Planned intervention: On Wednesday April 3rd 05:30 UTC Zenodo will be unavailable for up to 2-10 minutes to perform a storage cluster upgrade.
Published July 1, 2013 | Version v1
Journal article Open

Dissolved organic carbon manipulation reveals coupled cycling of carbon, nitrogen, and phosphorus in a nitrogen-rich stream

  • 1. Indiana University

Description

Laura Johnson was a contributing author, before starting her career at NCWQR.

ABSTRACT

To investigate the coupling between carbon (C) and phosphorus (P) cycling in a human-altered stream, we conducted a whole-ecosystem manipulation of the labile dissolved organic carbon (DOC) pool in a nitrate (NO3-)-rich stream in the midwestern United States. For 6 d, we increased stream DOC by ~1 mg L-1 through a continuous addition of sodium acetate. On the sixth day of the addition, ammonium (NH4+) was increased by ~130 µg N L-1 to examine the potential for nitrogen (N) to mediate coupled C and P cycling. Of the added DOC, 85% was retained within the treatment reach, which increased ecosystem respiration with respect to the reference reach. Alkaline phosphatase activity (APA) increased from day 1 to day 6; however, water column P uptake only increased on day 6 concurrent with the NH4+ addition. Gross primary production decreased during the DOC addition relative to the reference reach, yet seemed to recover on day 6 (NH4+ addition). These results suggest that during the DOC addition, heterotrophs out competed autotrophs for N and that sediment-sorbed P sustained the heterotrophic community while P uptake from the water column was dominated by autotrophs. Because APA and P uptake were stimulated by the simultaneous DOC and NH4+ addition, P cycling appeared to be N limited, despite the high ambient NO3- concentration; this indicates a strong preferential uptake of NH4+
over NO3-. In streams, C and P cycling can be intrinsically coupled through biological mechanisms, and this coupling can be mediated by the availability of different forms of inorganic N.

Notes

We thank Annie Bowling, Erin Looper, and Curtis Pomilia for their help in the field and in the laboratory, the Indiana University Research and Teaching Preserve for site access and funding, and two anonymous reviewers for their constructive comments. This project was supported in part by a grant from the National Science Foundation (Division of Environmental Biology-0743396).

Files

Limnology Oceanography - 2013 - Oviedo-Vargas - Dissolved organic carbon manipulation reveals coupled cycling of carbon .pdf

Additional details

References

  • ALLISON, S. D., AND P. M. VITOUSEK. 2005. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 37: 937–944, doi:10.1016/j.soilbio. 2004.09.014
  • ARANGO, C. P., J. L. TANK, L. T. JOHNSON, AND S. K. HAMILTON. 2008. Assimilatory uptake rather than nitrification and denitrification determines nitrogen removal patterns in streams of varying land use. Limnol. Oceanogr. 53: 2558–2572, doi:10.4319/lo.2008.53.6.2558
  • AXLER, R. P., R. M. GERSBERG, AND C. R. GOLDMAN. 1982. Inorganic nitrogen assimilation in a subalpine lake. Limnol. Oceanogr. 27: 53–65, doi:10.4319/lo.1982.27.1.0053
  • BERNHARDT, E. S., AND G. E. LIKENS. 2002. Dissolved organic carbon enrichment alters nitrogen dynamics in a forest stream. Ecology 83: 1689–1700, doi:10.1890/0012-9658 (2002)083[1689:DOCEAN]2.0.CO;2
  • BERNOT, M. J., J. L. TANK, T. V. ROYER, AND M. B. DAVID. 2006. Nutrient uptake in streams draining agricultural catchments of the midwestern United States. Freshw. Biol. 51: 499–509, doi:10.1111/j.1365-2427.2006.01508.x
  • BONIN, H. L., R. P. GRIFFITHS, AND B. A. CALDWELL. 2000. Nutrient and microbiological characteristics of fine benthic organic matter in mountain streams. J. N. Am. Benthol. Soc. 19: 235–249, doi:10.2307/1468067
  • CHRÓST, R. J. 1991. Microbial enzymes in aquatic environments. Springer-Verlag.
  • CROSS, W. F., J. P. BENSTEAD, P. C. FROST, AND S. A. THOMAS. 2005. Ecological stoichiometry in freshwater benthic systems: Recent progress and perspectives. Freshw. Biol. 50: 1895– 1912, doi:10.1111/j.1365-2427.2005.01458.x
  • DODDS, W. K. 2006. Nutrients and the ''dead zone'': The link between nutrient ratios and dissolved oxygen. in the northern Gulf of Mexico. Front. Ecol. Environ. 4: 211–217, doi:10.1890/1540-9295(2006)004[0211:NATDZT]2.0.CO;2
  • DORTCH, Q. 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser. 61: 183–201, doi:10.3354/meps061183
  • DRISCOLL, C. T., AND OTHERS. 2003. Chemical response of lakes in the Adirondack Region of New York to declines in acidic deposition. Environ. Sci. Technol. 37: 2036–2042, doi:10.1021/es020924h
  • ENSIGN, S. H., AND M. W. DOYLE. 2006. Nutrient spiraling in streams and river networks. J. Geophys. Res. 111: G04009, doi:10.1029/2005JG000114
  • FINZI, A. C., J. J. COLE, S. C. DONEY, E. A. HOLLAND, AND R. B. JACKSON. 2011. Research frontiers in the analysis of coupled biogeochemical cycles. Front. Ecol. Environ. 9: 74–80, doi:10.1890/100137
  • FREEMAN, C., C. D. EVANS, AND D. T. MONTEITH. 2001. Export of organic carbon from peat soils. Nature 412: 785, doi:10.1038/ 35090628
  • FROELICH, P. N. 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnol. Oceanogr. 33: 649–668, doi:10.4319/ lo.1988.33.4_part_2.0649
  • GLIBERT, P. M., J. C. GOLDMAN, AND E. J. CARPENTER. 1982. Seasonal variations in the utilization of ammonium and nitrate by phytoplankton in Vineyard Sound, Massachusetts, USA. Mar. Biol. 70: 237–249, doi:10.1007/BF00396842
  • GRIMM, N. B., AND S. G. FISHER. 1986. Nitrogen limitation in a sonoran desert stream. J. N. Am. Benthol. Soc. 5: 2–15, doi:10.2307/1467743
  • GUTSCHICK, V. P. 1981. Evolved strategies in nitrogen acquisition by plants. Am. Nat. 118: 607–637, doi:10.1086/283858
  • HEJZLAR, J., M. DUBROVSKY´, J. BUCHTELE, AND M. RU ° Zˇ ICˇKA. 2003. The apparent and potential effects of climate change on the inferred concentrations of dissolved organic matter in a temperate stream (the Malse River, South Bohemia). Sci. Total Environ. 310: 143–152, doi:10.1016/S0048-9697 (02)00634-4
  • HILL, B. H., F. H.MCCORMICK, B. C. HARVEY, S.L. JOHNSON,M. L. WARREN, AND C. M. ELONEN. 2010. Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams. Freshw. Biol. 55: 1005–1019, doi:10.1111/j.1365-2427.2009.02337.x
  • HOELLEIN, T. J., J. L. TANK, E. J. ROSI-MARSHALL, S. A. ENTREKIN, AND G. A. LAMBERTI. 2007. Controls on spatial and temporal variation of nutrient uptake in three Michigan headwater streams. Limnol. Oceanogr. 52: 1964–1977, doi:10.4319/ lo.2007.52.5.1964
  • INDIANA GEOLOGICAL SURVEY. 2012. IndianaMap [Internet]. Indianapolis (IN): Indiana Geographic Information Council [accessed 2011 July]. Available from http://maps.indiana.edu/index.html
  • JOHNSON, L. T., T. V. ROYER, J. M. EDGERTON, AND L. G. LEFF. 2012. Manipulation of the dissolved organic carbon pool in an agricultural stream: Responses in microbial community structure, denitrification, and assimilatory nitrogen uptake. Ecosystems 15: 1027–1038, doi:10.1007/s10021-012-9563-x
  • KLOTZ, R. L. 1985. Factors controlling phosphorus limitation in stream sediments. Limnol. Oceanogr. 30: 543–553, doi:10. 4319/lo.1985.30.3.0543
  • LOTTIG, N. R., AND E. H. STANLEY. 2007. Benthic sediment influence on dissolved phosphorus concentrations in a headwater stream. Biogeochemistry 84: 297–309, doi:10.1007/s10533-007-9116-0
  • MADIGAN, M. T., J. M. MARTINKO, AND J. PARKER. 2000. Brock biology of microorganisms, 9th ed. Prentice Hall.
  • MARZOLF, E. R., P. J. MULHOLLAND, AND A. D. STEINMAN. 1994. Improvements to the diurnal upstream–dowstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can. J. Fish. Aquat. Sci. 51: 1591–1599, doi:10.1139/f94-158
  • MCDANIEL, M. D., M. B. DAVID, AND T. V. ROYER. 2009. Relationships between benthic sediments and water column phosphorus in Illinois streams. J. Environ. Qual. 38: 607–617, doi:10.2134/jeq2008.0094
  • MEALS, D. W., AND OTHERS. 1999. Retention of spike additions of soluble phosphorus in a northern eutrophic stream. J. N. Am. Benthol. Soc. 18: 185–198, doi:10.2307/1468460
  • MEYER, J. L. 1979. The role of sediments and bryophytes in phosphorus dynamics in a headwater stream ecosystem. Limnol. Oceanogr. 24: 365–375, doi:10.4319/lo.1979.24.2.0364
  • MIDDELBURG, J. J., AND J. NIEUWENHUIZE. 2000. Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate rich Thames estuary. Mar. Ecol. Prog. Ser. 203: 13–21, doi:10.3354/meps203013
  • MONTEITH, D. T., AND OTHERS. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537–540, doi:10.1038/nature06316
  • MULHOLLAND, P. J., A. D. STEINMAN, AND J. W. ELWOOD. 1990. Measurement of phosphorus uptake length in streams: Comparison of radiotracer and stable PO{3 4 releases. Can. J Fish. Aquat. Sci. 47: 2351–2357, doi:10.1139/f90-261
  • NAUSCH, M., AND G. NAUSCH. 2004. Bacterial utilization of phosphorus pools after nitrogen and carbon amendment and its relation to alkaline phosphatase activity. Aquat. Microb. Ecol. 37: 237–245, doi:10.3354/ame037237
  • OWENS, M. 1974. Measurements on non-isolated natural communities in running waters, p. 111–119. In R. A. Vollenweider [ed.], A manual on methods for measuring primary production in aquatic environments. Blackwell Scientific.
  • PETERSON, B., B. FRY, AND L. DEEGAN. 1993. The trophic significance of epilithic algal production in a fertilized tundra river ecosystem. Limnol. Oceanogr. 38: 872–878, doi:10.4319/ lo.1993.38.4.0872
  • SAYLER, G. S., M. PUZISS, AND M. SILVER. 1979. Alkaline phosphatase assay for freshwater sediments: Application to perturbed sediments. Appl. Environ. Microbiol. 38: 922– 927.
  • SINSABAUGH, R. L., AND J. J. FOLLSTAD SHAH. 2012. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43: 313–343, doi:10.1146/annurev-ecolsys-071112-124414
  • SINSABAUGH, R. L., AND C. M. FOREMAN. 2003. Integrating dissolved organic matter metabolism and microbial diversity: An overview of conceptual models, p. 426–448. In S. E. G. Findlay and R. L. Sinsabaugh [eds.], Aquatic ecosystems. Academic Press.
  • STANLEY, E. H., S. M. POWERS, N. R. LOTTIG, I. BUFFAM, AND J. T. CRAWFORD. 2012. Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: Is there a role for DOC management? Freshw. Biol. 57: 26–42, doi:10.1111/j.1365-2427.2011.02613.x
  • STERNER, R. W., AND J. J. ELSER. 2002. Ecological stoichiometry. Princeton Univ. Press.
  • STEWART, A. J., G. ROBERT, AND W. K. WETZEL. 1982. Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. Freshw. Biol. 12: 369–380, doi:10.1111/j.1365-2427.1982.tb00630.x
  • STREAM SOLUTE WORKSHOP. 1990. Concepts and methods for assessing solute dynamics in stream ecosystems. J. N. Am. Benthol. Soc. 9: 95–119, doi:10.2307/1467445
  • TANK, J. L., J. WEBSTER, E. BENFIELD, AND R. L. SINSABAUGH. 1998. Effect of leaf litter exclusion on microbial enzyme activity associated with wood biofilms in streams. J. N. Am. Benthol. Soc. 17: 95–103, doi:10.2307/1468054
  • THINGSTAD, T. F., AND OTHERS. 2008. Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature 455: 387–391, doi:10.1038/nature07235
  • WANNINKHOF, R., P. J. MULHOLLAND, AND J. W. ELWOOD. 1990. Gas exchange rates for a first-order stream determined with deliberate and natural tracers. Water Resour. Res. 26: 1621–1630, doi:10.1029/WR026i007p01621
  • WILSON, H. F., AND M. A. XENOPOULOS. 2008. Ecosystem and seasonal control of stream dissolved organic carbon along a gradient of land use. Ecosystems 11: 555–568, doi:10.1007/s10021-008-9142-3
  • ZAR, J. H. 1999. Biostatistical analysis, 4th ed. Prentice Hall.