obviously
when there is no such a DN-type identity already defined). So when adding X.509 certificate
identity is usually sufficient and it is not required to create DN-type identity.

The usage of email type identity is completely another story. It is used for two purposes:

• as a simple way to authenticate UVOS administrators

• to authenticate grid users to the web portals with a password.

So mail identity is required for regular gird users only as an additional identity (to the "base"
DN or certificate type identity) when this user will access the grid through the WWW.

mailto:jpage@example.com

UVOS Manual 4

4 Attributes

Attributes are composed of a name and a list of values. A name is a URN, and values are
arbitrary strings. The value list can be empty.

The administrator can assign attributes to entities. There are three methods of doing this: :

• using global attributes: an entity can have an attribute assigned globally. Such an attribute
is valid always and in every context,

• using group-assigned attributes: an attribute can be assigned to a group, in which case all
members of this group automatically hold this attribute (no matter if they were added later or
prior to the creation of the group-assigned attribute). It is worth pointing out that this attribute
is valid only in the scope of this group,

• using group-scoped entity attributes: those attributes are assigned to the entity, just like
global attributes, but have an additional group restriction and are valid only in in the scope of
the group.

The last two methods introduce a "group-scoped validity" of attributes, which requires a further
explanation. From the technical point of view the requester can ask for the entity’s attribute in
a specified group. Such a query will return all entity’s global attributes and all group-scoped
attributes valid within this group. Considering the example situation shown above, the user Eve
can have the "administrator" attribute in the scope of Math-VO (remember that a VO is just a
normal group), but does not have it in VO QSAR-VO, where she is a regular user.

There is also another distinction between attributes, which is important only for query purposes:

• effective attributes are those that VO service consumer (e.g. Policy Decision Point) is inter-
ested in. SAML queries always return effective attributes. When querying without defining
a group scope, all global attributes of the entity will be considered effective attributes. On
the other hand, when querying an entity in the scope of a particular group returned attributes
contain both global and group-scoped attributes. Note that attributes can be inherited – all
attributes valid in the scope of the subgroup are also valid in the scope of the parent group.
IMPORTANT NOTE: From the version 1.2 of UVOS server, group-scoped entity attributes
override group attributes. Consider user U, who is a member of group G and holds the at-
tribute A with value VAL1 in the G group scope, but at the same time group G has an attribute
A defined with value VAL2. The previous server versions returned both values (i.e. A with
values VAL1, VAL2), while the current server release will return A with value VAL1 only.

• exact attributes have the the same functionality as effective attributes when considering
global and group-assigned attributes. The difference lies in group-scoped entity attributes.
In such a case exact attributes assigned to ID1 in group G are simply those directly assigned
to ID1 in the scope of group G. They, for example, do not include attributes which are global
or assigned to any of G subgroups (which are only considered effective attributes). Exact
attributes are used in VO managing (administrator assigns exact attributes by definition), and
SHOULD NOT be used for authorization purposes.

UVOS Manual 5

Note: it is possible to assign group-scoped entity attribute even when the identity isn’t a member
of the group. Consequently, this attribute will be visible as an exact attribute only, and not as an
effective attribute.

5 Authentication

Every request coming to the server is a subject of an authentication process. The authentication
result (whatever it is) is mapped to one of the identities available in service’s database - in other
words there is no extra database with users of the VO service.

There are several issues here: to what type of identity requester should be mapped, and what
authentication mechanism should be used?

First of all you can enable different authentication data sources:

• TLS authenticated TLS session peer is mapped to an identity of X509 certificate type or DN
type. The additional uvos.server.authn.mapTLSCertToDNFirst property (boolean)
controls which of those types is tried in the first place.

• HTTP an email type identity is created as obtained from HTTP BASIC authentication header
and verified using a password, which is also set in the header.

Those options are tried in order, determined by configuration file parameter with name uv-

os.server.authn.order. Administrator need not to enable both of them. Authentication
options which are used must be separated with a space character. The first identity in order
that is successfully verified (and present in database) is used. If there is identity found which is
invalid or not present in database, the authentication process can either continue checking the
next possibility or fail. This is controlled by configuration option uvos.server.authn.fa-

ilOnError. Note that it effectively makes sense only when you have both options enabled.

Note that this form of authentication was introduced in the version 1.3.2, earlier versions used
a more complicated one.

6 UVOS access authorization

UVOS access is restricted by it’s own authorization stack. No external components/services are
used to perform authorization. The first part of this section describes in detail the whole au-
thorization process. The system is flexible however quite complicated too. Therefore 2nd part
shows simple set of rules (also employed in default configuration) that allow for easy configu-
ration of secure UVOS access. It should be enough for the most of applications. Readers are
encouraged to at least briefly scan the initial paragraphs of the next section before proceeding
to the second one.

UVOS Manual 6

6.1 Authorization overview

While accessing an operation requires the accessing entity to possess zero or more Permissions,
in most cases at least one is needed. The following permissions are defined:

• read (r) - this permission is needed to perform various operations that read current VO con-
tents.

• fullRead (f) - this permission is needed to read special VO contents like historical data or
hidden attributes.

• identityCtl (i) - this permission is needed by operations that are used to manage identities
(add/remove).

• write (w) - this permission allows for changing VO contents and UVOS authorization con-
figuration.

Appendix Section 14 defines precisely what permissions are required by available operations.
Permissions may be granted as global or as group-scoped, i.e. valid only in the scope of a
specified group.

Permissions are assigned to an entity on the basis of three conditions (i.e. if an entity meets
required conditions it receives permissions). The specification of those conditions is called a
policy. Every group can have it’s own policy and there is also one global policy. A policy is a
set of pairs (condition, permissions). Possible conditions can be defined as:

• an attribute - the most common way of defining a condition is to use an attribute. In this case
the permission is granted to individuals who possess the specified attribute. IMPORTANT (1):
if the attribute contains values, then the permission is granted to everybody who possesses this
attribute with at least one of the possible values. If the attribute has no value, the permission
is granted to everybody who has an attribute with the same name (with or without values -
it is not relevant in this case). IMPORTANT (2): for global policies (see below) only global
attributes are used to evaluate the condition.

• a member - the member condition grants the permission to every member of the group that
the policy is assigned to. This condition will never be met when the accessed operation
requires a global permission.

• an owner - the owner condition is the trickiest one. The permission is granted when an entity
that tries to perform an operation is also the subject of this operation. This is only possible
in a limited number of operations, e.g. the caller of a isMember(subject, group) method can
meet this condition if he/she is also the "subject" in parameters list.

A group’s policy is established in the following way:

• if the group has a policy set, then it is used.

• if not then the parent group’s policy is used (of course this is a recursive behaviour).

UVOS Manual 7

• if the group is a top-level group (i.e. no parent) then the global policy is used as the group’s
policy.

In short, group policies are inherited from parent groups and are not merged in any way (the
first found is used). When a UVOS operation is invoked it can be authorized globally or, when
the operation affects only a particular group, in the scope of the given group. In the first case
only the global policy is used. In the second case the both a global policy is used together with
the group’s policy. There are no conflicts between global policy and the group’s policy as the
resulting permissions are always either the same or better as those coming from the individual
ones.

Note
even with group-scoped access, global attributes are still needed to get permissions that are
granted by a global policy.

Example 6.1 Example:
Let’s assume the following policies are defined:

• Global Policy: (member→ r), (owner→ rf), (Attribute superuser→ rfiw)

• Group /Math-VO Policy: (member→ rf), (Attribute mathmanager→ rfiw)

• Group /Math-VO/Staff/Admins Policy: (member→ rfiw)

With the above assumptions effective policies for the groups are as follows:

• Group /Math-VO: (member→ rf), (Attribute mathmanager→ rfiw)

• Group /Math-VO/Staff: as above

• Group /Math-VO/Staff/Admins: (member→ rfiw)

• Group /QSAR-VO: (member→ r), (owner→ rf), (Attribute superuser→ rfiw)

and those groups’ policies are evaluated always together with global policy to establish what
are caller permissions.

Now we can present the detailed algorithm for making an authorization decision:

1. Let P1 be an empty policy and EP be an empty permission set.

2. If an accessed operation is in the scope of a group then set the policy P1 to the policy
for this group. If needed inherit the policy from parent groups, remembering that the first
parent’s policy should be used. If no parent policy is set then use P1 = Global Policy.

3. If the accessed operation is in a group scope check if caller is a member of this group. If
so add all member permissions from P1 and global policy to EP.

UVOS Manual 8

4. If the accessed operation can be self (or owner) accessible, check if caller is accessing
herself. If this is true add all owner permissions from P1 and global policy to EP.

5. Retrieve all global attributes of the caller and add them into a GlobA set. If the accessed
operation is in a group scope then retrieve all group scoped effective attributes of the
caller and add it to the GroupA set.

6. If the accessed operation lies in the scope of a group then find all permissions, which are
either present in P1 or result from GroupA attributes and add them to EP.

7. Find all permissions resulting from GlobA attributes and present in Global Policy and add
them to EP.

8. Check if all permissions, required for the invocation are present in EP. If yes then grant
access, deny otherwise.

6.2 The simple (default) authorization scheme

The above description shows that the authorization scheme in UVOS is powerful, but also com-
plicated. This section presents a simple usage pattern, that should be sufficient for most situa-
tions. UVOS administrator can, of course, deploy a modified version of the pattern or even mix
various authorization schemes on a per VO basis.

The fundamental idea is to use a separate special attribute that grants UVOS access permissions
(and is not used for external purposes) with a fixed authorization policy for all groups.

This special attribute’s name is urn:authz:intervo:vo and following values are meaningful
for it:

• read: grants r permission,

• fullRead: grants rf permissions,

• identityCtl: grants rfi permissions,

• write: grants rfiw permissions (i. e. all permissions).

Only one (fixed) global authorization policy is used. It assigns the permissions defined above
to the holder of corresponding attribute’s value(s). Note that this policy becomes the policy for
every group (by inheritance).

With the above rules authorization is managed in a simple way. It is controlled by assigning
the urn:authz:intervo:vo attribute with proper values to the users. If there is a need to
give permission to all members of a group then the authorization attribute should be set as the
group’s attribute.

Additionally, the default global authorization policy grants r permission for any group mem-
bers in that group scope and rfi permissions for owner access. This allows members of a group
to access it and always allows to access self data.

The special care should be taken when assigning urn:authz:intervo:vo attribute as a global
attribute - it will result in granting of corresponding permissions in all contexts (i.e. for all
groups and as global permissions).

UVOS Manual 9

7 VO registrations (applications)

The UVOS system contains an interface which allows for storing and processing VO applica-
tions. The system is organised as follows:

• VO application form is used to specify overall rules that its applications must obey. It also
contains additional information about data presented to the applying user. Examples of in-
cluded information are: a description, the group to which the application is connected etc.

• VO application is issued by the user who has already filled the form.

• VO form administrator (every application form can have its own administrator) processes
and accepts or rejects the application.

The UVOS interface provides a possibility to store and modify both forms and applications.
In addition, application processing is possible. It must be noted, however, that form rendering
and user’s input processing is not available as a server’s functionality. When needed, it can be
achieved by using an additional component. Currently only one, uvos-webapp is available. It
provides a web interface which displays application forms.

8 Email notification

The 1.0 and 1.1 releases of the UVOS were capable only of sending simple email notifica-
tions when VO application was submitted (to the application form administrator) and when VO
application was processed (to the requester).

Since the release of version 1.2 this functionality was greatly enhanced:

• It is possible to subscribe for notifications dynamically at runtime.

• Notifications can be sent as an effect of almost all management operations, which include
adding a new group member, deleting an identity or even changing an attribute.

• Notifications can be group scoped, i.e. sent only if the event occurred in a scope of a particular
group. E.g. VO administrator can register herself to get notifications when new identities are
added to a specified group/VO.

• There are no limits on the number and configuration options and notifications (notifications
with many recipients are also supported).

The following operations issue notifications:

1. addGroup

2. removeGroup

UVOS Manual 10

3. copyGroup

4. addIdentity

5. addEquivalentIdentity

6. removeIdentity

7. setAttribute

8. removeAttribute

9. addToGroup

10. removeFromGroup

11. setIdentityStatus

12. purgeHistoricalData

9 UVOS usage scenarios

There are several typical deployments in which UVOS can be used. We present them below.

9.1 PULL authorization

In the so called "pull mode" service (e.g. grid execution server, Unicore/X in case of UNICORE
middleware) contacts UVOS server to obtain the attributes of a user which tries to use one of its
services.

The attributes received from UVOS server can be used for authorization (e.g. server’s policy
may permit only those users which are in a certain UVOS group or possess some attributes).
Also service may use received attributes for other purposes; for instance UNICORE can be
configured to use a predefined (scoped) UVOS attribute as an information about local UNIX
account of the requester. Attribute scope is used to distinguish mappings for multiple servers.

The PULL mode is depicted on the picture below:

UVOS Manual 11

Pull mode is transparent for grid users. However is more difficult for grid administrators to set
up: every grid site must be correctly configured to use UVOS.

9.2 PUSH authorization

In so called "push mode" user first contacts UVOS server on her/his own and receives the list
of possessed attributes in a signed assertion. Later this assertion can be attached to the requests
send to grid services. If the service trusts assertion issuer (i.e. UVOS server which issued it)
then it can use the attributes for authorization.

Note that user can ask UVOS server only for subset of owned attributes. In such a case user can
hide part of her/his identity or alter the execution (e.g. choosing her/his the role to be used).
The PUSH mode is presented on the picture below:

Pull mode is more scalable in terms of server administration and easier to set up. However it
requires more user interaction and thus is more suitable for advanced grid users.

UVOS Manual 12

9.3 Web portal authentication

UVOS can be used to authenticate web browser users. SAML 2.0 standard is used to achieve
this functionality. To enable it you will need additional web application which provides a WWW
login page - it is called uvos-webauthn and is available in UVOS distribution.

Details of this deployment can be reviewed in many places. E.g. see Wikipedia article http://en.wikipedia.org/-
wiki/SAML_2.0 , section on Web Browser SSO Profile. UVOS uses POST binding. For more
detailed, technical description see SAML 2.0 core specification, SAML 2.0 profiles and SAML
2.0 bindings documents. References can be found on the aforementioned Wikipedia page. Also
it is the same style as Shibboleth 2.0 works (it was not tested but in principle it should be
possible to use Shibboleth SP with UVOS).

10 Installation

Only UNIX systems are supported for installation of the UVOS server and UVOS client tools.
Manual installation on Windows is possible assuming that start scripts are converted to Windows
BAT files.

UVOS is distributed in the following formats:

1. As a platform independent installation archive.

2. As a binary, platform-specific packages available currently for Scientific Linux 5, Scien-
tific Linux 6 and Debian 6 platforms. Those packages are tested on the enumerated plat-
forms, but should work without any problems with other versions of similar distributions
(e.g. version for SL6 works well on Centos 6 or recent Fedora distributions. Differences
between SL5 and SL6 version are only in the RPM tools used to create packages (so SL5
version should be more universal, while SL6 version can require a newer rpm software).

http://en.wikipedia.org/wiki/SAML_2.0
http://en.wikipedia.org/wiki/SAML_2.0

UVOS Manual 13

IMPORTANT NOTE ON PATHS
UVOS is distributed either as an platform independent and portable archive or as an instal-
lable, platform dependent package such as RPM. After installation paths to files are different
depending on installation source used. If installing using distribution-specific package the
following paths are used:

CONF=/etc/unicore/uvos-server
BIN=/usr/sbin
LOG=/var/log/unicore/uvos-server

If installing using portable archive all UVOS files are installed under a single directory. Path
prefixes used then are as follows, where INST is a directory where UVOS was installed:

CONF=INST/conf
BIN=INST/bin
LOG=INST/log

The above variables (CONF, BIN and LOG) are used throughout the rest of this manual.

10.1 Installation from the archive

Download the UVOS server archive from the UNICORE project website. It is enough to unpack
the contents of the archive into the chosen destination folder. No further actions are required.

10.2 Installation from RPM package (RedHat distributions)

The preferred way is to use Yum to install (and subsequently update) UVOS.

To perform the Yum installation, EMI Yum repository must be installed first. Refer to the
EMI release documentation (available at the EMI website http://www.eu-emi.eu/releases) for
detailed instructions. Typically installation of the EMI repository requires to download a single
RPM file and install it.

After the EMI repository is configured, the following command installs UVOS server:

$> yum install unicore-uvos-server

10.3 Installation from the DEB package (Debian distributions)

The preferred installation way is to use apt to install and subsequently update UVOS.

To perform the apt installation, EMI apt repository must be installed first. Refer to the EMI re-
lease documentation (available at the EMI website http://www.eu-emi.eu/releases) for detailed

http://www.eu-emi.eu/releases
http://www.eu-emi.eu/releases

UVOS Manual 14

instructions. Typically installation of the EMI repository requires to download a single DEB
file and install it.

After the EMI repository is configured, the following command installs UVOS server:

$> apt-get install unicore-uvos-server

10.4 Database installation

If you wish to do a quick setup (for small or medium installation) you can use an embedded
database, which is supplied within distribution. In this case you can skip to the Configuration
Section 12 section as the embedded DB is installed by default and you need only to invoke
initialization script.

Otherwise you should follow this section to install and configure a standalone DBMS.

10.4.1 PostgreSQL

Ensure that PostgreSQL database is installed on your system. Login as postgresql user, add a
password protected user for the UVOS server and then create a database:

$ createuser <USERNAME> -P
$ createdb uvosdb -O <USERNAME>

Finally, verify if everything is correct, by manually logging to the newly created database:

$ psql -h localhost -U <USERNAME> uvosdb

If there is connection problem verify the PostgreSQL configuration in the pg_hba.conf file.
Check, if there are correct settings allowing for local connections, e.g. like those:

IPv4 local connections:
host uvosdb all 127.0.0.1/32 md5
IPv6 local connections:
host uvosdb all ::1/128 md5

Order of lines in this file is important so in general the above lines should be at the beginning.

Note
From version 1.2 the UVOS distribution contains a PostgreSQL driver so there is no need to
set it up manually.

UVOS Manual 15

10.4.2 MySQL

Ensure that MySQL database is installed and started on your system. Connect to the database
with the mysql program as user with privelages to create databases and create new users. Next
create a UVOS database and a user who can access it:

mysql> create database uvosdb;
mysql> grant all on uvosdb.* to ’USERNAME’@’127.0.0.1’
IDENTIFIED BY ’PASSWORD’;

Finally, verify if everything is correct, by manually logging to the newly created database:

$ mysql -h localhost -U <USERNAME> uvosdb

10.4.3 Other DBMSes

Although currently no other DBMSes are supported, it is fairly easy to set it up. It requires
porting the SQL database structure creation script to the chosen DBMS SQL flavour. If you
want to do this feel free to contact us.

11 Upgrading UVOS server

In most cases UVOS can be upgraded quite easily without changing database schema. This
section provides information on upgrade in general and also contains notes on upgrades between
specific versions.

Before any update it is strongly suggested to backup original configuration and database con-
tents.

11.1 Update using yum

If UVOS server was installed using yum then it is best to update it also using this tool.

Up to now the database schema has not been changed since the initial RPM release of UVOS
so DB schema update is not required.

Yum updates most of the files automatically after running:

$ yum update unicore-uvos-server

However special attention must be made in case of configuration files. The configuration files
which were updated locally after initial installation, and which were changed in the updated
RPM are not updated. Instead new files will be saved next to the existing ones with the .rpm-
new suffix. RPM will always warn you about each such file during update. For each such file
you should compare it with the old one, and manually merge changes. Consult the up-to-date
manual to understand changes in the configuration format, however in most cases changes are
quite straightforward.

UVOS Manual 16

11.2 Version specific notes

These instructions apply to updating UVOS versions installed from tar.gz bundle.

Version 1.4.2 - Libraries in the lib/ folder must be updated. Additionally there were many
changes in the configuration files (especially, but not only, under conf/db). It is advised to start
from the new configuration files and apply local settings to them.

Version 1.4.1 - It is enough to update libraries in the lib/ folder.

Version 1.4.0 - It is required to update libraries in lib/ folder (lib/endorsed directory must
be added too) and additionally bin/_setenv.sh script must be updated. Also crlcheck.p-

roperties file must be added to conf/ directory. Of course it is suggested to set it up.

Version 1.3.3 - It is only needed to update libraries in lib/ folder.

Version 1.3.2 - Upgrade from 1.3.1 is quite easy: there is no need to update database (the format
was not altered). You must update: * libraries, * start and stop scripts, * configuration file (see
documentation for details): * possible values of property uvos.server.authn.order are
now: TLS and HTTP in any order. * new boolean property should be defined (default is false):
uvos.server.authn.mapTLSCertToDNFirst

Version 1.3.1 - It is only needed to update libraries in lib/ folder.

Version 1.3 - Upgrade from 1.2 is easy. There is no need to update database (the format was
not altered). Configuration files are mostly unchanged: only the new options were added for
UNICORE registration support and for enabling/disabling usage of X509 cert identities as DN-
type identities.

Version 1.2 - Use generic upgrade instructions (below)

Version 1.1 - Use generic upgrade instructions (below)

Version 1.0 - it was an initial release so there is no upgrade possibility.

11.3 Generic upgrade instructions for tar.gz installations

11.3.1 Database upgrade

In order to do upgrade from older version of the server to the current one you will sometimes
have to update your database. This manual assumes that you installed a new version of UVOS
in a new directory (what is strongly recommended). It is not possible to use a different DB
engine when upgrading (e.g. if old UVOS used postgreSQL the new one have to use it too).

Required actions:

1. Stop the old UVOS server.

2. (!!) Backup your database used by the old UVOS. If you use embedded DB (HSQL) you
can skip this step.

UVOS Manual 17

3. Install and configure (at least DB settings in datamap.properties) the new UVOS installa-
tion. However do not start it or invoke initdb.sh script. → in case of postgreSQL specify
the same settings as was used by the old UVOS installation. → in case of HSQL db
just copy (copy, not move!) the contents of its data/ folder to the data/ folder of the new
installation.

4. Eventually you have to upgrade your DB. There is a script which does the job. It can
upgrade from any older version to the current one, however only in steps.

EXAMPLE To perform an upgrade from version 1.0 to 1.2 you will have to first upgrade to 1.1
and then to 1.2. To do so invoke:

bin/updateDbVersion.sh 1.0 1.1
bin/updateDbVersion.sh 1.1 1.2

If the script completes without errors you are done! Otherwise you should contact support
mailing list.

11.3.2 Re-configuration

We strongly advise to start from the configuration files provided in a new UVOS distribution
and to update them manually to the previous settings. Simply copying the old configuration
files and overwriting the new installation files can cause severe problems as often there are
many configuration changes.

12 Configuration

12.1 Database configuration

The database configuration is done in properties file CONF/datamap.properties. You should
uncomment and then edit the section which matches your DBMS. For a correct setup, you need
to specify a username, password and a connection URL. The connection URL must be changed
only if your database name is different than "uvosdb".

Note
When using an embedded DB the default datamap.properties file need not to be modi-
fied.

Final step (required also for the embedded DB) is to initialize DB contents. This is done by
invoking a script:

$ BIN/initdb.sh

UVOS Manual 18

or in case of distribution specific package:

$ BIN/unicore-uvos-server-initdb

12.2 Server configuration

Basic server configuration (security, network addresses, authentication options, etc.) is done
in the CONF/uvosServer.conf file. The file is well commented, with an explanation for all
options and has to be reviewed by every administrator.

After installation vast majority of options have reasonable values. However the following op-
tions require a review and often need to be updated:

• Security settings, i.e. server trust settings and server credential. By default after installing
with distribution package there are no certificates provided. The portable archive bundle
provides example, insecure certificates and keys (don’t use them in production, never!).

• Network host address and port to use.

The options of the UVOS server are presented in the following table. Note that some of the
options (most importantly those to set up credential and truststore) are described in separate
tables - the table below only gives prefixes for those options.

Property name Type Default
value /
mandatory

Description

--- General settings ---
uvos.server.attr-

ibuteTypeFiles

filesystem path conf/at-

tribute-

Types/u-

vosCore-

.at,

conf/at-

tribute-

Types/l-

dap.at

A specification of files with
definitions of attribute types
that the server should load
on startup. Comment it out
if you don’t want this
behaviour. Note that, you
can specify multiple files
separated by ’, ’ (comma
and space).

uvos.server.attr-

ibuteTypeUpdate

[true, false] false If set to false then only new
attribute types present in
file will be added to DB.
Otherwise (update=true)
the types that exist in DB
will have their descriptions
updated.

UVOS Manual 19

Property name Type Default
value /
mandatory

Description

uvos.server.emir-

Registry

string - EMI Registry address in the
form http(s)://host:port. If
this option is left undefined
then EMI registry won’t be
used.

uvos.server.exte-

rnalRegistryUrl.-

<NUMBER>

list of
properties with
a common
prefix

- Registry address. You can
define more than one using
numeric subkeys.

uvos.server.gene-

rateAttributesFr-

omDN

[true, false] false If set to true, UVOS will try
to parse DN of a user being
added (in case of DN or
X.509 Certificate identities)
and automatically assign
extracted attributes as
global UVOS attributes of
the user.

uvos.server.mail-

Config

filesystem path conf/ma-

il.prop-

erties

A configuration file for the
mail notification subsystem.

uvos.server.mail-

Templates

filesystem path conf/ma-

ilTempl-

ates.pr-

operties

A file containing templates
of email notification
messages sent when various
UVOS events occur.

uvos.server.useE-

xternalRegistry

[true, false] false If set to true server will
register its
SAMLAttributeQuery
service in one or more
UNICORE registries
(defined by properties
uvos.server.externalRegistryUrl.?).

uvos.server.weba-

ppsDir

filesystem path ./webap-

ps

Directory from which
UVOS extensions in a form
of web applications (war)
are loaded.

--- Secure HTTPS server settings ---
uvos.server.http-

s.allowAnonymous

[true, false] true If set to true then
unauthenticated client
connection via HTTPS will
be accepted (and, if
possible, authenticated
using other means like
HTTP BASIC auth).

UVOS Manual 20

Property name Type Default
value /
mandatory

Description

uvos.server.http-

s.enable

[true, false] true Enables or disables using
the HTTPS port. Note that
HTTPS is the
recommended transport
mechanism.

uvos.server.http-

s.host

string localho-

st

The hostname or IP address
for HTTPS connections.

uvos.server.http-

s.port

integer [1 —
65535]

2443 The HTTPS port to be used.

--- Insecure HTTP server settings ---
uvos.server.http-

.enable

[true, false] false Enables or disables the
HTTPS port. It is NOT
recommended to use this
transport mechanism as it
doesn’t provide encryption.

uvos.server.http-

.host

string localho-

st

The hostname or IP address
for HTTP connections.

uvos.server.http-

.port

integer [1 —
65535]

2020 The HTTP port to be used.

--- Client authentication settings ---
uvos.server.auth-

n.enableETD

[true, false] true Whether to enable Explicit
Trust Delegation.

uvos.server.auth-

n.failOnError

[true, false] true If set to true then
authentication will fail if
validation of one of the
PRESENT authentication
data fails. Otherwise the
authN process will
continue, checking the next
possible authentication data
source.

uvos.server.auth-

n.mapTLSCertToDN-

First

[true, false] false If set to true and validation
of some of PRESENT
authentication data fails
then authentication will
fail. Otherwise authN
process will be continued,
checking the next possible
authentication data source.

UVOS Manual 21

Property name Type Default
value /
mandatory

Description

uvos.server.auth-

n.order

string TLS HTTP Defines the order in which
authentication sources
should be used. Details are
provided in the
documentation
(authentication
configuration section).

--- SAML subsystem settings ---
uvos.server.saml-

.allowToUseCerti-

ficateAsDN

[true, false] true Enables or disables
mapping of X509-type
identities to DN-type
identities in case of SAML
queries. See documentation
for details.

uvos.server.saml-

.attributeFilter-

sConfig

filesystem path conf/at-

tribute-

Filters-

.proper-

ties

Specifies what file is used
to provide filters defining
which attributes are
exposed by the SAML
attribute query interface.

uvos.server.saml-

.issuerURI

string - This property controls the
server’s URI which is
inserted into SAML
responses (the Issuer field).
It should be a unique URI
which identifies the server.
The best approach is to use
the server’s URL . If absent
the server will try to
autogenerate one.

uvos.server.saml-

.requestValidity-

Period

integer >= 1 120 Defines maximum validity
period (in seconds) of a
SAML request. Requests
older than this value are
denied. It also controls the
validity of an authentication
assertion.

UVOS Manual 22

Property name Type Default
value /
mandatory

Description

uvos.server.saml-

.signAssertions

[always, never,
ifResponseUn-
signed,
asRequest]

always Defines when SAML
assertions, that are put in
responses, should be
signed. The
ifResponseUnsigned will
result in signing only those
assertions which are sent in
an unsigned response. Note
that several SAML profiles
mandates signing assertions
so it is best to set it to
always.

uvos.server.saml-

.signResponses

[always, never,
asRequest]

asReque-

st

Defines when SAML
responses should be signed.
Note that it is not related to
signing SAML assertions
which are included in
response. asRequest setting
will result in signing only
those responses for which
the corresponding request
was signed.

uvos.server.saml-

.validityPeriod

integer >= 1 14400 Controls the maximum
validity period of an
attribute assertion returned
to client (in seconds). It is
inserted whenever query is
compliant with SAML V2.0
Deployment Profiles for
X.509 Subjects, what
usually is the case.

--- Database configuration files ---
uvos.server.db.d-

atamapProperties-

File

filesystem path conf/da-

tamap.p-

roperti-

es

Path of the file with the
highly advanced database
settings.

uvos.server.db.d-

bUpdatePropertie-

sFile

filesystem path conf/db-

/dbUpda-

te/upda-

te.prop-

erties

Path of the file with
configuartion used during
database update from the
older UVOS version.
Otherwise unused.

UVOS Manual 23

Property name Type Default
value /
mandatory

Description

uvos.server.db.m-

apconfigFile

filesystem path conf/db-

/mapcon-

fig.xml

Path of the database
configuration file.

--- Other ---
uvos.server.clie-

nt.[.*]

string can have
subkeys

- Properties starting with this
prefix are used to configure
HTTP client settings, when
UVOS server performs
client calls (what happens
very rarely e.g. when
registering in registry). See
separate documentation for
details.

uvos.server.cred-

ential.[.*]

string can have
subkeys

- Properties starting with this
prefix are used to configure
server’s credential. See
separate documentation for
details.

uvos.server.http-

Server.[.*]

string can have
subkeys

- Properties starting with this
prefix are used to configure
Jetty HTTP server
advanced settings. See
separate documentation for
details.

uvos.server.trus-

tstore.[.*]

string can have
subkeys

- Properties starting with this
prefix are used to configure
server’s trust settings and
certificate validation. See
separate documentation for
details.

12.2.1 Configuring PKI trust settings

Public Key Infrastructure (PKI) trust settings are used to validate certificates. This is performed,
in the first place when a connection with a remote peer is initiated over the network, using the
SSL (or TLS) protocol. Additionally certificate validation can happen in few other situations,
e.g. when checking digital signatures of various sensitive pieces of data.

Certificates validation is primarily configured using a set of initially trusted certificates of so
called Certificate Authorities (CAs). Those trusted certificates are also known as trust anchors
and their collection is called a trust store.

Except of trust anchors validation mechanism can use additional input for checking if a certifi-

UVOS Manual 24

cate being checked was not revoked and if its subject is in a permitted namespace.

UNICORE allows for different types of trust stores. All of them are configured using a set of
properties.

• Keystore trust store - the only format supported in older UNICORE versions. Trusted cer-
tificates are stored in a single binary file in JKS or PKCS12 format. The file can be only
manipulated using a special tool like JDK keytool or openssl (in case of PKCS12 format).
This format is great if trust store should be in a single file or when compatibility with other
Java solutions or older UNICORE releases is desired.

• OpenSSL trust store - allows to use a directory with CA certificates stored in PEM format,
under precisely defined names: the CA certificates, CRLs, signing policy files and names-
paces files are named <hash>.0, <hash>.r0, <hash>.signing_policy and <hash>.namespaces.
Hash is the old hash of the trusted CA certificate subject name (in Openssl version > 1.0.0
use -suject_hash_old switch to generate it). If multiple certificates have the same hash then
the default zero number must be increased. This format is the same as used by other then
UNICORE popular middlewares as Globus and gLite. It is suggested when a common trust
store with such middlewares is needed.

• Directory trust store - the most flexible and convenient option, suggested for all remaining
cases. It allows to use a list of wildcard expressions, concrete paths of files or even URLs to
remote files as a set of trusted CAs and in the same way for the CRLs. With this trust store
administrator can simply configure all files (or all with a specified extension) in a directory to
be used as a trusted certificates.

In all cases trust stores can be (and by default are) configured to be automatically refreshed.

Property name Type Default
value /
mandatory

Description

uvos.server.trus-

tstore.allowProxy

[ALLOW,
DENY]

ALLOW Controls whether proxy
certificates are supported.

uvos.server.trus-

tstore.type

[keystore,
openssl,
directory]

mandatory
to be set

The truststore type.

uvos.server.trus-

tstore.updateInt-

erval

integer number 600 How often the truststore
should be reloaded, in
seconds. Set to negative
value to disable refreshing
at runtime. (runtime
updateable)

--- Directory type settings ---
uvos.server.trus-

tstore.directory-

ConnectionTimeout

integer number 15 Connection timeout for
fetching the remote CA
certificates in seconds.

UVOS Manual 25

Property name Type Default
value /
mandatory

Description

uvos.server.trus-

tstore.directory-

DiskCachePath

filesystem path - Directory where CA
certificates should be
cached, after downloading
them from a remote source.
Can be left undefined if no
disk cache should be used.
Note that directory should
be secured, i.e. normal
users should not be allowed
to write to it.

uvos.server.trus-

tstore.directory-

Encoding

[PEM, DER] PEM For directory truststore
controls whether
certificates are encoded in
PEM or DER.

uvos.server.trus-

tstore.directory-

Locations.*

list of
properties with
a common
prefix

- List of CA certificates
locations. Can contain
URLs, local files and
wildcard expressions.
(runtime updateable)

--- Keystore type settings ---
uvos.server.trus-

tstore.keystoreF-

ormat

string - The keystore type (jks,
pkcs12) in case of truststore
of keystore type.

uvos.server.trus-

tstore.keystoreP-

assword

string - The password of the
keystore type truststore.

uvos.server.trus-

tstore.keystoreP-

ath

string - The keystore path in case of
truststore of keystore type.

--- Openssl type settings ---

UVOS Manual 26

Property name Type Default
value /
mandatory

Description

uvos.server.trus-

tstore.opensslNs-

Mode

[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS,
EUGRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EUGRIDP-

MA_GLOB-

US

In case of openssl
truststore, controls which
(and in which order)
namespace checking rules
should be applied. The
REQUIRE settings will
cause that all configured
namespace definitions files
must be present for each
trusted CA certificate
(otherwise checking will
fail). The AND settings will
cause to check both existing
namespace files. Otherwise
the first found is checked
(in the order defined by the
property).

uvos.server.trus-

tstore.opensslPa-

th

filesystem path /etc/gr-

id-secu-

rity/ce-

rtifica-

tes

Directory to be used for
opeenssl truststore.

--- Revocation settings ---
uvos.server.trus-

tstore.crlConnec-

tionTimeout

integer number 15 Connection timeout for
fetching the remote CRLs
in seconds (not used for
Openssl truststores).

uvos.server.trus-

tstore.crlDiskCa-

chePath

filesystem path - Directory where CRLs
should be cached, after
downloading them from
remote source. Can be left
undefined if no disk cache
should be used. Note that
directory should be
secured, i.e. normal users
should not be allowed to
write to it. Not used for
Openssl truststores.

UVOS Manual 27

Property name Type Default
value /
mandatory

Description

uvos.server.trus-

tstore.crlLocati-

ons.*

list of
properties with
a common
prefix

- List of CRLs locations. Can
contain URLs, local files
and wildcard expressions.
Not used for Openssl
truststores. (runtime
updateable)

uvos.server.trus-

tstore.crlMode

[REQUIRE,
IF_VALID,
IGNORE]

IF_VALID General CRL handling
mode. The IF_VALID
setting turns on CRL
checking only in case the
CRL is present.

uvos.server.trus-

tstore.crlUpdate-

Interval

integer number 600 How often CRLs should be
updated, in seconds. Set to
negative value to disable
refreshing at runtime.
(runtime updateable)

uvos.server.trus-

tstore.ocspCache-

Ttl

integer number 3600 For how long the OCSP
responses should be locally
cached in seconds (this is a
maximum value, responses
won’t be cached after
expiration)

uvos.server.trus-

tstore.ocspDiskC-

ache

filesystem path - If this property is defined
then OCSP responses will
be cached on disk in the
defined folder.

uvos.server.trus-

tstore.ocspLocal-

Responders.<NUMB-

ER>

list of
properties with
a common
prefix

- Optional list of local OCSP
responders

uvos.server.trus-

tstore.ocspMode

[REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAI-

LABLE

General OCSP ckecking
mode. REQUIRE should
not be used unless it is
guaranteed that for all
certificates an OCSP
responder is defined.

uvos.server.trus-

tstore.ocspTimeo-

ut

integer number 10000 Timeout for OCSP
connections in miliseconds.

uvos.server.trus-

tstore.revocatio-

nOrder

[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation
sources order

UVOS Manual 28

Property name Type Default
value /
mandatory

Description

uvos.server.trus-

tstore.revocatio-

nUseAll

[true, false] false Controls whether all
defined revocation sources
should be always checked,
even if the first one already
confirmed that a checked
certificate is not revoked.

Examples

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

Directory trust store, with a minimal set of options:

truststore.type=directory
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.crlLocations=/trust/dir/*.crl

Directory trust store, with a complete set of options:

truststore.type=directory
truststore.allowProxy=DENY
truststore.updateInterval=1234
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.directoryLocations.2=http://caserver/ca.pem
truststore.directoryEncoding=PEM
truststore.directoryConnectionTimeout=100
truststore.directoryDiskCachePath=/tmp
truststore.crlLocations.1=/trust/dir/*.crl
truststore.crlLocations.2=http://caserver/crl.pem
truststore.crlUpdateInterval=400
truststore.crlMode=REQUIRE
truststore.crlConnectionTimeout=200
truststore.crlDiskCachePath=/tmp

Openssl trust store:

UVOS Manual 29

truststore.type=openssl
truststore.opensslPath=/truststores/openssl
truststore.opensslNsMode=EUGRIDPMA_GLOBUS_REQUIRE
truststore.allowProxy=ALLOW
truststore.updateInterval=1234
truststore.crlMode=IF_VALID

Java keystore used as a trust store:

truststore.type=keystore
truststore.keystorePath=src/test/resources/certs/truststore.jks
truststore.keystoreFormat=JKS
truststore.keystorePassword=xxxxxx

12.2.2 Configuring the credential

UNICORE uses private key and a corresponding certificate (called together as a credential) to
identify users and servers. Credentials might be provided in several formats:

• Credential can be obtained from a keystore file, encoded in JKS or PKCS12 format.

• Credential can be loaded as a pair of PEM files (one with private key and another with certifi-
cate),

• or from a pair of DER files,

• or even from a single file, with PEM-encoded certificates and private key (in any order).

The following table list all parameters which allows for configuring the credential. Note that
nearly all options are optional. If not defined, the format is tried to be guessed. However some
credential formats require additional settings. For instance if using der format the keyPath is
mandatory as you need two DER files: one with certificate and one with the key (and the latter
can not be guessed).

Property name Type Default
value /
mandatory

Description

uvos.server.cred-

ential.path

filesystem path mandatory
to be set

Credential location. In case
of jks, pkcs12 and pem store
it is the only location
required. In case when
credential is provided in
two files, it is the certificate
file path.

UVOS Manual 30

Property name Type Default
value /
mandatory

Description

uvos.server.cred-

ential.format

[jks, pkcs12,
der, pem]

- Format of the credential. It
is guessed when not given.
Note that pem might be
either a PEM keystore with
certificates and keys (in
PEM format) or a pair of
PEM files (one with
certificate and second with
private key).

uvos.server.cred-

ential.password

string - Password required to load
the credential.

uvos.server.cred-

ential.keyPath

string - Location of the private key
if stored separately from
the main credential
(applicable for pem and der
types only),

uvos.server.cred-

ential.keyPasswo-

rd

string - Private key password,
which might be needed
only for jks or pkcs12, if
key is encrypted with
different password then the
main credential password.

uvos.server.cred-

ential.keyAlias

string - Keystore alias of the key
entry to be used. Can be
ignored if the keystore
contains only one key entry.
Only applicable for jks and
pkcs12.

Examples

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

Credential as a pair of DER files:

credential.format=der
credential.password=the\!njs

UVOS Manual 31

credential.path=/etc/credentials/cert-1.der
credential.keyPath=/etc/credentials/pk-1.der

Credential as a JKS file (credential type can be autodetected in almost every case):

credential.path=/etc/credentials/server1.jks
credential.password=xxxxxx

12.2.3 Authentication

The UVOS server provides several ways of authenticating incoming requests. All authentica-
tion options are in fact a result of an authentication identity format and authentication source
combination, i.e. security material used to establish the identity. The authenticated requester
must be known to the VO service (but does not need to be a member of any VO/group). The
possible options are listed below.

• TLS - it is possible when the request uses a HTTPS connection AND (!) the client was suc-
cessfully authenticated. Note that when allowAnonymous is true then the request may arrive
through a HTTPS channel, but still be unauthenticated. In such a case this authentication
method will not succeed. The resulting identity format is either a X.509 certificate or DN of
the HTTPS client. The order in which formats are tried (DN or certificate) can be configured.

• HTTP - possible when the requester used HTTP simple authentication (i.e. login and pass-
word encoded in HTTP header). The resulting identity format is an email address. The user
is authenticated when the UVOS password check is successful.

The order in which the above options are tried can be configured by the server administrator. It
is possible to set which authentication data source is tried first (TLS or HTTP). Whenever there
is no authentication material the server jumps to the next available option. It might happened
that authentication material, for a specified option, is present but is invalid. In such a case the
server can either fail the authentication immediately or skip to the next option - this behaviour
is also configurable.

UVOS Manual 32

Example 12.1 Example:
Let’s assume that HTTPS is the only transport enabled with uvos.server.https.allowAn-
onymous parameter set to true, the authentication order is as follows: "HTTP TLS". Moreover,
let’s assume that the incoming request is arriving through a client-authenticated TLS session,
but has incorrect HTTP auth data in the header (user is not registered in VO DB).

• Case 1: the server doesn’t trust the client’s certificate and uvos.server.authn.failOn-

Error is true. The uvos.server.https.allowAnonymous setting will cause the request
not to be denied at transport level. What follows is the authentication step. TLS will be
skipped (no input data). As a result, the request will be processed by HTTP module which
will fail and cause authentication process to stop.

• Case 2: the server doesn’t trust the client’s certificate and uvos.server.authn.failOn-

Error is false. The behaviour will be the same as above.

• Case 3: the server trusts the client’s certificate and uvos.server.authn.failOnError is
true. The first TLS will succeed if the DN from certificate is registered in the VO database.
Otherwise authN will fail immediately.

• Case 4: the server trusts the client’s certificate and uvos.server.authn.failOnError

is false. The TLS will succeed if the DN from certificate is registered in the VO database.
Otherwise authN will be continued. HTTP will fail (incorrect data).

12.2.4 Using X509 certificates as DNs

Starting from the release 1.3 server allows for using identities of X.509 certificate type as DN
type identities. This feature is turned on by default. It works only for SAML attribute queries
(so normal queries made for instance by Unicore server or clients) and in SAML authentication
protocol. In case of attribute query this functionality is activated when:

1. the query subject is of DN type identity (note that it is a standard case),

2. there is no identity in the database which is equal to the query subject and which has a
DN type,

3. there is an identity A in DB which is of X.509 certificate type and the subject of this
certificate is the same as the query subject.

When all the above conditions are met, then the server will return attributes of A. If the certifi-
cate mapping feature is turned off, then in such a case server will respond with error saying that
the query subject is unknown.

12.2.5 Configuring advanced HTTP server settings

UNICORE servers are using an embedded Jetty HTTP server. In most cases the default config-
uration should be perfectly fine. However, for some sites (e.g. experiencing an extremely high
load) HTTP server settings can be fine-tuned with the following parameters.

UVOS Manual 33

Property name Type Default
value /
mandatory

Description

uvos.server.http-

Server.disabledC-

ipherSuites

string empty
string

Space separated list of SSL
cipher suites to be disabled.

uvos.server.http-

Server.fastRandom

[true, false] false Use insecure, but fast
pseudo random generator to
generate session ids instead
of secure generator for SSL
sockets.

uvos.server.http-

Server.gzip.enab-

le

[true, false] false Controls whether to enable
compression of HTTP
responses.

uvos.server.http-

Server.gzip.minG-

zipSize

integer number 100000 Specifies the minimal size
of message that should be
compressed.

uvos.server.http-

Server.highLoadC-

onnections

integer >= 1 200 If the number of
connections exceeds this
amount, then the connector
is put into a special low on
resources state. Existing
connections will be closed
faster. Note that this value
is honored only for NIO
connectors. Legacy
connectors go into low
resources mode when no
more threads are available.

uvos.server.http-

Server.lowResour-

ceMaxIdleTime

integer >= 1 100 In low resource conditions,
time (in ms.) before an idle
connection will time out.

uvos.server.http-

Server.maxIdleTi-

me

integer >= 1 200000 Time (in ms.) before an idle
connection will time out. It
should be large enough not
to expire connections with
slow clients, values below
30s are getting quite risky.

uvos.server.http-

Server.maxThreads

integer >= 1 255 Maximum number of
threads to have in the thread
pool for processing HTTP
connections.

uvos.server.http-

Server.minThreads

integer >= 1 1 Minimum number of
threads to have in the thread
pool for processing HTTP
connections.

UVOS Manual 34

Property name Type Default
value /
mandatory

Description

uvos.server.http-

Server.soLingerT-

ime

integer number -1 Socket linger time.

uvos.server.http-

Server.useNIO

[true, false] true Controls whether the NIO
connector be used. NIO is
best suited under high-load,
when lots of connections
exist that are idle for long
periods.

uvos.server.http-

Server.wantClien-

tAuthn

[true, false] true Controls whether the SSL
socket accepts (but does not
require) client-side
authentication.

Example

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

In this example we will turn on compression of all responses bigger then 50kB (assuming that
the client supports decompression). Additionally we are limiting the number of concurrent
clients that can be served to more or less 50, while keeping 10 threads ready all the time to
server new clients quicker.

jetty.gzip.enable=true
jetty.gzip.minGzipSize=51200
jetty.maxThreads=50
jetty.minThreads=10

12.3 Mail notification configuration

One of the features of the UVOS server is to collect VO applications (or registration requests).
It is possible to use an email notification mechanism along with the application process. The
notification can be generated in two specific cases:

• whenever a new application arrives (notification is sent to the VO administrator).

• whenever a application is processed (notification is sent to its owner).

UVOS Manual 35

Moreover, from version 1.2 upwards, it is possible to configure UVOS to send notifications as
a result of nearly every management operation. There are two configuration files that control
email notifications: one containing general configuration and the another containing templates
of messages to be sent.

The location of the basic mail configuration file is specified in the main configuration file. The
default location is CONF/mail.properties. The table below shows the configuration options
along with the type, default value and the description.

Property name Type Default value Description
mailx.enable true or

false
false Set it to true to enable

email notification
sending. The rest of the
mail configuration is
ignored if the value is
set to false.

mailx.sendTestMessa-

geTo

email
address

unset Use this property only
if you want to debug
the email configuration.
When set, the server
will send a test message
to the specified address
upon every startup.

mail.from email
address

root@localho-

st

User name which will
be used for the From:
field of the email. It is
also used as a SMTP
envelope return address
if it is not overridden
below.

mail.smtp.host host
address

localhost The SMTP server to
connect to.

mailto:root@localhost
mailto:root@localhost

UVOS Manual 36

Property name Type Default value Description
mail.smtp.starttls.-

enable

true or
false

false If true it enables the use
of the STARTTLS
command (if supported
by the server) to switch
the connection to a
TLS-protected
connection before
issuing any login
commands.
IMPORTANT! SMTP
server’s certificate must
be trusted to establish
the connection. The
software will use the
same truststore that is
defined in main
configuration of the
server. It is therefore
important to add the
SMTP server’s CA
certificate to the main
truststore

mail.smtp.from email
address

as in mail.from Email address to use for
the SMTP MAIL
command. Is also sets
the envelope return
address.

mail.smtp.auth true or
false

false If true, attempt to
authenticate the user
using the AUTH
command.

mailx.smtp.auth.use-

rname

string unset The username used
when authentication is
enabled by
mail.smtp.auth.

mailx.smtp.auth.pas-

sword

string unset The password used
when authentication is
enabled by
mail.smtp.auth.

mail.smtp.timeoutSo-

cket

integer
number

infinite I/O timeout value in
milliseconds.

mail.smtp.connectio-

ntimeout

integer
number

infinite Socket connection
timeout value in
milliseconds.

UVOS Manual 37

Property name Type Default value Description
mail.smtp.port 1-65535 25 The SMTP server port

to connect to.
mail.debug true or

false
false Set this property to true

if you want to see
debug messages (are
printed to the standard
error, not logged!).

OTHER OPTIONS - - For other options see
the SUN Java Mail
documentation.
http://java.sun.com/-
products/javamail/-
javadocs/com/sun/-
mail/smtp/package-
summary.html

The location of the template configuration file is defined in the main UVOS configuration file
and is set to CONF/mailTemplates.properties by default. In this file you can specify the
subject and the body of all notifications. There are also special entries for VO applications. If
a customised notification template is not specified then the default template will be used. It is
possible to create dynamic emails by using variables denoted with ${. . . }. If such variables are
used the server will replace the variable with it’s actual value e.g. for

The table below shows the properties that can be defined in the template configuration file along
with their description.

Property name Type Default value Description
mailtemplate.newApp-

lication.subject

string give a try to see Defines the subject of a
message sent to the VO
admin (who is defined
in an application form)
when a new application
is submitted. The
runtime variables,
available for this
message are:
${FORM_NAME} -
application’s form
name, ${FORM_ID} -
application’s form id,
${FORM_GROUP} -
application’s base
group

http://java.sun.com/products/javamail/javadocs/com/sun/mail/smtp/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/smtp/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/smtp/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/smtp/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/smtp/package-summary.html

UVOS Manual 38

Property name Type Default value Description
mailtemplate.newApp-

lication.body

string give a try to see Defines the body of the
message sent to the VO
admin (who is defined
in applications form)
when a new application
is submitted. Available
runtime variables as the
same as above.

mailtemplate.applic-

ationProcessed.subj-

ect

string give a try to see Defines the subject of
the message sent after
an application is
processed (but not
REMOVED).The
runtime variables,
available for this
message are:
${APP_ID} - ID of
application, ${APP_A-
DMIN_NOTES} -
application’s notes as
appended by admin,
${APP_STATUS} - new
application’s status (e.g.
REJECTED or
ACCEPTED),
${FORM_NAME} -
application’s form
name,
${FORM_GROUP} -
application’s base
group

mailtemplate.applic-

ationProcessed.body

string give a try to see Defines the body of the
message sent after an
application is processed
(but not
REMOVED).Available
runtime variables as the
same as above.

mailtemplate.subject string give a try to see Defines the default
subject for messages
sent as a result of of
management events.

UVOS Manual 39

Property name Type Default value Description
mailtemplate.body string give a try to see Defines the default

body for messages sent
as a result of
management events.

mailtemplate.<ACTIO-

N>.subject

string unset Redefines the subject of
messages sent as a
result of an event with
the name specified by
the <ACTION> param.

mailtemplate.<ACTIO-

N>.body

string unset Redefines the body of
messages sent as a
result of an event with
the name specified by
the <ACTION> param.

Although the available runtime variables will usually depend on the action, there are two com-
mon variables:

• ${ACTION} - the name of the action, e.g. addGroup

• ${CALLER} - the person that performed the action.

The following variables are action-dependent:

• ${SUBJECT} - the value of the identity (e.g. which was added/removed. . .) or a group scoped
identity (e.g. whose group scoped attribute was added)

• ${GROUP} - the name of the affected group (e.g. created/removed)

• ${TARGET} - (for copyGroup) the new name of a copied group

• ${MOVED} - (for copyGroup) simple moved or copied string

• ${EQUIVALENT} - (for addEquivalentIdentity) the name of an already existing, equivalent
identity

• ${ATTRIBUTE} - the attribute, which was either set or removed

• ${STATUS} - (for setIdentityStatus) disabled or enabled

• ${DATE} - (for purgeHistoricalData) the date up to this date historical data was cleared.

UVOS Manual 40

12.3.1 Logging

UNICORE uses the Log4j logging framework. It is configured using a config file. By default,
this file is found in components configuration directory and is named logging.propertie-

s. The config file is specified with a Java property log4j.configuration (which is set in
startup script).

Several libraries used by UNICORE also use the Java utils logging facility (the output is two-
lines per log entry). For convenience its configuration is also controlled in the same logging-
.properties file and is directed to the same destination as the main Log4j output.

Note
You can change the logging configuration at runtime by editing the logging.properties file. The
new configuration will take effect a few seconds after the file has been modified.

By default, log files are written to the the LOGS directory.

The following example config file configures logging so that log files are rotated daily.

Set root logger level to INFO and its only appender to A1.
log4j.rootLogger=INFO, A1

A1 is set to be a rolling file appender with default params
log4j.appender.A1=org.apache.log4j.DailyRollingFileAppender
log4j.appender.A1.File=logs/uas.log

#configure daily rollover: once per day the uas.log will be copied
#to a file named e.g. uas.log.2008-12-24
log4j.appender.A1.DatePattern=’.’yyyy-MM-dd

A1 uses the PatternLayout
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c{1} %x - ←↩

%m%n

Note
In Log4j, the log rotation frequency is controlled by the DatePattern. Check
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
for the details.

For more info on controlling the logging we refer to the log4j documentation:

• PatternLayout

• RollingFileAppender

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html

UVOS Manual 41

• DailyRollingFileAppender

Log4j supports a very wide range of logging options, such as date based or size based file
rollover, logging different things to different files and much more. For full information on
Log4j we refer to the publicly available documentation, for example the Log4j manual.

Logger categories, names and levels

Logger names are hierarchical. In UNICORE, prefixes are used (e.g. "unicore.security") to
which the Java class name is appended. For example, the XUUDB connector in UNICORE/X
logs to the "unicore.security.XUUDBAuthoriser" logger.

Therefore the logging output produced can be controlled in a fine-grained manner. Log levels
in Log4j are (in increasing level of severity):

TRACE on this level huge pieces of unprocessed information are dumped, # DEBUG on this level
UNICORE logs (hopefully) admin-friendly, verbose information, useful for hunting problems,
INFO standard information, not much output, # WARN warnings are logged when something
went wrong (so it should be investigated), but recovery was possible, # ERROR something went
wrong and operation probably failed, # FATAL something went really wrong - this is used very
rarely for critical situations like server failure.

For example, to debug a security problem in the UNICORE security layer, you can set:

log4j.logger.unicore.security=DEBUG

If you are just interested in details of credentials handling, but not everything related to security
you can use the following:

log4j.logger.unicore.security=INFO
log4j.logger.unicore.security.CredentialProperties=DEBUG

so the XUUDBAuthoriser will log on DEBUG level, while the other security components log
on INFO level.

Note
(so the full category is printed) and turn on the general DEBUG logging for a while (on uni-
core). Then interesting events can be seen and subsequently the logging configuration can
be fine tuned to only show them.

Several logging categories common in UVOS server:

Log category Description
unicore All of UNICORE
unicore.security Generic UNICORE security layer
unicore.client Client calls (to other servers, mostly

registry registrations)
unicore.uvos Everything UVOS related
unicore.uvos.server UVOS server logging

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
http://logging.apache.org/log4j/1.2/manual.html

UVOS Manual 42

12.4 Defining attribute types

Although you can add, delete or modify attribute types using client tools when server is running,
it is convenient to load a predefined set of attribute types with descriptions. It is a possible to
define attribute types in a files, which are read on server startup. The server can either add new
or even update existing attribute types with the data from these files. See uvos.server.at-
tributeType... configuration options for further details. The standard location of the files
containing attribute types is under the CONF/attributeTypes/ directory.

The format of the attribute definition files of the UVOS system is extremely simple. It is line
based and obeys the following rules:

• Every line that begins with a # is ignored.

• Every AT is defined by a block of consecutive lines.

• Every block is separated from other blocks by at least one empty line.

A block contains 4 lines:

1. AT (literal),

2. attribute name (key),

3. attribute short description or full name,

4. attribute full description.

Moreover, the UVOS distribution contains a tool to translate LDAP schema files to the above
format. The BIN/convertLDAPSchema.sh (or BIN/unicore-uvos-server-convertLD-
APSchema) invokes a converter that translates its standard input in LDAP schema format to the
UVOS format. E.g.:

BIN/convertLDAPSchema.sh <someLDAP.schema >additionalUVOSats.at

The default UVOS distribution contains two examples of files with attribute type definitions.
One contains core UNICORE authorization attributes (e.g. xlogin attribute) while the other
holds a set of common LDAP attributes.

12.5 Attribute release policy (aka attribute filtering)

UVOS provides two clients’ interfaces allowing for quering for attributes. One of them is
included in UVOS proprietary interface and is used by management tools like UVOS CLC or
VOManager. The other, SAML interface is used by UVOS consumers like Unicore/X.

Up to version 1.4.1 of the UVOS server, the SAML interface always returned all attributes for
which requester asked (only except of attributes defined in the groups where requester does

UVOS Manual 43

not have permission to read). From version 1.4.2 of the UVOS server it is possible to control
what attributes are released to the SAML consumers. This is especially useful to optimize the
amount of network traffic by releasing only the attributes which are externally meaningful and
useful. Good example of an attribute which is useful only internally is urn:authz:intervo-
:vo attribute which is used to control internal UVOS server authorization.

The configuration file defined by the property uvos.server.saml.attributeFiltersCo-

nfig in the CONF/uvosServer.conf (by default it is CONF/attributeFilters.proper-
ties) controls the whole attribute release policy subsystem.

The policy is composed of two main parts:

• a list of excluded attributes and

• a list of explicitly exposed attributes.

The list of excluded attributes always takes precedence, i.e. only attributes which are on the
exposed attributes list and are not on the excluded list are presented to the requester.

Note
If the list of exposed attributes is not defined, then by default all attributes are exposed. If the
list of excluded attributes is undefined then by default no attribute is excluded.

Typically if you want to expose all attributes except few, you only define the excluded attributes
list. If you want to expose only few attributes and hide the rest then define the exposed attributes
list only.

The basic syntax is as follows:

exposedAttribute.1=<regularExpression1>
exposedAttribute.2=<regularExpression2>
...
excludedAttribute.1=<regularExpression1>
excludedAttribute.2=<regularExpression2>
...

The rule numbers in each list must be consecutive, starting from 1. An attribute matches a rule
if its name matches the rule’s regular expression.

Additionally you may define rules which are used for attributes scoped in particular groups only.
To do so define a normal rule (exposed or excluded) and add additional group filters as follows:

exposedAttribute.x=roleAttribute
exposedAttribute.x.scope.1=/VO-medicine.*
exposedAttribute.x.scope.not.1=/VO-medicine/public

In the above example the roleAttribute will be exposed in /VO-medicine and all its subgroups,
except of /VO-medicine/public. The defaults and behavior of the scope and scope.not rules
is analogous as in the case of base exposed and excluded rules.

UVOS Manual 44

13 Server operation

The server management scripts can be found in the BIN directory. Their names along with
their descriptions are listed below (in brackets name used by distribution specific package (e.g.
RPM) is provided):

• initdb.sh (unicore-uvos-server-initdb) - initializes the db. This script can also be
used to clean an existing database, and therefore it should be used with an extreme caution!

• startServer.sh (unicore-uvos-server-startServer) - starts a server in the back-
ground.

• stopServer.sh (unicore-uvos-server-stopServer) - stops a running server.

• createExampleContents.sh (unicore-uvos-server-createExampleContents) - cre-
ates an example contents of the service, as it is presented in the accompanying overview doc-
ument. You should use it just after initializing the database (using the initdb.sh) and before
starting the server.

14 APPENDIX - permission requirements

This appendix lists all permissions and other rules that are required to invoke UVOS functions.
The column "Required permissions" lists the names of permissions needed in the scope of the
group to invoke a specified function. If there is no group involved or if there are any other
restrictions an explanation is given in the "Other authorization rules" column. The label [Self
Access] means that the function operates on an identity and if this identity is the same as the
caller’s identity then selfAccess authorization policy designator is valid.

Function Short description Required
permissions

Other
authorization
rules

Query functions
isMember(Iden-

tity who,

Group group,

boolean

effective)

Checks if the given
identity is a
member of the
given group.

read [Self Access]

getAllGroups(-

Identity who,

boolean

implied)

Gets all groups ,
which the given
identity is a
member of.

read [Self Access]
Global permission
is needed.

areEquivalent-

(Identity

i1,Identity

i2)

Checks if two
identities represent
the same entity.

identityCtl [Self Access]
Global permission
is needed.

UVOS Manual 45

Function Short description Required
permissions

Other
authorization
rules

getAttributes-

(Element

owner, String

attribute,

boolean effec-

tive,boolean

includeScoped,

boolean inclu-

deImplied)

Retrieves attributes
for the given
element (i.e.
identity, group or
identity in a group
scope).

read [Self Access]
Without global read
perm attributes
valid in groups
where caller has no
read perm are
filtered out.

getAllEquival-

ents(Identity

who)

Retrieves all
identities
equivalent to the
one given as a
parameter.

identityCtl [Self
Access]Global
permission is
needed.

getGroupConte-

nt(Group

group)

Retrieves the group
contents.

read Everybody can get
the root’s (/)
contents.

getAllIdentit-

ies()

Retrieves all
identities stored in
the database.

read Global permission
is needed.

Query history functions
Those offer the same features as normal query function but in the past (time is specified
as additional argument). Always fullRead permission in global scope is needed and in

case of getAllEquivalents and areEquivalent identityCtl too.
Management functions

addGroup(Group

parent, String

name)

Adds a new group. write

removeGroup(G-

roup toRemove,

boolean

recursive)

Removes the given
group.

write Write permission is
required for the
removed group, all
its subgroups and
its parent group.

copyGroup(Gro-

up toCopy,

Group

newParent,

String newNam-

e,boolean

deleteOrigina-

l)

Copies or moves
the given group to
the content of a
different group.

write Write permission is
required for the
copied group, all its
subgroups, its old
and new parents
groups.

UVOS Manual 46

Function Short description Required
permissions

Other
authorization
rules

addIdentity(I-

dentity

toAdd)

Adds a new
identity.

identityCtl OR
write

Required
permission must be
valid globally.

addIdentity(I-

dentity toAdd,

Identity

equivalentIde-

ntity)

Adds a new
identity, which
represents the same
entity as the one
given as a
parameter.

see→ Requires either
global write perm
or (global
identityCtl perm +
write perm for
every group
equivalent identity
is a member of +
the same or better
global permissions
as equivalent
identity has).

removeIdentit-

y(Identity

toRemove)

Deletes an identity. see→ Requires global
write perm or
(global identityCtl
and write perm for
every group
toRemove is a
member of + the
same or better
global permissions
as
equivalentIdentity).

setAttribute(-

Element whom,

Attribute

toAdd, boolean

update)

Adds a new
attribute.

write For global attributes
global permission is
needed.

removeAttribu-

te(Element

whom, String

toRemove)

Removes the
attribute.

write For global attributes
global permission is
needed.

addToGroup(Id-

entity toAdd,

Group group)

Adds the given
identity to a group.

write

removeFromGro-

up(Identity

toRemove,

Group group)

Removes the given
identity from the
given group.

write

UVOS Manual 47

Function Short description Required
permissions

Other
authorization
rules

setIdentityLa-

bel(Identity

toChange,

String label

Changes the label
of the identity.

see→ Requires global
write perm or
(global identityCtl
perm + write perm
for all groups
toChange is a
member of + the
same or better
global permissions
as
equivalentIdentity).

getAttributeT-

ypes()

Returns a list of all
types of attributes.

-

getIdentityTy-

pes()

Returns a list of all
types of identities.

-

updateAttribu-

teTypes(List<-

AttributeType>

toUpdate,bool-

ean

clear)

Updates a list of
attribute’s types.

write Requires no perm
to add a new
attribute type and
global write
otherwise.

disableAttrib-

ute(Element

whose, String

toDisable,

String valueT-

oDisable)

Temporary disables
the given attribute’s
value.

fullRead [Self Access]

enableAttribu-

te(Element

whose, String

toEnable,

String

valueToEnable)

Enables a disabled
earlier of the given
attribute.

fullRead [Self Access]

getDisabledAt-

tributes(Elem-

ent

whose)

Returns a list of
attributes with
disabled values.

fullRead [Self Access]

purgeHistoric-

alData(Date

deleteFrom)

Permanently
deletes all service
data that is older
then deleteFrom
(exclusive).

write Write must be valid
in globally.

Applications Management

UVOS Manual 48

Function Short description Required
permissions

Other
authorization
rules

updateApplica-

tionForm

(VOApplicatio-

nForm

applicationDe-

f,boolean

update)

Adds or updates an
application
definition.

write write must be valid
for the group which
is set in
applicationDef.

getApplicatio-

ns(Integer

formId, String

status)

Lists all
applications for the
selected form
and/or with
selected status.
Both filtering
arguments may be
null, which
eliminates the
constraint.

fullRead Requires perm for
the group, which is
the application
form’s base. In case
of getting
applications of all
forms a global
fullRead is
required.

submitApplica-

tion(VOApplic-

ation

application)

Adds a new
application.

-

processApplic-

ation(int id,

ApplicationAc-

tions action,

String notes,

boolean sendC-

onfirmation,

VOApplication

application)

Process an
application. This
operation only
marks the
application
accordingly but it
doesn’t add a new
identity (it must be
performed by client
software manually).

write write must be valid
for the group which
is set in
applicationDef.

csrProcessedN-

otification(S-

tring csr,

boolean

accepted,

String

certificate,

boolean sendN-

otification)

Used to signal the
server that the
application with the
given CSR should
be updated, as the
contained CSR was
processed by a CA.

-

Authorization related functions

UVOS Manual 49

Function Short description Required
permissions

Other
authorization
rules

modifyPermiss-

ions(Group

group, Permis-

sionDesignator

designator,Pe-

rmissions

permissions)

Modifies
permissions of the
group.

write

checkPermissi-

ons(Group

group,

Identity

whose)

Retrieves a set of
permissions for the
given identity in the
group.

read [Self Access]

checkMyPermis-

sions(Group

group)

Retrieves a set of
permissions for the
method caller
identity in the given
group.

read [Self Access]

getGroupAuthZ-

(Group group,

boolean

effective)

Retrieves
aspecification of
authZ settings of
the given group.

write

modifyAuthent-

icationData(I-

dentity id,

Object

newToken)

Changes
authentication
token of the given
identity.

write [Self Access] In
self access mode no
write permission is
needed, otherwise
global write is
required.

	Introduction
	UVOS Overview
	Example

	Entities
	Which type of identities shall be used?

	Attributes
	Authentication
	UVOS access authorization
	Authorization overview
	The simple (default) authorization scheme

	VO registrations (applications)
	Email notification
	UVOS usage scenarios
	PULL authorization
	PUSH authorization
	Web portal authentication

	Installation
	Installation from the archive
	Installation from RPM package (RedHat distributions)
	Installation from the DEB package (Debian distributions)
	Database installation

	Upgrading UVOS server
	Update using yum
	Version specific notes
	Generic upgrade instructions for tar.gz installations

	Configuration
	Database configuration
	Server configuration
	Mail notification configuration
	Defining attribute types
	Attribute release policy (aka attribute filtering)

	Server operation
	APPENDIX - permission requirements

