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Abstract 

Introduction: Diseases were initially thought to be the consequence of a single gene mutation. 

Advances in DNA sequencing tools and our understanding of gene behavior have revealed that 

complex diseases, such as cancer, are the product of genes cooperating with each other and with 

their environment in orchestrated communication networks. Seeing that the function of 

individual genes is still used to analyze cancer, the shift to using functionally interacting groups 

of genes as a new unit of study holds promise for demystifying cancer. 

Areas Covered: The literature search focused on three types of cancer, namely breast, lung, and 

prostate, but arguments from other cancers were also included. The aim was to prove that 

multigene analyses can accurately predict and prognosticate cancer risk, subtype cancer for more 

personalized and effective treatments, and discover anti-cancer therapies. Computational 

intelligence is being harnessed to analyze this type of data and is proving indispensable to 

scientific progress. 

Expert Opinion: In the future, comprehensive profiling of all kinds of patient data (e.g., serum 

molecules, environmental exposures) can be used to build universal networks that should help us 

elucidate the molecular mechanisms underlying diseases and provide appropriate preventive 

measures, ensuring lifelong health and longevity. 

Article highlights: 

• Diseases were originally thought to be the result of a single gene mutation, but advances 

in DNA sequencing have proven otherwise. 

• Methods for classifying genetic variants are evolving, and they all show that genetic 

variants need to be studied in a more robust manner. 

• Complex diseases occur when the right environmental factors and SNPs exist. The latter 

are accumulating without understanding their significance, requiring integration into 

multiomic studies. 

• Gene networks are dominated by universal laws, proving they are credible to consider as 

the new "units of study" instead of single genes. 

• Network and polygenic studies allow for more accurate prediction and prognosis of 

cancer risk, treatment-useful cancer subtyping, and the discovery of interesting cancer 

therapies. 

• Comprehensive network studies integrating all types of data (e.g. transcriptomics, blood 

serum omics, and environmental agents) are the future of medical care. 
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1. Introduction 

Advances in DNA sequencing tools have made analysis of the human genome faster and 

cheaper, and thus more accessible to researchers in a variety of biomedical disciplines [1]. These 

enabled the early diagnosis of newborns with complex genetic diseases that are often overlooked 

by parents and clinicians [2], and to prescribe more accurately the right drugs for each patient 

[3]. These prodigious advances also forced scientists to reconsider their original assumption that 

the origin of every disease is a single gene that goes astray, reminiscent of a Mendelian mindset. 

This is because monogenetic diseases have been proven to be rare, do not represent the daily 

bread of a clinician, and do not explain the causes of other more frequent diseases. To date, about 

7000 of these "monocausal" diseases have been recognized and cataloged by Victor McKusick 

and can be found on the regularly updated OMIM website [4]. 

The aforementioned realizations introduced the notion that not one, but multiple low-impact 

gene variants, called “polymorphisms”, can work hand in hand and contribute to disease. These 

were thought to have neutral effects on phenotypes and were dichotomously distinguished from 

more impactful variants commonly called “mutations”. The great variability of the impact of 

gene variants have hence thinned the line differentiating the two words, mutation and 

polymorphism. Karki et al. are among those who acknowledged the importance of the simplicity 

offered by these two words and proposed to redefine them based on an experimental pairwise 

approach [5]. 

Gene expression analysis using microarrays, RNA sequencing (RNAseq), and all related 

statistical tools for data treatment have also helped demystify and understand diseases with 

unclear or complex etiologies, such as cancer. It has become increasingly clear over time that 

cells have long hinted at deeper facts, namely that genes interact with each other and with other 

molecules and environmental factors via quantifiable and orchestrated processes (e.g., 

transcription factors and epigenetic modifications) to perform biological functions or develop 

diseases (Figure 1). These interactions form complex communication networks that should be 

hiding all the answers we seek. 

Network analysis in cancer genomics has begun to be used in the last five years, with strong 

growth in the last two years [6]. The field of "functional genomics" is concerned with the study 

of this complexity, and it is still in its infancy [7]. It integrates studies of molecular and cellular 

biology and deals with the structure, function, and regulation of groups of genes rather than 

individual genes, thus moving beyond classical molecular biology. Moreover, these molecular 

networks show remarkable conservation across species, both in their architecture and in their 

internal properties [8], suggesting the existence of a fundamental law governing them. Therefore, 

using gene networks as a unit of study instead of single genes could help understand, treat, and 

prevent all complex diseases, which is the ultimate goal of modern medicine. 

2. Methods 

The literature review was conducted using a heuristic approach that fitted well with our way of 

dividing the work. For the theoretical part of the article, PubMed was the main database used. 

The terms and phrases searched were polymorphism, cancer risk, polygenic or multigenic, 

personal genomics, single nucleotide polymorphism (SNP), precision oncology, functional 

genomics, gene regulatory networks, genome-wide associated studies or GWAS, systems 
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genetics, network-based, post-GWAS, module, and clustering. These words were useful for 

capturing articles whose title, abstract, keywords, or topic included them or their spelling 

variants. Nature and Elsevier’s journals formed our secondary databases simply because they 

had more articles meeting our interests and because they were top listed when searching for the 

same terms and phrases in the Google search engine. Our third major database was a pseudo 

database, constructed using the citations found in selected articles that were considered 

intriguing and that met all of our sought-after inclusion criteria. These selected articles form the 

"major" articles, and those they cite and that built our third database are the "minor" articles 

(Figure 2). Searches of all three databases were filtered to exclude all studies written before 2015 

(exclusive), introductory articles on new bioinformatics techniques, untranslated articles (into 

English or French), and non-human studies. It should be noted that we did not inspect 

extensively all the results obtained. Instead, we read the proposed articles and judged them 

according to the exclusion and inclusion criteria. 

The inclusion criteria for our pseudo-database were: 

1. Studies containing small facts relevant to our topic and majorly found in articles that 

attracted our interest. These collateral articles were skimmed to ensure that they truly 

contained the extracted information. It is crucial to notice that such articles abided by all 

our exclusion criteria except those regarding year and animal inclusion. The latter 

exception was enabled considering that facts are akin to laws, invariable throughout time 

and space. 

2. Studies that explained fundamental mathematical, physical, or biological concepts. These 

underpinned our argument concerning the existence of immutable natural laws that can 

be exploited when creating new software and simulations for the study of cancer without 

having to worry about human-made thresholds. 

3. Meta-analytic reviews were preferred because of the analysis and argumentation they 

offer, which helps us select articles that speak our language. However, we did not 

exclude articles containing arguments that contradict our views. This is due to the fact 

that the articles having a monogenic direction are too old, showing a lack of knowledge 

of the feasibility and importance of polygenic analyses. 

For the applied part of the article including the in-depth study of the three cancers, PubMed was 

the only website that helped us select articles. At each search iteration, the same terms and 

expressions used in the theoretical part were used here, with the addition of  the words lung, 

breast, or prostate to target the articles discussing the specific cancers. Exclusion criteria 

included introductory articles on the latest analytical tools, untranslated studies, and non-human 

studies. Date and year were not an issue in this case, as the extracted information represents 

experimental facts that are reproducible. Inclusion criteria included studies that presented 

numerical data and evidence of the superiority of polygenic approaches over previous single-

gene perspectives. 

Searches began on May 5, 2020, and ended a year later. Once eligible studies began to appear in 

our searches, more appropriate keywords and key phrases were noted and included in all other 

searches. With the trial-and-error process of searching and skimming, more eligible studies were 

found and key data elements were extracted from the articles and abstracts. Figure 2 illustrates 

the process we adopted to find our data. 
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3. Mutation and Polymorphism 

The human genome consists of more than 3 billion base pairs that exist in every nucleus of every 

cell in our body [9]. Well preserved through evolution, our genome is at least 99.5% identical 

between two individuals [10]. This tiny percentage explains all our body differences and should, 

if combined, create a genetic reference that defines the limits of human genetic normality. This 

reference already exists and is used every time it is requested. 

When comparing sequences to the reference, and to avoid confusion, some professionals refrain 

from using the words "mutation" and "polymorphism" and instead use terms like "variants" or 

"alterations". By convention, a random prevalence threshold of 1% has been set below which a 

variation will be called rare. That said, mutations are rare genetic variants that may cause 

subsequent phenotypic abnormalities (i.e., what the eye sees, what the body shows). 

Polymorphisms are common alterations (i.e., >1%) that are thought to have beneficial, neutral, or 

harmful effects on the individual bearing them. They are presumed to occur primarily in each 

individual at a rate of one base pair per 1000, defining what we call single nucleotide 

polymorphisms (SNPs). Polymorphisms are believed to primarily regulate gene transcription, 

splicing, or messenger RNA (mRNA) stability via regulatory molecules. 

A 2015 paper by Karki et al. addressed the issue of the blurred line between the definitions of a 

mutation and a polymorphism caused by advances in genetics [5]. They believe that referring 

only to the general reference for comparing genetic variation and using a random threshold of 

1% was becoming outdated and needed to be updated. Their conclusion was inspired by the 

common mistake of confusing polymorphisms with mutations and vice versa [11], as well as 

cases where the 1% threshold was unable to differentiate disease from normal traits. For 

example, an individual heterozygous for the rare mutant gene for sickle cell disease is considered 

sick in developed countries because of the remarkable blood and systemic manifestations of the 

disease. In contrast, the same mutation appears to be common in underdeveloped countries (such 

as Africa and India) where malaria is endemic [12,13]. This frequency is thought to confer a 

survival advantage on these populations by making people with sickle cell anemia resistant to the 

parasite [14–16]. More, other SNPs have been found to affect the risk of developing certain 

diseases (e.g., diabetes and coronary heart disease) [17], refuting the popular notion that 

polymorphisms confer only neutral effects. 

To solve this nomenclature dilemma, Karki et al. proposed to define mutations as DNA variants 

obtained in a paired sequencing project including germline DNA from the same individual as 

reference [5]. Their dubbed "pairwise approach" starts by taking the biopsied suspect tissue and a 

second random sample (blood, saliva, etc.) and sequencing them simultaneously. This second 

sample will be considered the germline DNA sequence of the patient and will therefore be the 

reliable reference for comparison. After comparing the sequences, any irregularity found will be 

called a "somatic variant", or simply "mutation". Conversely, any atypical variant found in both 

tissues and listed in the literature will be called a "germline variant" (GV). As for 

polymorphisms, they will keep their traditional definition as being common GVs in a certain 

population that characterizes it in a way, transmitted to the descendants of the carrier, and not 

maintained by recurrent spontaneous in utero genetic alterations as it is the case for de novo 

germline mutations. The term "polymorphism" will therefore only be used in the context of a 

population and a person’s fingerprint variants should never be called that. Finally, any variant 
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not compared to the person's germline genome will not be labeled somatic nor germline, but 

rather variant or alteration. 

Alongside Karki et al., the American College of Medical Genetics and Genomics, or ACMG, 

have also underscored the confusion between the two words and their misuse. Among the 

arguments put forward was the recurrent and incorrect use of the words "mutation" and 

"polymorphism", which connote disease and benignity respectively. They recommended that 

both terms be changed to "variant" with the following modifiers: (i) pathogenic, (ii) probably 

pathogenic, (iii) uncertain significance, (iv) probably benign, or (v) benign [18]. Their approach 

aims to simplify interpretations, especially in cancer, addressing variants of unknown or 

statistically low significance. 

What is noteworthy about this precedent is the trend in interpretations of genetic variants that 

research seems to follow, becoming less categorical and more continuous. Diseases were initially 

thought to be caused by single mutations, then polymorphisms entered the scene and proved their 

low impact and cumulative role in pathogenesis. The ACMG reclassification embodied the idea 

that the effects of genetic variants are not dichotomous (maximum impact/no impact), but rather 

fall along a continuum. With this in mind, although studying single genes still has its merits, 

focusing on studying the contribution of groups of genes is a way to avoid confusion and 

simplify the study of complex diseases. This can be particularly useful for heterogeneous 

diseases such as cancer. These analyses can be performed using modern statistical software and 

allow us to better understand the genetic world of disease and its dynamics. 

4. Shortcomings in polygenic studies 

Genome-wide association studies, or GWAS, have identified myriad SNPs and other GVs 

associated with the risk of developing common complex diseases (e.g. diabetes, cancer) [19]. 

GWAS use microarray technology to analyze gene SNPs and find gene-disease correlations. The 

results cannot be directly interpreted as causes of disease because a significant number of SNPs 

are common in the general population. Therefore, genome-wide association studies must follow 

a case-control design, where the frequencies of SNPs in people with a certain trait or disease are 

compared to those in people without. GWAS discover suspect genes using "linkage 

disequilibrium," which describes two or more alleles that cannot persist on their own and whose 

existence is linked to that of the other. Two genes are said to be in linkage disequilibrium when 

they are frequently observed together and rarely otherwise, or vice versa [20]. A simple example 

is that of a gene encoding a transcription factor and its regulated gene: the existence of the 

regulator gene alone is useless and the regulated gene alone may be expressed futilely or 

morbidly without its regulator gene, and thus subject to extinction. That said, a significant 

GWAS result may reflect an association with a gene that has not yet been discovered. Strikingly, 

and to date, only a fraction of the genetic associations are experimentally proven [21]. This 

drawback is partly due to the possibility that a locus is linked to several unidentified genes or to 

the minor contribution of individual SNPs on phenotype expression, which led many to falsely 

devalue their clinical importance [22].  

Björkegren et al. reviewed the shortcomings in the way GWAS data are obtained, which will be 

overviewed in the following [23]. Their conclusions show that GWAS discoveries lack 

generalizability and are still incomplete.  
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There is evidence that regulation of gene expression is associated with multiple disease 

susceptibility variants of the SNP type [24,25], although the combined contribution of these loci 

to disease expression does not explain the disease’s heritability. Many of the most common 

diseases such as cancer, Alzheimer’s disease, cardiovascular disease, and type II diabetes are 

generally not caused by single variants [26,27]. Each of the genetic signals related to complex 

disorders has been shown to have a small impact, with an odds ratio (OR) of 1.5 or less. For 

example, expression quantitative trait loci (eQTL), a locus that explains a fraction of the genetic 

variance of a gene expression phenotype, have consistently shown to cause less than a 2-fold 

change in expression [20,23]. For most common disorders, the combined contribution of these 

loci to disease expression in a population is frequently less than ~10%. Thus, more than ~90% of 

heritable genes explaining complex disorders remain unexplained by GWAS-identified loci [28]. 

More comprehensive sequencing techniques, e.g., next-generation sequencing (NGS), are 

expected to reveal additional rare risk variants that may explain the missing heritability. The 

latter thorough search was performed in studies on human height, where all existing height-

related SNPs were considered. This led to the detection of 294,831 variants or nearly 45% of 

heritability instead of the ~10% observed in other studies [29–31]. This somewhat argues against 

the idea that genetic variants are "missing" and encourage the view that they are simply not yet 

detected. Another way to assess the percentage of missing heritability is to consider the 

epigenetic mechanisms. These should also contribute to reducing this fraction despite our 

continuing ignorance of how these modifications remain conserved across generations [32].  

The slight increase in the percentage of explained heritability all while the number of discovered 

SNPs is importantly multiplying indicates that disease development is not limited to pure 

genetics. It is widely known that genetic risk factors depend on environmental triggers. A few 

million GV, for example, can only be observed in particular sample collections limited by 

ethnicity and geographic origin [22,30]. Other morbid influences may even originate from within 

our bodies, namely from tissues other than those expressing the disease [33]. Finally, other 

causes may include weaknesses in the design of the GWAS which focuses on later phases of a 

disease rather than the much more active early phases, and the possibility of overlooking 

environmental and bodily triggers that activate key genes over a relatively short period of time 

and may not be detected at the time of the study [34–36]. 

All of the above confirms the need to increase the number and diversity of samples and exposure 

to various factors, both from the outside world and from within our bodies. This will allow 

tracing a universal distribution map of variants and influences and detail another for disease 

constitution and progression [37]. Variant and influence mapping may be the ideal way to 

approach a disease, but it requires countless years of research and is time consuming. Therefore, 

it is recommended to work with the available GWAS data, which is still accumulating. A post-

GWAS era should hence be concentrating on using the available GWAS discoveries and 

integrating them with network and multi-omics studies. 

5. Network biology 

Molecular interactions within cells and those that connect tissues via the bloody medium form 

complex networks whose properties allow the quantification of disease [38,39]. These biological 

networks are akin to true functional units as they are well conserved throughout evolution and 

exhibit built-in redundancy and robustness, even when a significant number of network 

components are lost [40]. In their 2004 review, Barabási et al. explained the concept of network 
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biology and how cellular interactions are structured [8]. The following is an overview of their 

work. 

The components of a network, or graph, can be reduced to a series of "nodes" and "edges". The 

nodes represent actors (e.g., proteins, nucleic acid) and are connected by edges describing the 

interactions that occur between the nodes (e.g., molecular binding, complexation, or catalysis). 

No single network is independent, rather it is part of a network of networks that collaborate to 

produce all visible and non-visible phenotypes. Analysis of various complex systems, such as the 

internet, computer chips and society, has shown that they share many of the same architectural 

features as the molecular interaction networks within a cell. 

From a topological point of view, biological networks are "scale-free". This primarily means that 

the interactions between nodes are not randomly distributed, but rather highly non-uniform. The 

majority of nodes have a few links to other nodes and the minority have much higher number of 

links. The latter are called "hubs", as seen with the P53 hub gene in cancer [41]. It is also worth 

noting that these scale-free networks are subject to the "ultra-small-world" effect, making every 

perturbation that affects one node (e.g., alteration of gene expression) reach the entire network 

very quickly [42,43]. Another property of these graphs is modularity. It is the presence within the 

primary network of a group of nodes with high physical and functional connectivity that 

cooperate to perform a particular function. This group of nodes is called a "module" or a 

"cluster" [44,45]. A good example of cellular modules is the groups of time-correlated molecules 

that govern the different stages of a cell cycle [46,47]. Since modules and hubs coexist in and are 

integral of bionetworks, the latter are hence considered meta-architected forming a "scale-free 

hierarchical network" [48]. 

One needs to keep in mind that the robustness of bionetworks lies in their ability to respond to 

structural reorganization by maintaining their integrity and function. For example, even if ~80% 

of randomly selected nodes succumb to perturbations, the remaining ~20% may still be able to 

maintain the compactness of the graph. Adaptation can thus be considered an inherent property 

of the network, as it obeys topological rather than evolutionary laws [49,50]. Hubs, fortunately, 

are less likely to be disrupted than non-hubs because they are rare in a network. Non-hubs are 

numerous, so the odds are against their viability. Since hubs have strong ties to their 

neighborhood, getting damaged could break the system into small, non-functional elements [51]. 

This explains why hubs and modules are frozen during evolution, primarily because they are 

responsible for vital cellular pathways (e.g., energy and nucleic acid metabolism), making them 

less able to withstand alterations. Finally, if non-essential nodes and their edges lose their 

function, this may not affect the overall work of a module, but the efficiency is somehow 

compromised. This could explain why people with polymorphisms live healthy lives for a while 

but then succumb to the underlying diseased genes, unlike their peers with a more efficient 

combination of variants.  

To extract the essence, the universal laws dominating living and non-living graphs provide 

evidence that networks, particularly modules, can be considered as the new unit of study in place 

of single genes. Unlike genes, they are devoid of man-made thresholds (i.e., 1 %) and can confer 

reliability, robustness, and simplicity to genetic analyses. 
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6. Network-based methods 

Because complex diseases are both polygenic and multifactorial, network-based analyses should 

provide the necessary assistance in dismantling the higher order structure of gene communities. 

These methods contrast with simpler and more direct techniques for analyzing the functions of 

genes, which do so in a binary fashion (i.e., whether or not they cause a disease). To that end, it 

will be useful to share highlights of the methods used in cancer-related studies. One should note 

that the statistical concepts, novelties, and differences in efficiency and reliability of specific 

computational tools and software will not be discussed in this article. 

Van Dam et al. showed that computational clustering can be used to group genes with similar 

expression profiles across multiple samples, which should simplify cancer modeling [52]. 

Modules are the obvious outcome and can often be associated with biological processes and 

phenotypes [53–55]. The most widely used clustering method is Weighted Gene Correlation 

Network Analysis (WGCNA), which constructs gene co-expression modules using hierarchical 

clustering after correlating genes using their Microarray or RNAseq expression data [53,54]. 

Gene co-expression networks do not depend on prior gene information, avoid biologically 

incorrect assumptions about the independence of gene expression levels, and relieve researchers 

of the problems of multiple statistical testing [39]. For example, using these module-based 

inferences, it was found that humans and mice share fundamental transcriptional programs 

during early development that diverge at later stages [55]. Other methods, such as Generalized 

Single Value Decomposition (GSVD) and biclustering, identify modules and other properties of 

graphs that may be useful in cancer research. These methods take into account the heterogeneity 

of cancer and its evolution over time [52]. 

Differential co-expression analysis is used to detect sets of differentially expressed genes 

between two states (e.g., a healthy and a disease state) or the change in the network connectivity 

pattern for the same genes. This allows the discovery of regulator genes underlying diseases and 

phenotypes. Newly queried data, such as GWAS, eQTLs, TF binding sites, and other data layers 

can be integrated to enrich and improve the results of these methods. RNAseq-based co-

expression analysis, for example, is used to assign functions to non-coding RNA and identify 

candidate genes for their role in disease. 

Li et al. introduced a new statistical method by analyzing data from five different human 

interactome databases (Lit-BM, PrePPI, HI-II-14, ci-Frac, and AP-MS) to identify cancer-related 

genes [56]. After constructing their network, they identified sets of genes that formed dense areas 

of interaction. They then proved by functional analysis that their "top-ranked genes," having 

superior topological characteristics, coincided with commonly known cancer genes. Clustering 

methods other than that of Li et al. (e.g., DAPPLE, Metaranker, PRINCE, and other bi-ranking 

methods) are also exploited to predict disease-related genes. 

7. Polygenic and Network studies in Cancers 

7.1. Prostate cancer (PC) 

It has been proposed that genetic testing and counseling in prostate cancer should be performed 

more slowly than other cancer tests because of a perceived insufficient frequency of single-gene 

alterations and the belief that the disease is caused by complex inheritance patterns involving 

many SNPs [57]. Given the high incidence of prostate cancer, the low frequency of cancer 
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syndromes studied, and the heterogeneity of cancer, demonstrating causal genetic relationships is 

difficult. In addition, there is still no standard definition to determine which patients are at risk 

for developing hereditary prostate cancer. Fortunately, as explained previously, the ongoing 

developments in sequencing technologies and the advent of next-generation sequencing (NGS) is 

enabling easier assessment of GV [58]. 

For several years, GWAS has been the first choice to study the association between GVs and 

complex diseases, including PC [59,60]. GWAS has found more than 160 SNPs linked to the 

susceptibility of developing PC [61,62]. Although several of these SNPs have been confirmed to 

increase cancer risk, no single locus has been approved for screening and primary prevention. A 

2016 milestone cohort study led by Pritchard et al. examined the presence of genetic alterations 

in 20 DNA repair genes [63]. The collaborators found a high incidence of GVs in several of the 

genes tested, having a prevalence almost twice as high in men with metastatic disease as in men 

with localized forms and three times as high as in non-cancer patients. This indicates that men 

with GVs in DNA repair genes will experience a worsening of their disease course. 

As mentioned previously, having more than one susceptibility SNP has a cumulative effect on 

the overall risk of developing this cancer. For example, disruption of multiple TF binding sites 

(TFBS), mimicking the combined effect of coexisting SNPs, has been shown to promote tumor 

growth [64,65]. Furthermore, it has been shown that mutations and GVs involved in cell 

expansion interact in an organized manner in prostate cancer, implying that GVs can work with 

mutations as "tumor co-suppressors" or "co-oncogenes" [66,67]. Aggressive forms of prostate 

cancer, for instance, have been found in individuals with SNPs-SNPs communication with 

variants such as MMP16, CSF1, EGFR, and more [68,69]. Besides, the consequences are even 

more complex to predict because GVs affect risk at the epigenetic level [70] and are affected by 

additional environmental factors [71]. Factors increasing cancer risk include diet and obesity or 

migration and adoption of a new culture [59,72]. 

Accordingly, it should be useful to search for all the discovered GWAS susceptibility loci for 

each cancer patient, infer the active gene networks and ensuing modules, and correlate them with 

the environmental characteristics of each patient. This method takes gene modules as a unit of 

study, avoiding the burden of having multiple genes to correlate. It will also give meaning to 

some of the SNPs in GWAS and help discover which combination of genes can be used to 

predict cancer. The goal is to make cancer screening more targeted and therefore possible. 

7.2. Lung cancer (LC) 

Lung cancer is the leading type of cancer worldwide. Non-small cell lung cancer (NSCLC) 

accounts for approximately 85% of total lung cancer cases. Although environmental risk factors 

(e.g., smoking) increase the risk of NSCLC, GVs can explain 12-21% of LC heritability [73]. In 

the past decade, 45 LC risk loci have been identified by GWAS in various ethnic groups [74]. 

More loci should be discovered to explain the missing heritability, especially in Chinese 

populations that have the highest incidence and mortality rate of LC. 

In a 2019 publication, Dai et al. devised a polygenic risk score (PRS) that was shown to be a risk 

stratification indicator independent of age and pack-years of cigarettes during a 10-year follow-

up in Chinese patients [75]. They showed that the combination of SNPs from four different 

genetic region had a stronger cumulative association with familial LC than any individual SNP. 

The risk of LC was increased in patients who had at least one copy of the risk allele in each 
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region compared to patients with none of the risk factors. In addition, the four identified genetic 

regions accounted for 34.6% of all familial LC in smokers. Based on the systematic 

identification of 19 risk loci for NSCLC, they also demonstrated for the first time that their 

GWAS-derived PRS can be used for screening high-risk populations, leading to a true PRS-

based screening program for cancer prevention in Chinese populations. The higher the polygenic 

score, the higher the incidence of LC. Interestingly, although smoking is the most important risk 

factor for LC, light smokers with high genetic risk showed a higher risk compared with heavy 

smokers with low risk. However, a low genetic risk may be largely offset by smoking, an 

observation that encourages public health efforts to raise awareness of the importance of a 

healthy nonsmoking lifestyle for all. These results imply that the PRS quantifies the impact of 

genetics in predicting LC risk, thereby optimizing the definition of high-risk subpopulations 

beyond conventional predictors and paving the way for personalized prevention. 

Choi et al. sought to develop a novel system-level risk stratification model for lung 

adenocarcinoma based on gene co-expression network [76]. This differs from previous models 

which are based on individual prognostic genes. Although the TNM classification system 

(Tissue-Node-Metastasis) remains a universal guideline for prognosis prediction and treatment 

decision, the heterogeneous molecular characteristics of LC may lead to different prognoses at 

the same stage. In an effort to develop a better stratification model to predict accurate prognosis, 

Choi et al. have analyzed publicly available microarray datasets and identified modules related to 

survival. By implementing deep learning-based risk stratification models, they were able to 

construct "NetScore". The score not only showed a high association with overall survival (OS), 

but was also an independent predictor of clinicopathological variables. These include gender, 

smoking status, stage, and molecular subtypes. Given the significant predictive value of the score 

in early-stage IA/IB, the trend toward finding a high NetScore in males, smokers, advanced 

stages, and KRAS-positive samples promises to identify high-risk patients who may benefit from 

vital adjuvant chemotherapy. 

A new method was also designed by Jia et al. to identify cancer risk modules and assess disease 

risks based on the modules in the samples [77]. A co-expression network was first constructed 

followed by the identification of candidate modules and their associated cancer risk. Based on 

these cancer risk modules, the disease risks of the original samples were calculated. The 

discovered module genes could be disease genes that can be targeted for treatment. In addition, 

some of them were found to be related to genes previously described in LC. For example, 

MCM7, an important subunit of the MCM complex, could be considered a novel therapeutic 

target. More, BARD1 has isoforms that may be related to invasion and tumor progression, 

making it useful as a prognostic marker for non-small cell lung cancer. Finally, these risk 

modules can be said to be related to cancer pathogenesis both in terms of function and interaction 

because of their strong correlation with the disease genes they include. 

7.3. Breast cancer (BC) 

Breast cancer (BC) is the most common cancer diagnosis among women in Western countries. 

More than 170 SNPs have been associated with breast cancer through GWAS, but the same 

drawbacks as previously discussed also apply to breast cancer. The functional roles of the 

discovered SNPs and their effect on breast cancer predisposition remain very limited. More, the 

identification of causal variants among these SNPs is a major challenge, especially because of 

their overlap with non-coding regions of the DNA. 
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Common SNPs susceptibility variants conferring minimal risk per person are far from rare in the 

population [78,79] and their cumulative effect can be substantial [80–82]. This contrasts with 

rare single gene mutations in genes such as BRCA1 and BRCA2 that confer high risks of 

developing BC, but account for only a small proportion of cancer cases (5-10%). The effect of 

these susceptibility variants can be quantified in a PRS that could identify cancer risk and stratify 

the population into different risk levels [83,84]. 

Knowledge of a patient's PRS can inform the clinical decision about the appropriate age to 

recommend screening [85]. To illustrate, statistical findings from prospective and retrospective 

studies in the United Kingdom recommend that women be screened as soon as their 10-year 

mean absolute risk exceeds 2.6%, which is almost at age 47 [84]. However, according to 

polygenic statistical studies, 20% of women with a high score will reach this risk level before 

age 40. For these women, it is not in their best interest to wait until age 47 to be screened. More, 

while many argue that a woman informed of her high-risk PRS could develop life-affecting 

anxiety, recommending lifestyle changes to women at high genetic risk could significantly 

contribute to delaying cancer onset [85]. 

Elucidation of the contributing GVs and their functions underlying BC susceptibility has allowed 

better estimation of familial relative risk and thus improved the PRS. Post-GWAS analytical 

studies exploiting the minimally refined GWAS data have shown that some genomic features, 

including TFBSs, can be considered as susceptibility loci [91]. In silico evaluation of causal 

variants and subsequent molecular testing in in vitro model systems showed overlap between 

candidate causal variants and regulatory sequences, such as TFBSs and histone marks or open 

chromatin regions. In addition, eQTL studies are being performed to identify the genes they 

regulate as a result. In summary, better definition of genomic features for predicting causal 

variants and improved methods for incorporating external biological information into prediction 

models should improve the performance of PRS [92,93]. 

Besides polygenic risk analysis, network studies through analysis of gene co-expression 

networks in BC has been shown to identify genes related to tumor severity and disease 

prognosis, which may also be potential therapeutic targets. Yang et al. performed such a network 

analysis and identified 12 modules, one of which was strongly correlated with tumor grade [86]. 

Using survival analysis, AMD1, EN1, and VGLL1 were the hub genes identified in this module 

and their upregulation was associated with worse prognosis in breast cancer patients. The team 

also showed that AMD1 knockdown decreased proliferation, invasion, and migration capabilities, 

while increasing apoptosis in breast cancer cells. The latter demonstrates the therapeutic 

implications of genome studies in the development of more precise and patient-specific 

therapies. Other similar studies have identified hub genes whose expression could be used as a 

biomarker for evaluating the survival of patients with certain cancer types [87,88,94]. 

7.4. More cancers 

Polygenic studies have demonstrated the presence of significant differences in absolute cancer 

risk between carriers of the same BRCA according to their PRS. Women who carry a pathogenic 

GV in the BRCA1 or BRCA2 gene are known to be at high risk of developing breast and/or 

ovarian cancer and their clinical management involves a combination of frequent screenings, 

debilitating risk-reducing surgeries (e.g., salpingo-oophorectomy), and preventive therapies [89]. 

Nevertheless, these decisions are made after careful consideration to mitigate the undesirable 
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psychological impact, as well as the medical morbidity, that a woman might manifest. This 

allows for individualized screening protocols for carriers of BRCA1/2 germline variants. In 

addition, recommendations for BRCA1 carriers are to undergo salpingo-oophorectomy when 

their cumulative risk of ovarian cancer exceeds 2.8%, which corresponds to the age of 35 to 40 

years. However, 20% of these women are ranked lowest for the PRS, which means that they will 

reach the 2.8% baseline risk for surgery at an age significantly older than 40 years [90]. 

Therefore, it is preferable to postpone surgery in these women, which will avoid early 

menopause and unwanted psychological pain. 

Knowing that cancer progression is nothing more than a change in the expression of gene 

networks, Sanati et al. discovered gene expression patterns related to tumor progression using 

previous head and neck squamous cell carcinoma (HNSCC) data from The Cancer Genome 

Atlas (TCGA) of patients classified as cancer progressors/non-progressors [95]. Stratification of 

HNSCC is known to be extremely difficult due to the cancer's high heterogeneity, to which risk 

factors such as smoking and alcohol consumption contribute. Using WGCNA, the team were 

able to narrow the expression data from over 10,000 genes down to 18 modules, allowing them 

to identify differences in pivotal genes and module properties between the patients. These 

differences were considered as markers to identify patients with a progressor phenotype. If used 

as a surveillance tool, these markers could provide clinicians with an early warning for patients 

at risk of developing progressive disease. The team also reported overexpression of the VEGF 

pathway, confirming previous studies linking VEGF signaling to HNSCC [96,97]. 

Because digital systems have improved accuracy, reproducibility, and robustness to error, Hofree 

et al. were able to use these systems to stratify ovarian cancer into 4 subtypes [100,101]. 

Interestingly, their second subtype was rich in long mutated genes, namely TTN, the largest 

known coding gene. Further analysis revealed that TTN interacted with neighboring genes 

belonging to the cytoskeleton pathways, confirming an old observation in ovarian cancer that the 

shape of a cell is related to its response to chemotherapy [102].  

This provides evidence that stratification using network-based approaches (i) circumvents the 

problem of heterogeneity and complexity, (ii) correlates well with survival, and (iii) opens the 

doors to subtype-targeted therapy. Likewise, gene network-based studies (GNBS) are 

demonstrating their multipotency, making it easier to study cancer cells and providing essential 

validation for biological speculation. Hofree et al. suggested that it would be possible to find 

unifying therapies for all known cancers if different cancers were compared simultaneously by 

GNBS. 

8. Polygenic/network-based treatment and prevention 

Targeting key motor networks in disease is a direct strategy to optimally prevent disease 

progression. This approach allows for the repurposing of multi-target drugs, some of which have 

already been explored. At first, these drugs might appear unrelated to the disease in question, but 

after investigation they can show the ability to target key pathways in the disease of interest 

[103]. In a 2013 study, several diverse compounds were identified as effective in small cell lung 

cancer, including the tricyclic antidepressant imipramine, the calcium channel blocker bepridil, 

the antihistamine phenothiazine promethazine, and nearly every other related drug in the same 

class [104]. The efficacy of these drugs was then validated by experiments on human and animal 

disease models in vitro and in vivo. 
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Another therapeutic approach to targeting cancer, which was hypothesized two decades ago, is 

synthetic disease and lethality (SL) [105,106]. The method consists in targeting certain 

vulnerability genes, all while sparing normal tissues, in order to obtain doubly mutated cells that 

should trigger their disease or death. Although these vulnerabilities are rare (~1% of gene pairs 

tested), this presents the opportunity to indirectly target unmodifiable cancer mutations, giving 

hope to affected patients. The identification of SL-responsive genes has been proposed to be 

efficiently achieved using CRISPR-Cas9-mediated loss-of-function genome editing. 

Nevertheless, this can be guided by the prior identification of hub genes or genes with strong 

module membership, theoretically known as excellent weak points in cells [107]. Many 

promising candidate genes have been discovered, including essential gene sets specific to acute 

myeloid leukemia [108] and ENL vulnerability in MLL-AF4-positive acute leukemia [109]. 

However, only few SL interaction has been translated into the clinical setting to date, including 

breast and ovarian cancer cells carrying germline variants of BRCA1 or BRCA2 that were overly 

sensitive to PARP inhibitors [110]. 

9. Conclusion 

Advances in the analysis of the human genome have led us to realize that diseases are not 

monogenic and that genes interact with other molecules and environmental factors, explaining 

disease heritability and development. The gene interactions form veritable communication 

networks and gene task forces that are proving to be indispensable in demystifying complex 

diseases such as cancer. It is now well established that these networks have a universal 

architecture for all living things, and they are inherently robust and versatile and can withstand 

natural error. These structures are natural evidence that methods for studying complex diseases 

should consider groups of interacting genes as the unit of study rather than individual genes as 

disease units to avoid human-set thresholds and biases. 

An abundance of SNPs found by GWAS for prostate, lung, and breast cancers suggests a 

polygenic origin of cancer risk generation. This should help in quantifying cancer risk and allow 

for better disease prediction and thus better overall survival. For example, the heterogeneity and 

resulting difficulty in treating prostate cancer could be due to GV interacting with somatic 

mutations to cause cancer that could be detected and targeted with drugs. In lung cancer, all 

environmental risk factors account for less than a quarter of the heritability, and a large number 

of SNPs effectively fill this heritability gap. This has been used to develop polygenic risk scores 

that have been shown to be independent, effective indicators for risk stratification and predictors 

of lung cancer and have optimized the definition of "high risk" subpopulations. The same is true 

for breast cancer scores. The PRS for breast cancer also proved to be a decision support tool for 

setting the recommended age for breast cancer screening, hence a tool for promoting prevention 

in the form of healthy behavior change. 

Treatments that rely on polygenic interpretations include polypharmacologic treatments that 

target genetic and metabolic pathways that are part of functionally interacting gene groups. This 

could take advantage of existing drugs that initially appear unrelated to the disease but later 

prove effective and consistent with theoretical network-based assumptions. SL is another 

treatment method that can be efficiently performed using state-of-the-art CRISPR-Cas9-

mediated loss-of-function genome editing, targeting previously deduced hub genes and other 

genes with high module-membership. 
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10. Expert Opinion 

Analyses of human disease can move from "cell-limited gene network studies" to "system-wide 

network analyses", integrating data on cellular proteins, lipids, and various other metabolites.  

Unlike RNA and DNA molecules, intracellular proteins have a more rapid turnover, making it 

more difficult to study their expression. Knowing that serum protein and metabolite levels may 

be an exception to this rapid turnover barrier, these can be used and integrated with gene 

expression data to improve the predictive power of pathological gene networks. Björkegren et al. 

called this approach "genome-wide network studies" (GWNS) that integrate not only gene 

networks, but all known networks in the human body. 

Furthermore, with computing power and intelligence, we will eventually be able to create a 

universal network that includes networks representing interactions in each of the cell types in the 

body, themselves modules of a larger network linking cells together. The data integrated will 

include everything conceivable from genomics, transcriptomics, proteomics, blood serum omics, 

to environmental exposures. And if we were to compare a diseased universal network to a 

healthy universal reference network, this would allow us to extract modules that would 

accurately describe foci of pathological activity. These modules will not just be limited to 

intracellular molecular pathways, but could reach all parameters that may play a role in disease 

generation. 

This universal network describes the interaction of parameters in a state of homeostasis and it 

lacks the ability to predict the response-interactions when fluctuations are introduced into the 

system. This explains why it is crucial with this type of network to have data on the perturbed 

state, i.e., the pathological state. Indeed, comparing the network of the pathological state to that 

of the normal state reveals the change in network connections that cannot be calculated 

beforehand from the normal network itself. Future computer scientists and engineers have 

therefore a mission of creating a simulation of the living human body. By incorporating the 

necessary laws of physics and chemical reactions, the static empirical network will be brought to 

life. Once this is done, each patient will have a custom in silico simulation of their physiology 

that can be manipulated and tested an infinite number of times, allowing for all sorts of errors 

until we find the right treatment and drug dose for the patient's disease. This means that no 

potential harm is done to the patient, who will be receiving the most accurate prescription based 

on the best-known form of personalized medicine. 

In addition, these in-depth studies will exponentially improve the field of preventive medicine. 

We should be able to predict a person's resistance to many potential pathogens, detect any 

impending disease to which the person may be genetically or environmentally exposed, etc. We 

could also receive a glimpse into the future of a newborn and take the appropriate preventive 

measures so as to increase the survival rates of the child. The acceleration of medical research is 

also a direct consequence of using universal networks. It will be possible to virtually manipulate 

the human body without having to worry about any ethical constraints. Moreover, the results of 

these infinite experiments will be ready for analysis in an infinitesimal fraction of time, 

compared to standard clinical trials and cohorts that usually take decades. 

The only problem we might encounter is with data extraction. It should be firstly noted that not 

all omics data need prior testing and can be merged with the rest of the data without added 

challenge. For example, protein interactions and metabolite reactions abide to biochemical laws 

that are immutable. The ideal way to extract appropriate measurements from each patient is to 
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biopsy all known tissues and then use appropriate gene expression techniques to interrogate the 

data. In reality, this is impossible and indirect ways of assessing intracellular activity must be 

found. This is where the role of minimally invasive tests comes in, as they could help us predict 

what is happening at the microscopic level just by assessing the macroscopic manifestations of 

the cells. By assessing fluctuations in tissue-specific molecules that can be extruded into any 

extracellular medium (e.g., venous or arterial blood, cerebrospinal fluid) and by measuring the 

outcome of cellular activity (e.g., body temperature, heart rate, pulmonary function tests), we 

will have innumerable variables waiting to be correlated. One-time-only biopsies will help build 

the normal and diseased networks which will be used as a standard reference later on and will 

not be performed on every patient. These tissue biopsy analyses may already exist and can be 

found on online repositories or they can be taken from volunteer patients. Once the biopsies are 

taken, the gene networks will be correlated with the results of the minimally invasive tests. We 

will thus be able to discover the presence of certain modules or patterns of gene expression that 

exist only in patients with a specific combination of test values. By doing this, and after 

integrating the other omics data, we will have created a universal network that will not 

necessarily be a replica of the human body, but will be comprehensively powerful enough to 

illustrate human physiology and pathobiology in research and prediction models. 
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Figures 

Figure 1. An overview of how advances in DNA sequencing have led to today's discoveries. 

These advances have made it clear that diseases are not monogenic and blurred the distinction 

between polymorphism and mutation. In addition, it has been shown that genes interact with 

each other and with their environment forming complex communication networks. These 

networks are evolutionarily conserved and may even replace genes as the fundamental unit of 

study (icons made by Kiranshastry, Freepik, nawicon, and iconixar from www.flaticon.com). 

Figure 2. Flow chart. The main database was PubMed, with Nature and Elsevier getting 

preferred when searching in Google’s search engine. Citations extracted from articles attracting 

our interest (major articles) formed our secondary database. The citations extracted represent the 

minor articles. 
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GSVD: Generalized Single Value Decomposition 

GV: Germline Variant 

GWAS: Genome-Wide Associated Studies 

GWNS: Genome-Wide Network Studies 

HCC: Hepatocellular carcinoma 

HNSCC: Head and Neck Squamous Cell Carcinoma 

LC: Lung Cancer 

NGS: Next Generation Sequencing 

OMIM: Online Mendelian Inheritance in Man 

OR: Odds Ratio 

OS: Overall Survival 

PC: Prostate Cancer 

PRS: Polygenic Risk Score 

RNAseq: RNA sequencing 

SL: Synthetic disease and Lethality 

SNP: Single Nucleotide Polymorphism 

TCGA: The Cancer Genome Atlas 

TF: Transcription Factor 

TFBS: TF binding site 

TNM: Tissue-Node-Metastasis 

WGCNA: Weighted Gene Correlation Network Analysis 
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