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Abstract 

This document presents the current status of DAEMON WP5 activities. It presents the validation activities, 
performance evaluations and functional assessment tests of all the NI-solutions developed in WP3 and 
WP4 to date. The performance evaluation aims at meeting 9 target KPIs in well-defined scenarios, which 
are measured and assessed by developing 7 evaluations. Each evaluation relies on a set of technical 
tools, employed to perform 23 experimental activities. Such activities target different facets of a single 
evaluation.  
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Executive summary 

This deliverable presents DAEMON’s preliminary evaluation results concerning some preliminary NI-
solutions developed in WP3 and WP4, targeting 8 network functionalities assisted via NI. 

Specifically, WP5 receives the solutions for such functionalities with the goal of assessing them. The 
evaluation methodology employed by WP5, makes use of a set of tools that includes experimental 
testbeds, simulators or emulators, which are possibly fed with measurement data. Furthermore, WP5 is 
responsible of the implementation of the solutions from WP3 and WP4 into such experimental, simulation 
or emulation systems. Finally, WP5 provides feedback to WP2, WP3 and WP4 concerning the efficiency 
of both the design and the operation of the NI solutions developed within the project. According to the 
project timeline, such feedback occurs in three iterations of NI design/application/evaluation.  

In this document, we present the results of WP5 activities in the very first of the three planned iterations. 

Therefore, this document reports preliminary outcomes about the effectiveness of the NI algorithms 
developed in the project to date, whose goal is also helping to improve NI design in WP2 and application 
in WP3 and WP4. The document consists of five sections. 

In Section 1, we describe the structure of our performance evaluation methodology. We introduce the 
target KPIs defined to validate the NI-solutions, the evaluation methodology to measure such KPIs, and 
the tools exploited to perform tests in the different experimental activities. 

In Section 2, we detail the 9 target KPIs to assess the performance, reliability and sustainability of these 
NI-solutions. We also describe 7 evaluations planned designed to prove the validity of the proposed 

techniques in realistic experimental or measurement data-driven settings. 

In Section 3, we illustrate the complete set of technical tools, employed during the performance tests, 
which we categorized into experimental testbeds, simulators and emulators, and datasets. 

In Section 4, we show the results of 23 experimental activities carried on by the consortium, each 
targeting different facets of individual evaluations. 

In Section 5, we provide some conclusions and a final outlook of the document. 
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1 Introduction 
Work Package (WP) 5 of the DAEMON project lays out all validation, performance evaluation and 

functional assessment tests of the solutions developed in WP3 and WP4. As illustrated in Figure 1, WP5 
receives the solutions developed in WP3 and WP4 for network functionalities that we assist and automate 
via Network Intelligence (NI), and performs a comprehensive assessment of such solutions. The evaluation 
carried out by WP5 uses diverse tools for each functionality, including experimental testbeds, simulators 
or emulators, possibly fed with measurement data. Therefore, WP5 also takes care of implementing the 
solutions from WP3 and WP4 into such experimental, simulation or emulation systems. 

As also shown in Figure 1, WP5 provides feedback to WP2, WP3 and WP4 about the efficiency of the 
design and operation of the NI algorithms developed in the project. According to the project timeline, 
this occurs in three iterations of NI design/application/evaluation. Here, we present the results of WP5 

activities in the very first iteration above: therefore, this document reports preliminary outcomes about 

the effectiveness of the NI algorithms developed in the project to date, whose goal is also helping to 

improve the NI design in WP2 and application in WP3 and WP4. 

 

Figure 1. Positioning of WP5 in the DAEMON project work plan. 

More precisely, and according to what stated in the Description of Action (DoA), the solutions developed 

in WP3 and WP4, and thus evaluated in WP5, target 8 key NI-assisted network functionalities. Such 
functionalities are distributed across different micro-domains of the next-generation mobile architecture 
(namely, Core, Transport, Edge, Far Edge, and Beyond Edge), and across controllers, orchestrators and 
functions that operate at different timescales. They are listed as follows. 

• Reconfigurable Intelligent Surfaces (RIS) control ; 

• Multi-timescale edge resource management; 

• In-backhaul support for service intelligence; 

• Compute-aware radio scheduling; 

• Energy-aware Virtual Network Function (VNF) orchestration; 

• Self-learning Management and Orchestration (MANO); 

• Capacity forecasting; and 

• Automated anomaly response. 

In this deliverable, we report the current results of different performance evaluations across the 8 NI-
assisted solutions introduced above. Overall, the content of this document provides initial objective 
evidence of the advantage of a structured, deep, and sensible integration of NI into network 
infrastructures, and demonstrates the viability and performance of the NI-native vision for Beyond the 
fifth Generation (B5G) networks set forth by the DAEMON project. 

In order to organize our performance evaluation in a structured way, we aim at meeting clear targets on 

a comprehensive range of Key Performance Indicators (KPIs) that illustrate the performance, reliability 
and sustainability of the techniques proposed in the project to date. We remark that these targets are 
clealy to be intended as limited to (i) the scope of the 8 specific functionalities developed in the project 
and (ii) the evaluation scenarios where such functionalities are deployed as part of our tests; indeed, we 
cannot make claims on performance beyond what we actually assess. The KPI targets are outlined in 
Section 2.1. 
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We measure the KPIs identified and assess whether the targets are satisfied by developing a complete 

set of 7 evaluations that are designed to prove the feasibility of the proposed NI solutions in realistic 
experimental or measurement data-driven settings. The list of evaluations is provided in Section 2.2, and 
relies on a comprehensive methodology based on the following complementary approaches. 

i. Real-world experiments. Implementations in experimental testbeds are the primary option for the 

validation of the NI solutions. Within the project, we develop and/or take advantage of 10 

experimental sites that feature cutting-edge research infrastructure and cover all network micro-
domains. Each site has specificities that make it especially suitable to investigate precise subsets 

of the NI-assisted functionalities targeted by the project. The project evaluation sites allow for 

credible Proofs-of-Concepts (PoC) in realistic but controlled environments, which showcase how 
Network Intelligence (NI) can drive zero-touch network management to yield substantial 
performance gains and savings in resource usage efficiency or energy consumption. The 

experimental sites used for real-world NI assessment are described in Section 3.1. 

ii. Data-driven evaluations. We leverage realistic datasets to feed simulations or emulations that 

provide data-driven performance assessments of the NI solutions. We consider both large-scale 

traffic measurements (e.g., collected in nationwide operational mobile networks), as well as 

small-scale datasets (e.g., recorded in platforms deployed in laboratory environments). Such 
real-world data allows validating the proposed NI instance orchestration and NI-assisted 
functionalities in dependable settings, and possibly at scales that cannot be achieved with real-
world experiments. By using substantial volumes of mobile traffic data, which is paramount to the 
proper training of the NI algorithms, we ensure that such algorithms are trained and tested in 
realistic conditions – ultimately supporting that the observed NI performance are aligned with 
those that could be expected in production systems. These evaluations do not solely rely on 

baseline testing of machine learning solutions for NI, but we also feed the measurement data to 

digital-twins implemented into simulation and emulation sandboxes, including proprietary tools 
for real-time emulation developed by the project partners. In these cases, we follow a DevOps 
approach, using data-driven models and micro-services architectures that capture system 
dynamics at short timescales, so as to understand the scalability properties of the NI in controlled 
environments. The simulation and emulation tools developed and/or employed in the project 
are described in Section 3.2, whereas the datasets feeding them are described in Section 3.3. 

The performance tests executed in the project to date, which employ the aforementioned tools, have 

been structured into a wide range of 23 activities, each targeting a specific and focused technical 
problem within scope of one of the 8 network functionalities addressed by WP3 and WP4. Specifcally, 
multiple activities address different facets of each individual evaluation, and can be combined so as to 
complete the whole set of target evaluations. The results of each activity are reported in Section 4. 

Table 1. List of performed evaluations to date, with the associated activities, tools and target KPIs. 

Evaluation Short description of the 

evaluation 

Planned KPIs Tools used Activities 

E1 NI for sustainable virtualized Radio 
Access Network (RAN) 

K1, K2, K4, K5, K9, 
K3, K8 

T1, S2, T5 A1, A2, A3, A4, A5 

E2 NI for VNF placement and control K1, K2, K3, K8, K4, 
K5, K9, K7 

T8, D10 A6, A7, A8 

E3 NI for real-time anomaly detection K3, K7, K4, K5, K8 T8 A9 

E4 NI for Edge orchestration K1, K2, K3, K4, K5, 

K8, K9, K7 

D5, T4, D6, D1, 

S4, S1, D9 

A10, A11, A12, A13, 

A14, A15, A16, A17 

E5 NI for automated anomaly response K3, K7, K5, K8, K9 D7, D8, D11, 
D12, D13, D14 

A18, A19 

E6 NI for capacity forecasting and self-
learning 

K2, K4, K9, K5, K6 D1 A20, A21, A22 

E7 NI to configure a Reconfigurable 
Intelligent Surface 

K2, K4, K9, K5, K6 T9 A23 

As a summary, the evaluations developed in the project aim at achieving the KPI targets in controlled, 
yet relevant, environments. To do so, each evaluation relies on a set of technical tools (i.e., simulators 
and emulators, experimental testbeds, or datasets) that are employed to perform a number of detailed 

activities. Table 1 provides a complete view of all relationships among evaluations, KPIs and activities: for 

each evaluation, in each row, we indicate the associated KPIs, the used tools and the list of activities. 
Table 1 is thus intended as a reference that assists the reader and helps following the organization of the 
performance evaluation of the project. 
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The detailed description of KPIs, evaluations, tools and activities is provided in the remainder of the 
document, which is structured as follows. 

• Section 2 details the target KPIs set for the NI solutions developed in the project, and the different 
evaluations that have been foreseen to validate such solutions. 

• Section 3 lists the technical tools that have been employed to implement the evaluations above, 
by assessing the performance of the NI solutions in realistic experimental or data-driven settings. 

• Section 4 shows the final results of the evaluations carried out to date in the project, which 
provide initial validations to the KPI targets through the different tools presented before. 
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2 Target KPIs and evaluations 
The ambitious vision and objectives of DAEMON call for a credible and solid validation and performance 
evaluation of the eight NI-assisted functionalities introduced in WP3 and WP4 to improve B5G networks 
performance, sustainability and reliability. To date, we developed preliminary NI solutions, which: 

• Increase network performance end efficiency, by supporting network functionalities that allow 
for extremely fast and adaptive control of (i) RIS in a new Beyond Edge domain, (ii) 
computational resources in the Edge domain, and (iii) support for service intelligence in the user 
plane of the Transport domain. 

• Enable the sustainable operation of B5G systems, by means of solutions for (iv) computation-
aware radio scheduling, and (v) energy-aware VNF orchestration and (vi) self-learning MANO. 

• Ensure an extreme reliability of zero-touch B5G, by exploiting (vii) capacity failure avoidance via 

anticipatory allocation, and (viii) anomaly detection. 

2.1 Target KPIs 

To evaluate the performance of all the NI-assisted functionalities in the project, we introduce nine KPIs 

accompanied by target values that we want to meet in controlled, but relevant, scenarios. Table 2 lists 

the KPIs fixed by 5G-PPP [1] and additional technical KPIs originally proposed by the project, with their 

respective targets. It also shows evidence supporting the feasibility of the targets and our progress 
towards achieving those targets. As anticipated in Section 1, these targets and the evidence outlined in 
Table 2 are to be intended as limited to (i) the scope of the 8 specific functionalities developed in the 
project and (ii) the evaluation scenarios where such functionalities are deployed as part of our tests; 
clearly, we cannot make claims on performance beyond what we actually assess. 

More in detail: K3, K6, K8 and K9 are performance KPIs; K1, K2 and K4 are sustainability KPIs; K5 and K7 
are reliability KPIs. The last column of Table 2 shows our progress achieving the assigned target for each 
KPI: such a value is a qualitative indicator calculated, for each KPI, computed as the average of the 
progress of all the experimental activities targeting that specific KPI. The detailed progress of the 
individual activities that is informing such a global per-KPI progress will be presented later in Table 10. 

Table 2. List of target KPIs: K1, K2, K4, K6 set the target relative to the current baseline; K3, K5, K7, K8, K9 
define absolute targets that involve substantial improvements over today’s state-of-the-art technology. 

KPI Description Target Evidence supporting the feasibility of the target 

and improvement over the baseline 

Average 

overall 

progress of the 
assocated 

activities 

K1 VNF energy 
consumption 
reduction 

50% According to recent assessments, energy consumption 
in the edge and core of softwarized mobile networks 
may increase as much as 25% due to the impact of 
active cooling among other issues [2], [3]. Thus, 
DAEMON aims at saving of up to 25% of energy costs 
thanks to a NI-assisted VNF placement based on 
energy considerations. Furthermore, additional 25% 

savings will be allowed by NI-assisted VNFs that can 
adapt their energy footprint to the context of the 
location where they are running [4]. 

27% 

K2 Saving of 
computational 
resources at the 
edge 

40% Current results of the DAEMON partners show that by 
applying intelligent radio and CPU scheduling in O-RAN 
architectures, one can reduce the requirement of the 
computing resources required by virtualized base 
stations by up to 20% with minimal impact on 
performance [5], [6]. The improved NI design 
developed by DAEMON shall advance those 
techniques from multiple perspectives as outlined in 

Objectives 1-3, hence making a 40% reduction target 
viable in the scenarios considered here. 

37% 

K3 Response time   
of AI-based NI 

algorithms  

1 ms By leveraging on recent advances on highly elastic 
Artificial Intelligence (AI) models [7], DAEMON will build 

NI algorithms capable of meeting the hard 
requirements of delay- and reliability-sensitive traffic 
through effective trade-offs with accuracy. To the best 
of our knowledge, DAEMON will provide the first AI-
based NI with guarantees in terms of response time. 

24% 

K4 OPEX savings 60% Preliminary studies of the DAEMON consortium 
demonstrate how AI models trained with customized 
loss functions that reflect monetary costs can avoid 

41% 
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Service-Level Agreement (SLA) violations and reduce 
Operation Expenditure (OPEX) by up to 40% [8]. While 
these figures refer to local solutions, the structured 
coordination of NI instances enabled by the DAEMON 
architecture will allow targeting further cost savings of 
up to 60%. 

K5 Reliability Five 
9’s 

Current state-of-the-art solutions developed by the 
DAEMON partners can satisfy SLA with a level of 
reliability between three and four 9’s [9]. The 

cooperative, multi-timescale NI orchestration model 
envisaged in DAEMON will significantly improve the 
amount and quality of information available to NI 
algorithms, making it possible to target further gains in 
the reliability of resource allocation decisions to, e.g., 
meet Ultra-Reliable Low-Latency Communication 
(URLLC) requirements in certain conditions.  

42% 

K6 Wireless capacity 
(bps/m2) 
increase 

100% NI-controlled intelligent surfaces that can adapt the 
propagation properties of wireless channels to the 
environment dynamics will allow DAEMON to, at least, 
double the bit-rate per square meter in scenarios of 
interest, in line with early results [10]. 

10% 

K7 Anomaly 
detection recall 
and sensitivity 

>0.85 Recent methods for network anomaly detection 
achieve a precision-recall Area Under Curve (AUC) in 
the 0.66-0.88 range [11] leaving substantial room for 

improvement towards B5G systems. Having access to NI 
coordination, as well as to novel tools for a tailored 
design of AI, the NI-assisted anomaly detection 
mechanisms designed by DAEMON will target a 0.9 
precision-recall AUC with at least 85% scoring in both 
precision and recall in scenarios of interest. 

50% 

K8 Vertical service 
response time 

O(sec) By taking advantage of in-network support, backhaul-
assisted computing as a service for third parties shall 
contribute to reducing the response time of vertical 
services from minutes in current production systems to 
seconds with DAEMON NI-assisted functionalities. 

30% 

K9 Optimality gap of 
network 
management 

decisions 

1% Building on previous experience of the partners in 
anticipatory networking over long time horizons [12], 
DAEMON will ensure that decisions on network resource 

and function allocation occurring at periodicities of 
hours will perform very close (99%) to optimum oracles 
in scenarios of interest where the optimum can be 
defined. This will ensure that such decisions are precise 
enough to assist constructively faster NI, which use such 
longer timescale decisions (e.g. policies) as input. 

35% 

2.2 Evaluations 

In order to assess the performance of the NI-assisted functionalities and demonstrate how they can 
achieve the KPI targets set out above, we are performing seven dedicated evaluations, as follows. 

• Evaluation 1 (E1) demonstrates real-time control and non-real time orchestration of virtualized 
RAN (vRAN) services and resources. Experiments will have been carried out at sites T1 and T5 and 
with emulator S2, and focus on evaluating mechanisms that maximize the sustainability of dense 
vRAN deployments, minimizing their footprint and their operational and capital cost typically 
associated with greenfield deployments. Associated functionalities: Compute-aware radio 
scheduling. 

• Evaluation 2 (E2) implements and demonstrates NI solutions that support network slice 
management and orchestration operations. Experiments have been conducted at site T8 and 
target the evaluation of the scalability, elasticity and stability of the NI-assisted automation and 
orchestration approaches developed by the project. Associated functionalities: Energy-aware 
VNF orchestration. 

• Evaluation 3 (E3) validates tailored NI solutions for anomaly detection both in controlled 
environments and in a production core network. Experiments have been carried out at site T8 
using ground-truth information on resolved incidences in the real-world network infrastructure of 
Telefonica, a major European operator. The NI-assisted anomaly detection designed within the 
project is integrated in a big data platform where the Mobile Network Operator (MNO) 
operations teams inject live telemetry data, allowing for real-time evaluations in realistic 
scenarios. Associated functionalities: Automated anomaly response. 
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• Evaluation 4 (E4) implements and deploy the NI-assisted solutions for service orchestration and 
resource allocation algorithms in the Edge micro-domain. Experiments shall leverage site T4, 
simulators S1 and S4 and datasets D1, D5, D6 and D9, validating the capabilities of the solutions 
developed by the project to dynamically orchestrate, allocate and deploy radio and network 
services. This setup is the ideal environment where to validate NI-driven tasks like, e.g., real-time 
radio technology classification or traffic classification, in a real-world scenario characterized by 
high-dimensional and very dynamic input data. Associated functionalities: Multi-timescale Edge 
resource management. 

• Evaluation 5 (E5) tests NI-assisted solutions for anomaly response in very large-scale settings. These 
experiments take full advantage of datasets D7, D8, D11, D12, D13 and D14 in order to assess the 
capability of the NI to (i) trigger alarms in the presence of network anomalies within the available 
data, (ii) detect the root cause of such anomalies, and (iii) recommend network healing actions 

that include anticipatory resource and VNF reallocations based on capacity forecasting. 
Associated functionalities: Automated anomaly response, Capacity forecasting, In-backhaul 
support for service intelligence. 

• Evaluation 6 (E6) validates the NI solutions designed for long-timescale operations, i.e., MANO, 
VNF orchestration and the associated allocation of resources. Experiments have built on dataset 
D1, since the performance of such network functionalities is best evaluated in large-scale 
scenarios. To this end, network load time series and other radio-cell-level and core network KPIs 
are used to demonstrate NI-assisted network function and capacity orchestration in a 
nationwide scenario. Associated functionalities: Self-learning MANO, Energy-aware VNF 
placement, Capacity forecasting. 

• Evaluation 7 (E7) targets the demonstration of NI to configure Reconfigurable Intelligent Surfaces 
(RISs) in a controlled environment. Experiments will leverage site T9, where one transmitter will 
send a flow of data to one receiver in non-line-of-sight. A large codebook, optimized through 
NI, will be then tested to assess the passive beamforming gains of the reflective RISs. Associated 
functionalities: RIS control. 

We refer the reader to Table 1 for a complete view of the association between KPIs and evaluations, as 
well as between evaluations and the tools they employ and the activities they entail. We clarify that, with 
respect to the Description of Action (DoA), we decided to add an extra evaluation for RIS control, namely 
E7. Our choice is motivated by the fact that during the implementation of RIS experimental platforms, we 
found such technology to aim more at performance improvement than sustainability. Also, we moved 
K6 from E1 to E7 accordingly. 



Deliverable 5.1 

                                                                                                                                                                           H2020 – 101017109 

17 

3 Technical tools 
In this section, we present the technical tools that are employed for the performance evaluation of the 

NI-assisted functionalities developed in the project. We tell apart three categories, i.e., (i) simulations and 
emulators, (ii) experimental testbeds, and (iii) datasets. Tools in each category are detailed in separate 
subsections in the remained of the section. 

3.1 Experimental testbed sites 

The project relies on 12 relevant platforms for the experimental evaluation of the proposed solutions. 
Table 3 provides a list of these platforms, whose details are then expounded in the rest of the section. The 
table also indicates what evaluations and KPIs rely on each testbed. 

Table 3. Experimental sites available in the project, with related evaluations and KPIs. 

ID Name Short description Related evaluation Related KPIs 

T1 
Virtualized radio 
stack 

This testbed will be used to demonstrate 
compute-aware radio scheduling 
solutions studied in T3.1 

E1 K1, K2, K4, K5 

T2 5Tonic 
Large-scale facility for the testing of 
orchestration solutions using a 
commercial access network 

E2 K1, K4, K5, K8, K9 

T3 
Multi-site 5G radio 
testbed  

Multi-site 5G Testbed, which spans 
across two different sites in Barcelona 
and Madrid (Spain), offers a novel and 
unique framework for testing diverse 
Multi-access Edge Computing (MEC) 
applications 

E3 K4, K5, K7, K8 

T4 Smart highway 
A real-life testbed for experimentation 
with vehicular communications and 

distributed edge computing 

E4 K2, K5, K8 

T5 
SDR testbed with 
power meter 

Software Defined Radio (SDR) testbed 
with a power meter to evaluate power 
consumption in virtualized RANs 

E4 K1, K4, K9 

T6 
Dockerized srsRAN 
+ Open5GS 

Fully virtualizable solution for the 
creation of a 4G/5G network in a box, 
using srsRAN 

E1 K1, K2, K4, K5 

T7 

VNF deployment 
and Edge 
Infrastructure 

Testbed comprised of Bullsequana 

Edge nodes, which are for mobile 
computation, and high-performance 
commuters (Mellanox SN2100) 

E1, E4 K1, K2, K3, K4 

T8 

Virtualized platform 
OSM and open 
stack 

A set of servers on which an Open-
Source MANO (OSM) and Openstack 
deployment is realized  

E2, E3 K3, K7 

T9 
Reconfigurable 

Intelligent Surfaces 

A set of custom-made RIS prototypes 
designed and built within DAEMON to 

demonstrate RIS control solutions 

E7 K6 

T10 
Eclipse Zenoh 
testbed 

The machines within this testbed will be 
used to test Zenoh’s scalability, reliability 
and performance under different 
scenarios 10GbE are connected using a 
ring topology. 

E4 K2 

T11 

Network 

capabilities, cloud 
resource testbed 

Openstack-based multi-cloud 
infrastructure, consisting of  720+ CPU 

cores, 1700GB+ RAM and 120+ TB 
storage space, interconnected mostly 
via 10Gbps fiber/copper links 

E6 K2, K5, K9 

T12 

P4 programmable 
tesbed for 
in-backhaul NI 

Three Intel Tofino programmable 
switches deployed in a full 100-Gbps 
testbed with two dedicated servers for 
network emulation 

E5 K3 

3.1.1 Virtualised radio stack (T1) 

Most of the results related to the evaluation E1 are performed on cloud-based deployment consisting of 
vRAN network functions. This deployment relies on srsRAN (formerly srsLTE), an open source software 
covering the lower protocols of the mobile network stack. More specifically, srsRAN provides the 
functionality of the Physical (PHY) up to Radio Resource Control (RRC) layer for evolved Node-B (eNB) or 
next Generation Node-B (gNB), while also supporting Fourth Generation (4G) or Fifth Generation (5G) 
User Equipment (UE). It is written in C/C++, and its configuration parameters cover a wide range of the 
base station and UE possible configurations. This software implementation runs, in a virtualized way, into 
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several servers, which have been used in the different evaluation tasks. At the time of writing, the 
virtualization infrastructure is composed by: 

• 2 Supermicro SYS-E200-8D with Intel XEON processors and 16 GB of RAM each 

• 1 Supermicro Superserver 6029U-TRT with: 

o 2 x Intel Xeon Gold 6226R, 2.9GHz, 16 cores/32 threads 

o 1x NVIDIA Tesla V100 32GB 

o 1x Intel Field Programmable Gateway Array (FPGA) PAC N3000 Vista Creek. 

srsRAN uses Radio Frequency (RFR) frontends based on Software Defined Radio to provide connectivity 
between Ues and the base stations. srsRAN contributors have developed drivers for various commercial 
hardware RFR-frontends like URSP, Soapy SDR and BladeRF. For this testbed, we have available a set of 

10 USRP B210, which can be arranged to conform different topologies and provide variable load to the 
infrastructure. 

Additionally, some of the servers have hardware accelerators such as Graphical Processing Unit (GPU) 
or FPGA, to study the effect on the computing infrastructure of these hardware elements. Through this 
deployment we can measure, by probing the software implementation and the hardware infrastructure 
K1, K2, K4, K5. 

3.1.2 5Tonic (T2) 

5Tonic is a laboratory for enhanced 5G experimentation. The 5TONIC site is currently located at IMDEA 
Network premises in Leganés. This site provides a complete 4G and 5G network infrastructure, including 
5G Non-Standalone (NSA) and Standalone (SA) support, in two different coverage areas. It is connected 
with other European sites (in the context of different ICT-17 projects such as 5G-EVE or 5G VINNI) as well 
as with Telefónica Spain Labs in Alcobendas, Madrid, and Telefónica I+D labs in Almagro Central Office, 
also in Madrid.  

The Network Function Virtualization (NFV) infrastructure in 5Tonic is operated through an Open Source 
MANO orchestrator. Through 5Tonic, the Evaluation E2 can be performed, measuring the related KPIs K1, 
K4, K5, K8, K9 accordingly, achieving hence a large-scale evaluation. IMDEA, TID, and UC3M are 
members of the lab and can thus arrange evaluation activities leveraging the available infrastructure. 
More details are also available [13]. 

3.1.3 Multi-site 5G radio testbed (T3) 

The multi-site 5G TID Testbed, which spans across two different sites in Barcelona and Madrid (Spain), 
offers a novel and unique framework for testing diverse MEC applications. In particular, its main goal 

building an automation framework for testing diverse edge solutions, where edge encompasses the 
portion of the mobile between the eNB and the CORD (Central Office Rearchitected as Data Center). 
This is attained by means of integrating generic purpose server pools where controllers and VNFs such as 
virtual core networks, virtual Baseband Unit (vBBU) are hosted in the form of a Virtual Machine (VM) or a 
container with open source a proprietary RAN software and hardware equipment. To provide the 
management and automation of the equipment, the Telefonica edge testbed leverages a set of open-
source software tools for fast prototyping, automation, and testing. As for the emulation of the CORD, TID 
Testbed relies on four NFV servers physically located in Telefonica Datacenter premises, which form the 
physical infrastructure for testing the diverse MEC/NFV applications under evaluation. The orchestration 
of these NFV servers to host VNFs is based on Kubernetes container orchestration. A series of 
reconfigurable multi-purpose network server elements (2 servers based on Intel Xeon ES-2697 2.6Ghz with 
56 CPUs and 8 Gigabit Ethernet cards and 2 servers based on Intel Xeon ES-2680 2.5Ghz with 48 CPUs and 
4 Gigabit Ethernet cards. 

As for the RAN segment, the testbed also offers different potential units as gNBs/eNBs, based on SRS and 
proprietary license-based (e.g., Amarisoft eNB and other eNB vendors).  These 5G and 4G access 
networks can leverage the aforementioned NFV server. 

As for UE, the testbed includes as well as a proprietary UE simulator (based on Amarisoft software) that 
allows the emulation of up to 128 Ues at the signal generation level, and real Ues based on the 
commercial 4G and 5G Phones. In terms of core network functionalities, our facilities offer different 
Evolved Packet Core (EPC) flavours, including open-source core flavours (e.g., open5GS) and proprietary 
flavours (e.g., Affirmed Networks). 

3.1.4 Smart highway (T4) 

We are developing a Proof-of-concept (PoC) real-life testbed environments modelling an AI-enhanced 
edge orchestration system. Figure 2, illustrates the PoC, which shall be employed for conducting realistic 
experimentation with automated and intelligent edge orchestration of Vehicular-to-Everything (V2X) 
services. The PoC leverages an existing Smart Highway testbed built along the E313 highway (Antwerp, 
Belgium) [61]. To create an edge network, we provide the Network Function Virtualization Infrastructure 
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(NFVI) by virtualizing computational resources in Road-side Units (RSUs) (RSU 3 and RSU 5), with the help 
of Kubernetes. These computational resources are used for deploying V2X services, and for performing 
their lifecycle management. The edge orchestrator is realized as an enhanced version of a Kubernetes 
master, because i) it supports cross domain operations, i.e., edge-cloud and edge-edge interaction, and 
ii) it is capable of training and using Machine Learning (ML) models for making intelligent decisions in an 
automated way. In our PoC, both edge orchestrator and NFVI can be deployed on the bare metal, as 
well as in Linux containers and virtual machines, which is a suitable practice for a shared experimentation 
environment such as testbed. 

 

Figure 2. PoC combining distributed testbed environments. 

The Cloud orchestrator is running on the bare metal on top of the Virtual Wall testbed, located in Ghent, 
Belgium (Figure 2). It is deployed as a web server (using Flask framework in python), which is capable of 
i) processing decision-offloading requests coming from the edge orchestrators, ii) location data 
processing and publishing on Zenoh, iii) injecting decisions on the north-bound interface of edge 
orchestrators to instruct them to proactively migrate/relocate services from one edge to another, and 
iv) receiving notifications from NIFs deployed on the cloud, which enhance their operations and help 
them make efficient decisions on managing underlying resources and edge orchestrators. 

As different types of data need to be collected to feed ML models (e.g., computational and network 

resource utilization, energy consumption, KPIs measured at users’ side, and users’ locations), in this PoC 
we deploy MEC value-added services, as per definition in ETSI MEC, which perform data retrieval and 
pre-processing before publishing them on Zenoh. Given its minimal network overhead (as little as 5 Bytes), 
and its small footprint (around 60 kBytes on Arduino board), Zenoh is adopted in our PoC as a framework 
for data engineering pipeline. In particular, Zenoh provides a minimal set of primitives to deal with data 
in motion (e.g., real-time stream of vehicles’ location/speed/destination), data at rest (e.g., historic data 
for vehicles’ and edge nodes’ computational resource utilization and energy consumption) and remote 
computations (e.g., on-demand calculation of the best route and speed limit). Each edge and cloud 
orchestrator acts as a subscriber for various types of data that can be stored on edges, and used for 
training or online learning/optimization. 

Furthermore, concerning the vehicle as a client, our current includes one vehicle that is capable of 
communicating with the edge services via long range 4G (to be extended with 5G in the future). Thus, 
the client application is installed in the On-board Unit (OBU) of the vehicle, and it utilizes the Uu interface 
between User Equipment (UE) and gNodeB to exchange Cooperative Intelligent Transportation System 
(C-ITS) messages with services, and inform them about its location, speed, heading, and destination. The 
testing service that we deploy on the edges for the purpose of testing and demonstrating the work of 
PoC is the back-situation awareness V2X service, which addresses emergency situations on the road, 
thereby proactively informing vehicles on the road about the arrival of an ambulance. This service is 
containerized and designed in a cloud-native way, and thus orchestrated by the edge orchestrator. 

3.1.5 Software-Defined Radio (SDR) testbed with power meter (T5) 

This is a small testbed dedicated to collecting power consumption measurements on radio processing 
software. More specifically, the testbed is comprised of a 3GPP R10-compliant Long-Term Evolution (LTE) 
Base Station (BS), a UE, and a GPU server. The testbed is depicted in Figure 3. 
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Figure 3. SDR testbed with power meter. 

The BS and UE include an NI USRP B210 as Radio Unit (RU) and a general-purpose computer (Intel NUCs 
with CPU i7-8559U@2.70GHz) deploying the near real time RAN Intelligent Controller (RIC) (for the BS) and 
the baseband unit (BBU), implemented with the srsRAN suite (which emulates an O-eNB for 
experimentation). The virtualized Base Station (vBS) and UE are connected through SubMiniature version 
A (SMA) cables with 20 dB attenuators, and we adjust the transmission gain of the RU’s RFR chains to 
attain different uplink Signal-to-Noise Ratio (SNR) values. The edge server is equipped with a CPU Intel i7-
8700K @ 3.70GHz and a GPU Nvidia GeForce RTX 2080 Ti. The vBS and server are connected using a switch 
with Gigabit Ethernet technology.  

To measure the power consumption of the BBU and the server, we use the digital power meter GW-Instek 
GPM-8213 with the GW-Instek Measuring adapter GPM-001. The server supports AI services. As an 
example, we have deployed Detectron2, developed by Facebook, which performs object recognition. 
Specifically, Detectron2 is configured with a Faster Region-based Convolutional Neural Network (R-CNN) 
comprising a ResNet backbone with conv4 layers and a conv5 head with a total of 101 layers. The UE 
sends to server images from the COCO data set [14] through the LTE uplink. The images are resized at 
the user side using the OpenCV library in Python. The bounding boxes and object classes are computed 
by Detectron2 and sent back to the Ues (LTE downlink).  

We introduced two key srsRAN modifications. First, we modified the radio Medium Access Control (MAC) 
scheduler to implement different radio policies. Secondly, we integrated the O-RAN E2 interface to 
enforce such radio control policies on-the-fly and send consumed power consumption samples to the 
corresponding xApp. For the latter, we have added code into srsRAN to collect this information from the 
power meter. We have also implemented a PoC Near Real-Time (Near-RT) and Non Real-Time (Non-RT) 
RIC. We also have an interface to configure the GPU speed on-the-fly by using the Nvidia driver that 
allows us to set the maximum power management limit, ranging between 100 and 280W. This runtime 
configuration does not affect the GPU operation. Note that the actual GPU consumed power depends 
on its duty cycle.  

3.1.6 Cloud-native mobile network emulators (T6) 

As discussed in Section 3.1.1, srsRAN works with real radio frontends based on SDRs. Additionally, srsRAN 
have developed a software RFR-frontend based on ZeroM, an open source message queueing library 
written in C. When using this driver, the transmitted I/Q baseband symbols between UE and base station 
are transferred over various transport methods, like Inter-Process Communication (IPC) or Transmission 
Control Protocol (TCP) sockets. Choosing this driver avoids the need for high expertise in RFR channel 

configuration and facilitates the introduction of researchers who want to simulate a radio access network 
environment, but whose RFR channel is not their main area of interest or would be reluctant to invest in 
actual hardware transceivers.  

Open5Gs, instead, is a very popular open source implementation of a mobile network core. Written in C, 
it stands as a reference among researchers and mobile telecommunications practitioners for 
experimentation and future enhancements. Currently supporting up to 3GPP 5G Release 16, it contains 
the most important components of the 5G Core and 4G EPC with Control-User Plane Separation (CUPS), 
meaning it can operate on both 5G NSA and SA modes, as it can serve both 4G eNBs and 5G gNBs. Its 
straight-forward build procedure makes its deployment in small-scale private networks very easy, while 
its modular architecture attracts its adoption into microservices-based cloud-native environment, that 
fits well with solutions such as Kubernetes. 
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3.1.7 VNF deployment and Edge Infrastructure (T7) 

From the University of Málaga, we have at disposal the infrastructure of the I software institute that 
includes equipment for VNF deployment and edge infrastructure. Concerning the VNF deployment 
equipment, we have at disposal a dell Server with one 338-BSDH Intel Xeon Silver 4210, 2.2 GHz, ten cores, 
20 subprocesses, 9.6 GT/s, a cache of 13.75 MB, Turbo, HT (85 W) DDR4 2400 MHz, two servers with 338-
BTWN Intel Xeon Gold 5220S, 2.7 GHz, 18 cores/36 subprocesses, 10.4 GT/s, a cache of 24.75 MB, Turbo, 
HT (125 W), DDR4-2666. This equipment works with a 5G radio system with a Nokia AirScale System Module 
Indoor base band Unit, a Nokia Micro RRH 474147A and a Nokia Micro RRH 5GC001274. The edge 
infrastructure comprises seven nodes for Fog infrastructure with two CPU G62230R with 26 cores, 512 GB 
RAM and 2 GPUS Tesla V100s and 2 Bullsequana Edge Nodes from ATOS that are portable. The 
Bullsequana Edge nodes are for mobile computation and all the components are connected using high-
performance commuters (Mellanox SN2100). 

3.1.8 Virtualized platform, OSM and open stack (T8) 

The testbed includes 3 servers and a total of 12 mini PCs as illustrated in Figure 4. In the main server, the 
OSM is deployed, while a set of capabilities including: a) AI enhanced MANO, b) Anomaly detection; c) 
Root Cause Analysis (RCA) and d) Performance diagnosis are also deployed as docker containers. 
Opendstack is deployed on top of the three other servers and the mini PCs. In detail, one server acts as 
the OpenStack Control, while the rest of the servers act as Openstack Compute nodes. The mini PCs 
have also Openstack capabilities. In the testbed a set of Services can be deployed in the GPU server 
which has the higher specifications: 64vCPUs, 128GB RAM, 2TB SSD. 

 

Figure 4. WINGS testbed with OSM and open stack. 

In the testbed, NI functionalities can be developed and evaluated under different vertical scenarios, also 

the testbed allows collecting various metrics that include metrics from OSM/Openstack, the network, the 

application, and the functionalities for diagnostic, RCA and anomaly detection. 

3.1.9 Reconfigurable Intelligent Surfaces (T9) 

We have initiated the design of a RIS based on delay lines and RFR switches. The main purpose of our RIS 
design is to realize passive beamforming [15]: to reflect incoming waves impinging onto the surface with 
an arbitrary angle of departure defined by a controller with the goal of (i) (re-)focusing energy into the 
desired direction, and (ii) in the least energy-consuming manner. Consequently, no signal processing nor 
power amplification are permitted, and low-power electronic components must be carefully selected. 

The basic element is a board made of a grid of cell units distributed in a 2D array with the ability to 
enforce phase shifts over impinging signals programmatically. By configuring an appropriate phase shift 
on each cell unit, we can attain beamforming gains passively, without resorting to power amplifiers or 

signal processors. This is shown in Figure 5.  

Phase shifts are configured by a Micro-Controller Unit (MCU). The MCU is the only active electronic 
component in our design; hence, it is important to select a low-consuming microcontroller that is friendly 
to energy harvesting or other low-power sources. The MCU communicates with an external controller 
with a standard UART interface, a simple and low-power serial protocol. The MCU is not connected 
directly to each unit cell, which would not be feasible boards with a large number of unit cells. A more 
scalable approach is to connect each cell unit in the same row and column with a pair of buses, which 
we call “row/column selection bus”, which select the cell unit to be configured. Then, another bus, the 

“phase configuration bus”, communicates the desired configuration index (phase shift) out of a set of 
possible configurations for that selected unit cell. In this way, in an 𝑁𝑥 × 𝑁𝑦  board, we reduce the 

complexity of the design from 𝑁𝑦 × 𝑁𝑥 to 𝑁𝑦 + 𝑁𝑥 connections. 
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Figure 5. RIS general overview. 

 

Figure 6. RIS unit cell. 

As depicted in Figure 6, each cell unit is connected to both column/row selection buses through an AND 
gate. Hence, when the MCU sets a high voltage state in row x and column y, the MCU activates the 
configuration bus for cell unit (x,y) whereas all the remaining gates will output a low voltage state (0V), 
which de-selects them. A second relevant component in the design of our cell unit is a flip-flop D, which 
has the ability to store 1 bit as long as it is powered. When a flip-flop senses a rising edge, it updates the 
value in memory and then sends it out as output. To this end, the high state exiting the AND gate works 
as a rising edge for the flip-flop.  

We designed our RIS with a 3-bit resolution in the phase shift configuration space. Therefore, each cell 
unit integrates three flip-flops, and we use three 1-bit phase configuration buses as shown in Figure 6. The 
third important component in each unit is an RFR switch, which can redirect the RFR signal received in 
an input port towards one output port selected by the configuration ports. This is also shown in Figure 6. 
Each configuration port is directly connected to one configuration bus, as shown in the figure. Moreover, 
each output port is connected to an open-ended transmission line, each with a (different) length 
calculated to provide a specific time delay on the bouncing signal, and hence provide a desired phase 
shift. We reserve one configuration output to connect a resistor matching the characteristic impedance 

of line and the switch, which dissipates the incoming signal and prevents the signal to be irradiated back. 
We call this configuration “absorption state” and enables us to change the size of the surface area that 
can reflect signals and hence lets us virtually change the size of the RIS, which is useful for a number of 
use cases. The last component of the unit is a patch antenna, a particularly cheap antenna with low 
gain that is the ultimate responsible of interacting with electromagnetic waves.  

Our approach is modular: multiple boards can be connected through a common UART bus, and each 
of them can be singularly addressed by the external controller using different identifiers. The disposition 
of the unit cells across cells within and across boards have been carefully designed to have a separation 
of λ/2, where λ is the wavelength of the operating frequency. This provides us an ideal approach to 
increase/decrease the physical area of our structure without compromise inter-antenna distance. 

The next steps of the testbed development will be (i) designing and printing each component described 
above in PCB (Printed Circuit Board), and (ii) empirically characterizing the resulting device. This has 
several advantages such as low cost, fast production time, and suitability for large-scale implementation. 

3.1.10 Eclipse Zenoh testbed (T10) 

The Eclipse Zenoh testbed is composed by four servers, interconnected via 100 GbE fiber links as illustrated 
in Figure 7. In each server a variable number of Zenoh routers, peers and Zenoh Flow runtimes is deployed 
based on the different experiment. 

In the testbed, Zenoh’s scalability, reliability and performance metrics are evaluated under different 

scenarios, such as different topologies and payloads, leveraging on virtualization of both computing and 

networking fabric. The same testbed is also used to evaluate Zenoh-Flow capability to run NI algorithms 

and to leverage on heterogeneous computing devices such as CPUs and GPUs. 

Different metrics are collected in the testbed including: (i) Zenoh latency and throughput metrics; (ii) 

Zenoh scalability metrics; (iii) Zenoh footprint metrics; (iv) Zenoh Flow latency metrics; and, (v) Zenoh Flow 

footprint metrics. 
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Figure 7. ADLINK’s testbed with Eclipse Zenoh installed. 

3.1.11 Network capabilities and cloud resources testbed (T11) 

OTE will develop in the project a cloud testbed for hosting of a subset of the VNFs, which will be 
developed in DAEMON project. The testbed includes an Openstack-based multi-cloud infrastructure. In 
the current setup Openstack Queens 23oolean is available on Ubuntu Server 16.04/18.04 LTS. The testbed 
collectively consists of >720 CPU cores, >1700GB RAM and >120TB storage space, and is interconnected 
(mostly) via 10Gbps fiber/copper links. Compute and storage resources can be made available for 
hosting relevant services. The setup can be split into one or more cloud slices (controllers/ compute 
nodes/ hypervisors) of various sizes, either in bare metal or virtualized form, in order to allow high degrees 
of freedom for customized configurations to meet projects’ needs. Moreover, a set of small cells are also 
available. The next figure presents a conceptual view of OTE’s topology for the testbed which will be 
used in the DAEMON project. OTE will also provide the necessary networking capabilities (e.g., VPN 
access, certificates, etc.) for access provision to the involved partners. Figure 8 summarizes the testbed. 

 

Figure 8. Topology of OTE’s cloud testbed. 

3.1.12 P4 programmable testbed for in-backhaul NI (T12) 

As part of the DAEMON activities, we developed a cutting-edge testbed to perform experimental 

research on in-backhaul NI. The main purpose of the testbed is to evaluate the performance of machine 
learning algorithms that run at line-rate in the user plane by means of implementation on real 
programmable switches. The first use case that we already started to work on (but not the only one that 
we planned) is the detection of malicious traffic to provide very fast response to anomalies. For such use 
case, the target KPI is K3 and the evaluation that we perform is E5. 

The testbed is composed of two servers and three P4 programmable switches equipped with Tofino 
application-specific integrated circuits (ASIC). The hardware is installed on a rack and connected to the 
Internet via a non-programmable Top of Rack (ToR) switch. In the current setup, the ToR switch is 
connected to both servers on a dedicated subnet that we use to access the servers remotely and to 
provide Internet connection. The three programmable switches are connected to both servers and to 
each other in an isolated and fully-connected subnet that is used only for experiments. We run virtual 
hosts, via either Docker containers or virtual machines, on both servers. Communicating to each other, 
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the virtual hosts generate traffic that passes through the switches and that we monitor and classify 
directly into the user plane. The control plane is implemented in one of the two servers, which is 
responsible of the switches’ configuration and operation, of the injection of P4 compiled code and of 
the runtime control of the switches. 

 

Figure 9. Picture of the P4 programmable testbed hardware installed on the rack. 

The relevant hardware components of the testbed are shown in Figure 9 and are detailed as follows: 

• 2x DELL PowerEdge R7515, 2RU equipped with: CPU AMD EPYC 7402p, 2.8 GHz, 24 cores, 128M 

cache; RAM RDIMM 128 GB, SSD 480 GB; 2x Mellanox ConnectX-5 dual port, QSFP28 (40/100 GB); 

• 3x Edge-core Wedge 100BF-32QS, 1RU equipped with: Intel Tofino BFN-T10-032Q; Quad-pipe 

programmable packet processing pipeline for 6.4 Tbps total bandwidth; 32x ports QSFP28 

(40/100 GB); CPU Intel x86 Xeon D-1548, 8 cores; SSD 2 TB. 

With regards to software, we rely on open-source operating systems for all the hardware. We installed 
Ubuntu Server on both servers. Each switch is equipped with the full software stack to enable a full-
fledged SDN platform: Open Networking Linux (ONL) as OS, and Stratum as a thin OS for remote 
configuration and control. 

3.2 Simulators and emulators 

The project counts with 4 simulation or emulation platforms, which are summarized in Table 4, and are 
fully detailed in the following. The table also indicates which evaluations and KPIs rely on each simulator. 

Table 4. Simulators and emulators available in the project, with related evaluations and KPIs. 

ID Name Short descritpion Related evaluation Related KPIs 

S1 Edge/Cloud simulator 
Used for resource management 
performance evaluation 

E4 K4 

S2 P4 programmable RAN 
Include disaggregated RANs, P4 bmv2 
switch and NBL CN 

E1 K8 

S3 System level simulator 
Advanced component validation and 
optimization 

E3 K7 

S4 EnergyEdgeCloudSim 
Extension of EdgeCloudSim environment 
that considers energy consumption 

E4 K1, K2, K3, K4 

3.2.1 Edge/Cloud simulator (S1) 

This Edge/Cloud simulator, named DynamicSim, is based on Sim-Diasca (Simulation of Discrete Systems 
of All Scales) [16]. Sim-Diasca is a general-purpose, parallel, and distributed discrete-time simulation 
engine written in Erlang language. Sim-Diasca allows the simulation of complex systems focusing on 
scalability, in order to handle simulation cases that may be very large (potentially involving millions of 
interacting instances of models), while still preserving essential simulation properties, like causality, total 
reproducibility and some form of ergodicity. Figure 10 shows the Sim-Diasca modular architecture. Its 
internal modules are in charge of synchronizing time between the actors, evolving the system state, 
sending and receiving messages to and from the controller, and managing the results.  
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Figure 10. Sim-Diasca Architecture. 

Sim-Diasca is based on the actor model; therefore, every single concept to be simulated is called an 
actor. Actors communicate with each other through messages. In response, actors can make decisions, 
create more actors, send messages to other actors, set how to respond to next messages. By using the 
actor model, different use-case simulations can be created. In a simulation case, the duration of a time 
step is user-defined. Within a time step, the actors simulate its functionality representing the work done in 
such a duration. After each actor finishes its simulated work, the time manager increases the time step 
by one, and the simulation goes to the next tick. At the beginning of the simulation, an initial set of actors 
are generated based on the defined simulation case. 

In our case, we created a layer on top of Sim-Diasca, called DynamicSim, in which we define an actor 
model for Virtual Network Functions (VNFs), servers, load balancers, traffic generators and monitor 
modules. Specifically, traffic generators and monitor modules act as an interface between the actors in 
DynamicSim and high-level functions defined in other programming languages. Finally, several user-
defined simulation cases can be designed in a higher layer. Thanks to Sim-Diasca generality, end-to-end 
metrics can be defined per use-case simulations. For example, using DynamicSim we can obtain low 
level metrics such as the number of active VNFs, the CPU consumption of each VNF, and the peak 
latency of the processed traffic and high-level metrics such as Service Level Objective (latency) 
violations.   

3.2.2 P4 programmable RAN (S2) 

The P4 programmable RAN is an emulation platform that can be used to execute common user 
applications (e.g., YouTube, web browsing, file transfer, etc.) over real protocol stacks and standardized 
procedures. Specifically, it is built on top of several key components to formulate an end-to-end network 
spanning the disaggregated radio access, transport, and core networks: (1) OpenAirInterface (OAI) [17], 
(2) P4-based switch [18], and (3) Nokia Bell Labs core network. Furthermore, to serve multiple Ues and 
execute UE-specific applications, we use the OAI-based UE modem interconnected with the OAI-based 
DU to demodulate/decode traffic and forward per-UE traffic to the corresponding virtual machines 
(VMs). Figure 11 shows all of the component: Server 1 hosts RAN, Transport Network (TN), and Core 
Network (CN) entities, Server 0 hosts the UE dashboard and message adaptor, and the remaining servers 
are used to host all Ues. Note that each UE is placed as an individual VM, and thus they are isolated from 
each other. 

To provide more insight into the platform, the L2-sim mode is used between OAI-DU and OAI-UE, in which 
their MAC layers are connected directly using the nFAPI interface, and their physical layer processing is 
omitted for simplicity. Nevertheless, to emulate the physical layer behaviors, two additional schemes are 
added: (1) Time-varying channel quality model and (2) a transport block retransmission model. The 
former aims to provide configurable CQI patterns/distributions for each UE (e.g., fixed pattern, uniform 

random distribution, or Markov chain), whereas the latter applies the ARQ scheme (i.e., no redundancy 
version) to retransmit uncoded MAC SDUs using three parameters (i.e., first transmission 
acknowledgement probability, retransmission acknowledgment probability, and maximum 
retransmission count) following the standardized retransmission timing for all HARQ processes. Therefore, 
in our current setup, up to 32 Ues can be managed by the UE dashboard server and different user 
applications (cf. Section 4.1.3) in the app repository can be independently executed within each VM. 

Finally, the P4-Programmable RAN emulation platform is used to evaluate the related KPIs for application-
aware radio scheduling. The message adaptor at Server 0 can capture real-time user-plane information 
feedback from the system (at the granularity of each radio bearer) and provide the required dataset to 
facilitate the design of the corresponding algorithms. 
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Figure 11. P4-PRAN emulation platform. 

3.2.3 System-level simulator (S3) 

The system-level simulation platform for 5G is a Discrete Event Simulation (DES) environment for the 
simulation of heterogeneous networks. Also, the platform is extended with new features to support the 
new functionalities of 5G. The main modules supported are macro cells, small cells and Ues nodes. Based 
on the DES approach, created events are the basic signaling events, mobility events, application layer 
events, and also system level events that enable the collection of measurements and the control of 
auxiliary artifacts (graphics, controls etc.). The tool has the potential of simulating various scenarios under 
different assumptions/ conditions. Through the flexibility of available modules, it is possible to customize 
various parameters. As such, the simulator involves a series of input parameters such as customizing the 
size of the simulation area; the area type (e.g., dense urban scenarios, etc.); the number and position of 
3-sectorized macro base stations and their inter-site distances (ISDs); the number and position of small 
cells per macro base station; the number and position of end-user devices; the mobility of the end-user 

devices etc. that are used for various testing simulations and components. 

The system-level simulation platform considers aspects related to configuration, environment models, 
network (simulated system) models, analytics, event management. All these are managed via a user-
friendly graphical user interface (GUI), as depicted in Figure 12, and are presented next. 

 

Figure 12. System level simulator. 

Environment models and configuration: An important aspect of system-level simulations is to specify the 
simulated system, designate the environments and select analytics. Environment concerns aspects 
related to traffic (e.g. proper modeling of eMBB, mMTC etc., anticipated load, mobility and radio 
conditions (e.g. propagation models). This is triggered by the fact that project use cases deal with 
megacities and underserved areas and as a result, different traffic characteristics apply depending on 
the use case. Such aspects will be properly documented for the considered use cases in order to consider 
them in the simulations later on. 
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Network (Simulated System) models: System aspects include considerations relevant to network 
deployment (e.g. small cells and macro cells for use cases in underserved and megacities). Also, 
spectrum aspects are considered for utilization of bands below 6GHz and to be expanded in mm-wave 
as well. Abstraction of PHY/MAC is taken into account. Radio Resource management (RRM) algorithms 
are also considered. 

Analytics: The simulation results will be evaluated against the KPI targets (e.g. in terms of throughput, 
latency). The results are analyzed and visualized.  

Event Management: An event may be distinguished by time, location, type (e.g., session set up, call 
request, packet transmission), services, devices, users and supplementary info. Details on event 
management are provided later on in this paper. 

Graphical User Interface (GUI): A user-friendly GUI is essential for easy handling of simulations and 
demonstrations. The GUI consists of intuitive tabs, text boxes and input fields in order to create an easy-

to-use environment for data input as well as extraction of results by visualizing results in graphs and charts. 

Overall, the simulator allows supporting ambitious use cases: for instance, use case families in NGMN that 
include broadband access in dense areas and everywhere (eMBB), massive Internet of Things and 
machine-type communications (mMTC) as well as ultra-reliable communications (URLLC). For the 
needed representation/ modeling of such aspects, environment models shall take into account area 
aspects, traffic, mobility and propagation models based on the classification. These features are also 
captured in Figure 12. 

3.2.4 EnergyEdgeCloudSim (S4) 

EnergyEdgeCloudSim is an extension of the tool EdgeCloudSim [19] for energy consumption 

measurements. The original tool, EdgeCloudSim, is a simulation environment specific to Edge Computing 

scenarios where it is possible to conduct experiments that consider both computational and networking 

resources. Our extension extends the nodes’ information with parameters related to energy consumption. 

EnergyEdgeCloudSim considers both dynamic and idle energy consumption. The dynamic energy 

consumption model distinguishes between computational and communication energy consumption. 

The expression to estimate the computational energy consumption includes CPU usage storage, and 

RAM, being the CPU usage the most influential factor [20]. The following is a list of the equations that 

support our energy consumption model (in Joules) for a task 𝑖 which is running in a node 𝑛 associated to 

computation (𝑒𝐶𝑜𝑚𝑝𝑛,𝑖), data sending and receiving (𝑒𝑆𝑒𝑛𝑑𝑑𝑎𝑡𝑎𝑈𝑝𝑖,𝑛 and 𝑒𝑅𝑐𝑝𝑡𝑑𝑎𝑡𝑎𝐷𝑜𝑤𝑛𝑖,𝑛), and the energy 

consumption for idle or sleeping nodes (𝑒𝐼𝑑𝑙𝑒𝑛 and 𝑒𝑆𝑙𝑒𝑒𝑝𝑛): 

𝑒𝐶𝑜𝑚𝑝𝑛,𝑖 = (1 − 𝛼𝑛)𝑒𝑀𝑎𝑥𝑛𝑣𝑖

𝑤𝑖

𝐶𝑃𝑈𝑛
𝑒𝑤𝑛 + 𝑒𝐷𝑒𝑝𝑙𝑜𝑦𝑛 

𝑒𝐼𝑑𝑙𝑒𝑛 = 𝛼𝑛𝑒𝑀𝑎𝑥𝑛𝑡𝑒𝑤𝑛 

𝑒𝑆𝑙𝑒𝑒𝑝𝑛 = 𝛽𝑛𝑒𝑀𝑎𝑥𝑛𝑡𝑒𝑤𝑛 

𝑒𝑆𝑒𝑛𝑑𝑑𝑎𝑡𝑎𝑈𝑝𝑖,𝑛 = 𝑃𝑛
𝑇𝑥

𝑑𝑎𝑡𝑎𝑈𝑝𝑖

𝑅𝑛
𝑇𝑥 𝑒𝑤𝑛 

𝑒𝑅𝑐𝑝𝑡𝑑𝑎𝑡𝑎𝐷𝑜𝑤𝑛𝑖,𝑛 = 𝑃𝑛
𝑅𝑥

𝑑𝑎𝑡𝑎𝐷𝑜𝑤𝑛𝑖

𝑅𝑛
𝑅𝑥 𝑒𝑤𝑛 

Concerning the equation for 𝑒𝐶𝑜𝑚𝑝𝑛,𝑖, 𝑒𝑀𝑎𝑥𝑛 is the energy consumption for a fully-utilized server in terms 

of CPU; 𝑣𝑖 the CPU utilisation ratio (0-1) for the task 𝑖; 𝑤𝑖 the CPU cycles required to compute task 𝑖; 𝛼𝑛 is 

a value between 0 and 1 that represents the fraction of the idle energy consumption for the node 𝑛; and 

𝑒𝐷𝑒𝑝𝑙𝑜𝑦𝑛 is the (fixed) amount of energy required by node 𝑛 to create a container. The equations for 

𝑒𝐼𝑑𝑙𝑒𝑛 and 𝑒𝑆𝑙𝑒𝑒𝑝𝑛 considers additional factors like the time 𝑡 in seconds and 𝛽𝑛 which is the fraction of 

the sleep energy consumption. Expressions to measure energy consumption for communication consider 

the transmission power (𝑃𝑛
𝑇𝑥  and 𝑃𝑛

𝑅𝑥 ) and the transmission rates ( 𝑅𝑛
𝑇𝑥  and 𝑅𝑛

𝑅𝑥 ). Finally, 𝑒𝑤𝑛  (energy 

weight), presented in all the expressions, allows to select the importance of saving energy in each device 

separately. Thus, if you intend to reduce energy consumption in battery-powered devices, simply set that 

variable to 1 for these devices and 0 for the rest of the nodes. 

These models have supported the development of an approach for orchestration and auto-scaling that 
minimizes energy consumption (see Figure 13). The system serves the users’ requests, who demand the 
functionality offered by a series of applications contained in a repository (e.g., DockerHub). An 
orchestrator manages the edge nodes (e.g., Kubernetes 1 ) that automates the deployment, 

management, scaling, interconnection and availability of applications. The master nodes (there may be 
more than one) are responsible for orchestrating the workloads between the associated devices (worker 

 
1 https://kubernetes.io/es/docs/home/. 

https://kubernetes.io/es/docs/home/
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nodes)–master nodes can also be worker nodes simultaneously. Once demanded, the orchestrator 
assigns an application to an edge node, which executes it packaged in a container (e.g., Docker). The 
scheduler decides which worker node will run that container. We modify this scheduler to assign tasks to 
the most energy-efficient nodes to minimise energy consumption. Periodically, the master node (or one 
of them) requests the Essential Node Identifier module, which starts the proactive horizontal auto-scaling. 
This module receives the expected workload (number of requests) and the current state of the 
infrastructure, and, using this information, it determines the demand of nodes in the next time interval 
(defined by the infrastructure administrator). This module also has access to the applications’ data 
contained in the repository. The auto-scaling process can run on a node in the infrastructure or an 
external node (even in the cloud). Once the master node receives the information on the nodes to be 
kept active, it is responsible for putting those not considered essential on sleep mode. In practice, nodes 
are put on sleep mode through SSH commands and wake up again using Wake on LAN/WLAN. 

 

Figure 13. Orchestration and auto-scaling in EnergyEdgeCloudSim. 

Currently, we are performing experiments to measure the amount of energy saved through our proposal 
comparing different orchestration policies. In addition, we are working on the issue of the number of 
failed requests as the reduction in the number of available nodes can lead to a lack of available 
resources. We are analysing the impact of more or less resource preservatives policies in this direction. 
Finally, we are studying the scalability of our approach concerning the problem size. With this goal, we 
are developing a benchmark version of the Essential Node Identifier module that can work with random 
VNF’s requirements to increase the number of expected NFVs and the number of nodes. 

In the context of DAEMON, EnergyEdgeCloudSim is part of our approach to validating NI for Edge 
Orchestration (E4). Our goal is to demonstrate improvement in the following KPIs: K1-VNF for energy 
consumption reduction, K2-saving of computational resources at the edge, K3-response time of AI-based 

NI algorithms and K4-operating expense saving. We plan to collect SM1, SM3, TM2, TM4 and TM5. We 
have already collected SM1 (throughput) and SM3 (energy consumption). 

3.3 Datasets 

The evaluations carried out in the project build upon 14 datasets to date. Table 5 provides a list of these 
datasets, whose details are then expounded in the rest of the section. The table also indicates what 
evaluations and KPIs are associateds to each dataset. 

Table 5. Measurement datasets available in the project, with related evaluations and KPIs. 

ID Name 
Dataset 

availability 
Source Data velocity 

Data 

volume 

Related 

evaluation 

Related 

KPIs 

D1 
MNO radio 
performance 

Private Real 

Depending on 

the specific 
data feed (e.g., 

hourly, per 15 
min, real-time) 

Order of TB 
per day 

E5 
K5, K7, 
K8, K9 

D2 
End-user 
performance 

Private Real 
Depending on 

the type of data 

Depending 
on the type 

of data 
E6 

K2, K4, 
K5, K6, 
K9 

D3 
Service-level 
traffic demand 

Private Real 
1 sample per 

minute 
Order of TB E1 

K2, K4, 
K9 

D4 

vRAN 
performance 

and power 
consumption 

Open source 

(Link) 
Real 

1 sample every 

20 seconds 
12.2 MB E4 

K1, K2, 

K3 

Nodes to 
maintain 

active

Nodes’ 
status

Expected 
workload

Essential Node Identifier

Energy consumption

Application’s requirements

Considering...

EnergyEdgeCloudSim
Activation and 
deactivation of 

nodes

Energy 
consumption 
measurement

Energy-aware 
Orchestrator

Workload
(requests)

Workload
Predictor
Workload
Predictor

https://github.com/jaayala/power_dlul_dataset
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D5 Edge Dataset 
Open source 
(Link) 

Real 
1 Sample per 

minute 
2.8 MB E4 K2 

D6 

Wireless 

interactions in 
multiple BSS 
using Channel 
Bonding 

Open source 
(Link) 

Synthetic 
3 sample per 

minute 
20 KB per 

deployment 
E4 K5, K8 

D7 

Intrusion 
Detection 
Evaluation 
Dataset 

Open source 
(Link) 

Real Variable2 8.3 GB E5 K3 

D8 
IPX Signaling 
Dataset for IoT 

Private Real 
Signaling 

dialogues arrive 
every 5min 

Order of GB 
per day 

E5 
K5, K7, 
K8, K9 

D9 
YouTube file 
requests 

Open source 
(Link) 

Real 
1 sample every 

5 minutes 
Order of MB 

per day 
E4 K3, K4 

D10 
GEC case 
study 

Open 
Source (link) 

Real 
1 sample every 

second 
14,3 MB E2 K1 

D11 
IoT devices 
dataset 

Open source 
(link) 

Real Variable2 12.7 GB E5 K3 

D12 

Applications 

and protocols 
dataset 

Open source 
(link) 

Real Variable2 581 MB E5 K3 

D13 

Malicious 

attacks 
dataset 

Open source 
(link) 

Real Variable2 22.6 MB E5 K3 

D14 

Malicious 

packets 
dataset 

Open source 
(link) 

Real Variable2 10 GB E5 K3 

3.3.1 MNO radio performance (D1)  

We collect dataset D1 from an operational mobile network in the UK.  The cellular network we study 
supports 2G, 3G, 4G and 5G mobile communication technologies. In Figure 1, we illustrate a high-level 
schema of the MNO architecture. Such a network Can be simplified to consist of three main domains: (i) 

the Cellular device (in our case, the smartphone used as primary device by end-users), (ii) the RAN and 
(iii) the Core Network (CN). 

 

Figure 14. High-level architecture of the measurement infrastructure integrated in the cellular network. 

 

 
2 The dataset is composed of .pcap files with packet traces that have a high variability of time of arrival. 

https://github.com/apgalano/Edge-Dataset
https://zenodo.org/record/4106127#.YNBwAJMzZB0
https://www.unb.ca/cic/datasets/ids-2017.html
https://traces.cs.umass.edu/index.php/Network/Network
https://doi.org/10.5281/zenodo.6251045
https://iotanalytics.unsw.edu.au/iottraces.html
http://netweb.ing.unibs.it/~ntw/tools/traces/
https://www.unb.ca/cic/datasets/nsl.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
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Our passive measurement approach relies on commercial solutions the MNO integrates within its 
infrastructure. The red pins in Figure 14 mark the network elements that we monitor, namely the Mobility 
Management Entity (MME), the Message Sequence Chart (MSC), the Serving GPRS Support Node 
(SGSN)/Serving Gateway (SGW), and the Cell Sites. We collect control plane information for both voice 
and data traffic from the total population of devices connected to the MNO’s radio network, as well as 
KPIs of cell sites. From this measurement infrastructure, we capture various data feeds, described next. 
These feeds are aggregated at postcode level or larger granularity. 

General Signaling Data. We capture the activity of the users in the control plane for the different Radio 
Access Technologies (RATs) supported By the cellular provider. The data includes control plane signalling 
messages related to events triggered by the MNO’s subscribers, including Attach, Authentication, Session 
establishment, Dedicated bearer establishment and deletion, Tracking Area Update (TAU), ECM-IDLE 
mode transition, Service request, Handover and Detach. Each event we capture carries the anonymized 

user ID, Subscriber Identity Module (SIM) Mobile Country Code (MCC) and Mobile Network Code (MNC), 
Type Allocation Code (TAC) (the first 8. Digits of the device IMEI, which are statically allocated to device 
vendors), the radio sector handling the communication, timestamp, and event result (success or failure). 

Devices Catalog. Using a commercial database provided by Global System for Mobile communications 
(GSM) Association (GSMA), we map the device TAC to a set of properties such as device manufacturer, 
brand and model name, operating system, radio bands supported, etc. With this information, we are 
able to distinguish between smartphones (likely used as primary devices by the mobile users) and 
Machine-to-Machine (M2M) devices. Radio Network Topology. To account for potential structural 
changes in the radio access network (e.g., new site deployments), we rely on a daily snapshot of the 
network topology. This includes metadata (location and configuration) and the status (active/inactive) 
of each cell tower. 

Radio Network Performance. This dataset includes various hourly KPIs, including average cell throughout, 
average user throughput, average percentage of resources occupied, average number of users, total 
volume of data traffic uplink/downlink and total volume of conversational voice traffic. 

Mobility Metrics. Using the signalling dataset described above, we can associate each (anonymized) 
user to a radio tower throughout the time they are connected to the MNO’s network. Based on the radio 
network topology, we further attach to each radio tower its geographic location (postal code and 
approximate coordinates). With this, we then generate aggregated mobility statistics over six disjoint 4-
hour bins of the day, for roughly 22 million native users aggregated at postcode level. We then compute 
two mobility metrics: entropy and radius of gyration. The combination of these metrics gives a wide view 
of changes in mobility: while entropy measures the repeatability of movements, radius of gyration is an 
indication of the distance travelled. 

3.3.2 End-user performance (D2) 

OTE is collecting large-scale datasets in order to provide input for the DAEMON automated anomaly 
response-related algorithms. The measurement data is aggregated over geographical areas (e.g., from 
antenna sector to urban statistical zones), temporal intervals, or flows generated by a significant number 
of users, depending on which aggregation preserves data utility for the subsequent analysis carried out 
by the project partners. The process of collection and aggregation occurs at the MNO premises. The 
DAEMON activities only concern data analysis, and the partners will only access the aggregated data, 
which does not contain personal information nor data with the potential to identify individuals. An 
indicative set of data to be collected includes: (1) Up/down link volume; (2) Up/down link duration; (3) 
Voice duration; (4) Number of connections; (5) Pedestrian / vehicular minutes of use; (6) Connection 
drops; (7) Handover-related information; (8) Traffic volumes (in bytes), aggregated per minute, for each 
antenna sector, ideally over multiple cities; (9) Traffic volumes disaggregated across service categories 
(e.g., video streaming, social media, etc.) or individual services (e.g., YouTube, Tik Tok, etc.). The 
aforementioned list is under consideration and will be revisited by the project partners. 

3.3.3 Service-level traffic demand (D3) 

This dataset was collected in the core network of a major European mobile operator, and made 
available under a Non-disclosure Agreement (NDA) to IMDEA. The dataset describes the mobile traffic 
generated by the whole subscriber base of the operator (which has a 34% average market share in the 
target country) over the whole territory of a European country. The data covers three months in 2019. The 
time frame of the data allows capturing a variety of mobile traffic dynamics. 

A simplified representation of the operator 3G/4G mobile network architecture is portrayed in Figure 15. 
The figure is limited to the 3G UTRAN and packet switched core, and to the 4G EUTRAN and EPC, as our 
focus is on data traffic, and 5G was not yet operational in the target country by the time of the data 
collection. The data was recorded by passive probes at the Gn and S5/S8 interfaces of the Gateway 
GPRS Support Node (GGSN) and of the Packet Data Network Gateway (P-GW). The 3G and 4G 
gateways were conveniently co-located in the operator infrastructure, which eased the probe 
deployment, management and synchronization. The probes inspected IP traffic on the GPRS Tunneling 
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Protocol user plane (GTP-U), and extracted information on the transport- and application-layer protocols 
of each user session. The specific mobile service associated to each IP session was detected by the 
mobile network operator via Deep Packet Inspection (DPI) and multiple proprietary fingerprinting 
techniques, each tailored to a specific traffic type. These operations can classify 88% of the mobile traffic. 

 

Figure 15. Simplified 3G/4G mobile network architecture. 

Geo-referencing of the IP sessions, and of the corresponding mobile service usages, was performed by 
examining the User Location Information (ULI) contained in the 3G Packet Data Protocol (PDP) Contexts 
and 4G Evolved Packet System (EPS) Bearers. These data structures are transferred over the GPRS 
Tunneling Protocol control plane (GTP-C), which also transits through Gn and S5/S8 interfaces, making 
their inspection straightforward. User localization was further refined by mixing the data collected in the 
core network with signaling information gathered at the radio access, and pinpointing the NodeB or 
eNodeB each subscriber was associated to over time. 

Ultimately, the dataset we use in the context of the DAEMON activities study consists of the daily volume 
of data traffic served by individual NodeB or eNodeB. The level of spatiotemporal aggregation ensures 
that no data subject can be re-identified, and that the data does not configure as personal data in the 
acceptation of the General Data Protection Regulation (GDPR) [21]. Therefore, the dataset and research 
do not involve risks for the mobile subscribers, while they provide new knowledge about the potential 
existence of a second-level digital divide in France, which may benefit a more informed social policing. 

The raw traffic measurements used to derive the dataset above were stored and aggregated in a secure 
platform at the operator premises, in full compliance to article 89 of the GDPR, under the supervision of 
the Data Protection Officer (DPO) of the operator, and upon authorization by the French National 

Commission on Informatics and Liberty (CNIL). The raw measurements were deleted upon data 
aggregation. 

3.3.4 vRAN performance and power consumption (D4) 

This dataset provides a set of measurements of the performance and power consumption of a vBS using 
the srsRAN software in a local testbed (T5). The dataset was collected by configuring the vBS and UE in 
order to fix the conditions in the uplink and the downlink in terms of traffic load, channel quality, MCS, 
and airtime [22]. Then, we fix each configuration for one minute while the system takes measurements 
that later are processed to obtain its statistics. 

We assess the power behavior of the vBS by measuring the power consumption of its CPU and the whole 
baseband unit (BBU), the achieved performance in terms of throughput and goodput, details about the 
decoder at the vBS such as the subframe decoding time and the number of turbo decoder iterations 
per subframe, and some MAC and PHY indicators such as the Buffer Status Report (BSR), Block Error Rate 
(BSR), and the used modulation and coding scheme (MCS), and airtime. Moreover, we detect and 
identify unfeasible configurations in the dataset. This mainly occurs when an MCS value is forced but the 

channel quality is not good enough to decode its data. 

3.3.5 Edge dataset (D5) 

An Android application captures images through the mobile’s camera, performs JPEG encoding, and 
transmits the compressed images to an edge server through a wireless 802.11ac Access Point. The 
collected data documents “latency” and “cumulative confidence” measurements that were obtained 
from this experiment. The records are obtained for different values of “image encoding rate” (i.e., 
compression) and “Neural Network input layer size” decisions. The delay is also provided with details on 
different phases: transmitting the frame wirelessly, decoding and rotating at the server, and performing 
object recognition with the state-of-the-art object recognition system YOLO on the server’s GPU. YOLO 
accepts an image size that is a multiple of 32 and uses a number of potential object locations of different 
sizes to output a probability of each class in the training set to appear in each one. The extensive COCO 
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dataset is used, which covers a wide range of images and objects, and includes ground truth for each 
image. Moreover, the achievable frame rate as a result of the total latency is documented. 

An analysis of the data (Figure 16) shows the effect of the chosen decoding and neural network size on 
the performance metrics we chose. Although these effects seem consistent in (a), (b), this is mainly due 
to taking the average across all images. In (c), (d), the variability in these metrics across the same 
configurations is demonstrated, motivating the necessity of tuning these parameters at run time. 

 

Figure 16. (a)-(b): Cumulative Confidence (CC)  and frame rate for various neural network sizes and 
encoding rates; results are averaged across 32K images of the COCO dataset. (c)-(d): Distributions of 
CC and frame rate for (neural network  size, encoding rate) set to (256, 50%), (384, 100%). 

To that end, this dataset includes 8 possible values for the NN size (128, 192, 256, 320, 384, 448, 512, 576) 
and 4 for the encoding rate (25, 50, 75, 100). For each NN size/encoding rate combination, the response 
of 1000 images -hence the dataset consists of 32000 records in total- from COCO dataset is tested and 
the latency response in each part of the process is measured, as well as the confidence values that are 
output from the DNN. The first 3 records of the dataset are presented in Table 6. 

The first 2 columns of each record, are the “NN size” and “Encoding rate” respectively. They are followed 
by columns “Encoding”, “Network”, “Decoding”, ”Rotating”, “YOLO”, and “Server”, which track the 
amount of time spent in milliseconds for each of these tasks, where “Server” is the total time spent on 
server processing including YOLO processing on the GPU. Column “Frame Rate” is simply the frame rate 
achieved for the image’s end-to-end latency calculated by inverting the latter. The last 2 columns 
measure recognition performance and are the “Confidence” and “Cumulative Confidence”. 
Confidence is an array of values in [0, 1], denoting the inference confidence for each identified object 
in the image. If no objects are recognized the array is empty. Cumulative Confidence is simply the sum 
of the Confidence array. 

Table 6. First 3 records of D5 dataset. 

NN size 
Enc. 

Rate 
Enc. Network Dec. Rotating YOLO Server 

Frame 

Rate 
Conf. 

Cum. 

Conf. 

128 25 3 3.8 1.3 0.1 9.3 11.2 43.478 
[0.863, 
0,896] 

1.76 

128 25 4 6.3 2.3 0.1 10.8 14.7 38.462 [0.526] 0.526 

128 25 4 5.7 1.5 0.1 9.2 11.3 43.478 [] 0 

3.3.6 Wireless interactions in multiple BSS using Channel Bonding (D6) 

This dataset [23] was created using Komondor [24], an open source, event-driven simulator based on the 
CompC++ COST library. Komondor is focused on fulfilling the need for assessing the novel features 
introduced in recent and future Wi-Fi amendments, which may be endowed with applications driven by 
techniques. The dataset was created in the context of the 2020 edition of the ITU AI/ML for 5G Challenge 
[25]. This dataset includes simulated data from IEEE 802.11 WLAN deployments applying Dynamic 
Channel Bonding (DCB). The dataset is divided into two parts, i.e., training and testing. In both cases, 
enterprise-like scenarios containing a different number of Access Points (Aps) and stations (STAs) applying 
DCB are generated, thus depicting multiple situations that could be used for training ML models. The 
topology of these enterprise-like scenarios is composed of a building floor of a given size (e.g., map size), 
which is divided in equal-sized offices. The Aps positioning is fixed, while the STAs are randomly placed 
around the AP coverage area. Such a topology setting is typically adopted in the simulation scenarios 
provided by IEEE 802.11 task groups [26]. The data set includes useful information about each 
deployment, such as the obtained throughput, the RSSI, the airtime in each channel, the interference 
among devices, or the SINR. In total, 600 deployments were simulated, containing 78,078 devices 

(namely, 6000 Aps and 72,078 STAs). Table 7 summarizes the main characteristics of the entire data set. 
Moreover, Table 8 details the simulation parameters used for generating the data sets. 
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Table 7. Summary of the characteristic of the wireless interactions in multiple BSS dataset. 

Dataset Name Map 
Size 

(m2) 

Number of 
Deployments 

Total 
Devices 

Aps STAs AP 
Throughput 

[Mean, Std, 

Min, Max] 

STA 
Throughput 

[Mean, Std, 

Min, Max] 

Training/ 

Validation 

1a 80x60 100 78,078: 

6,000 
Aps 

72,078 
STAs 

12 [10-20] [83.29, 52.24, 
0, 400] Mbps 

[6.93, 6.99, 0, 
88] Mbps 

1b 70x50 

1c 60x40 

2a 60x40 8 [5-10] 

2b 50x30 

2c 40x20 

Testing 1 80x60 50 9,831: 

1,400 

Aps 

8,431 
STAs 

4 Random N/A N/A 

2 6 

3 8 

4 10 

Table 8. Simulation parameters used to generate the training and test datasets. 

 
Parameter 

Value 

 Training Testing 
Deployment Nº Aps {8,12} {4, 6, 8, 10} 

Aps Location Fixed to the center of the cell 

Nº STAs {5-10, 10-20} 5-10 

STAs Location Uniform at random 

Traffic profile Downlink UDP 

Traffic load Full buffer mode 

Channel Allocation Uniform at random 

PHY Central frequency 5 GHz 

Path-loss model See [27] 

Bandwidth {20, 40, 80, 160} MHz 

Nº Spatial streams 1 

Allowed MCS indexes 1-12 

MAC Contention Window 32 (fixed) 

Data and ACK length 12000/32 bits 

RTS and CTC length 160/112 bits 

Max A-MPDU 1 

DCB policy Dynamic (see [28]) 

Regarding the DCB configuration, each BSS can use up to N=8 basic non-overlapping channels of 20 
MHz in the GHz band. Compliant with the 11ax amendment, a given transmitter can bond channels of 
width 20-160 MHz, thus leading to channelization C={{1},{2},⋯,{8},{1−2},{3−4},⋯,{7−8},{1−4},{5−8},{1−8}}, for 
basic channels indexed from 1 to 8. In each simulated deployment of the data set, both the primary and 
the total channel width are selected randomly. As for the applied DCB policy, the maximum possible 
channel width is dynamically used, provided that the involved channels were free during at least the 
point coordination function interframe space (PIFS) period. For instance, let us assume that a given 
transmitter has randomly allocated to channels {1−4}, with primary channel 1. Then, such a device would 
perform carrier sensing in the primary channel (1) and, provided that the channel was sensed to be free 
during the backoff, would assess whether the rest of the channels were also found to be free during the 
PIFS interval. If only channels {1−2} are idle at the moment of starting a transmission, then the transmitter 

proceeds to use both of them, leaving channels {3−4} for future transmissions. 

The selected metric of performance is throughput, which is defined as the amount of successfully 
transmitted data in a period of time. Higher throughput is an indicator of higher bandwidth capacity 
(more bonded channels) but also interference-free communication. Nonetheless, Komondor can 
generate extensive and detailed performance statistics such as delay, spectrum utilization, or collisions. 
Moreover, the user can efficiently include as much as metrics as desired. 

3.3.7 Intrusion Detection Evaluation Dataset (D7) 

The Intrusion Detection Evaluation Dataset (CICIDS2017) is a validation dataset for anomaly-based 
intrusion detection approaches. It is provided open-source by the University of Brunswick (Canada) [29]. 
This dataset is used to evaluate the performance of machine learning algorithms for traffic classification 
implemented into the user plane. As one of the activity’s targets is to fast respond to anomalies. 
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The CICIDS2017 dataset contains benign traffic and seven of the most up-to-date common attacks, 
which resembles the true real-world data, in PCAP format. Along with such traces, the dataset includes 
a list of all the flows labeled with time-stamp, source, and destination Ips, source and destination ports, 
protocols and attack, in CSV format. The traffic data contains all common available protocols, such as 
HTTP, HTTPS, FTP, SSH and email protocols. It also includes seven different types of attacks: brute force, 
Heartbleed, Botnet, DoS, Ddos, Web, Infiltration. 

The dataset has been generated by means of a testbed where two networks: attack-network and victim-
network. The former is a secure infrastructure with firewall, router, switches and a set of computers, running 
major operating systems, accompanied by an agent that implement different benign behaviors. The 
latter is a separated infrastructure with a router, a switch and a number of computers with public Ips that 
perform attacks toward the victim-network. Twelve and four different machines have been used for the 
victim-network and the attack-network respectively. 

3.3.8 IPX Signaling Dataset for IoT (D8) 

 

Figure 17. High level architecture of the IPX-P’s monitoring to build our dataset. We build our dataset 
using a commercial software solution that processes the raw signaling traffic (SCCP, Diameter or GTP), 
and that rebuilds the dialogues between the different core network elements. We build datasets for 

2G/3G as well as 4G/LTE. 

We monitor the IP eXchange Provider (IPX-P) infrastructure that supports three core functions – Signaling 
Connection Control Part (SCCP) Signaling, Diameter Signaling, GTP signaling (for the corresponding radio 
technologies) – that enable the data roaming service for IoT devices. We show in Figure 17 a schematic 
view on the way we capture these corresponding datasets. We rely on a commercial software solution 
for capturing and analyzing in real time the raw signaling traffic, which we mirror from the signaling routers 
to a central collection point. In that central location, the commercial software re-builds the signaling 
dialogues between different core network elements in the visited and the home MNOs. Table 9 
summarizes the datasets we use to characterize the operations of an IPX provider with a large 
international footprint. 

Table 9. IPX-P Datasets for IoT. 

Dataset Infrastructure Procedures Captured 

SCCP 

Signaling 

4 Signaling Transfer Points (STPs) 

(Miami, Puerto Rico, Frankfurt, 
Madrid) 

MAP traffic, location management, 

authentication 
and security 

Diameter 

Signaling 

4 Diameter Routing Agents (DRAs) 
(Miami, Boca Raton, Frankfurt, 

Madrid) 

Session Initiation Protocol (SIP) Registration, Voice 
over IP (VoIP) Call, Diameter Transaction, Domain 

Name Service (DNS) Query or RCS Session 

Data Roaming GTP-C control data and GTP-U data 

sessions. 

Create/Delete Packet Data Protocol (PDP) 

Context/ Session; Flow-level metrics for data 
connections. 

Ticketing 

System 

Internal ticketing system for 
managing issues with the roaming 

platform. 

Tickets information that track how an issue was 
handled by the operations team.  

 

SCCP Signaling. This service provides the signaling capabilities for the second and third Generation 
(2G/3G) technologies. The IPX provider monitors the Mobile Application Part (MAP) protocol and 
specifically the traffic corresponding to the following procedures: i) location management (up-date 
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location, update GPRS location, cancel location, purge mobile device); ii) authentication and security 
(send authentication information); iii) fault recovery. 

Diameter Signaling. This service provides signaling capabilities for 4G roaming. The IPX provider collects 
traffic corresponding to events including Session Initiation Protocol (SIP) registration, Voice over IP (VoIP) 
Call, Diameter Transaction, DNS Query or Rich Communication Services (RCS) Session. 

Data Roaming. This service enables the data transport required for data roaming in 2G/3G and LTE. The 
IPX collect traffic related to the creation and management of GTP tunnels between roaming partners to 
transport data to and from end-users, as well as flow level metrics. Note that the service requires the use 
of the signaling platform, either LTE Diameter or SCCP signaling. 

Ticketing System. This service keeps track of the incidents handled by the operation teams. Tickets may 
be generated by the operation teams, e.g., monitoring system alarms, or after an issue is reported by a 
customer. Every ticket contains a description of the incident and impacted devices or customers. 

3.3.9 YouTube file requests (D9) 

The open YouTube file request dataset [30] is a collection of traces from a campus network measurement 

on YouTube traffic. It contains trace data about user requests for specific YouTube content. The goal of 

this analysis is, first of all, to examine the local (I.e., popularity among videos requested in a trace file) and 

global (I.e., popularity information given from YouTube itself) popularity of YouTube video clips and 

furthermore, to accumulate real information from the traces, in order to be used in future simulations.  

A part of this dataset is used in Activity A17 (Auto scaling Virtualized RAN caches), so as to generate 
traffic demand. The data utilized in our experiments is collected every 5 minutes for 7 days on a certain 
university campus. It is comprised of individual IDs of each requested video, requested time and 
destination/source IP addresses, video size, and transmission data rate. We also distinguish different 
regions with different IP addresses.  

The aforementioned results are depicted in Figure 18. From there, it can be seen that the number of file 
requests have daily and weekday/weekend traffic patterns and more precisely, the traffic is high during 
the day and the evening until around midnight and then decreases significantly in the early morning 
hours. However, the traffic pattern is not similar even between two consecutive days, which makes the 
prediction of demand difficult. 

 

Figure 18. Total number of YouTube file requests in a certain university campus over time.  

3.3.10 GEC case study (D10) 

The GEC case study dataset is a collection of energy measurements taken from deploying a Generic 
Edge Computing (GEC) application that we have designed to represent a regular IoT/Edge/Cloud 
system [31]. We model the different elements of this deployment as a variability model with a large 
configuration space, in Figure 19. A variability model is a formal specification of the things that can vary 
in a system and how they depend on each other. Variability models are composed of features, which 
are elements or properties that can be in the final system or not. Features are organized in tree structures, 

so selecting a leaf for the final system depends on the selection of its ancestor features. In addition, it is 
possible to define explicit constraints, also known as cross-tree constraints. Features can be divided into 
35 oolean features, numerical features, and variability sub-tree (aka clonable). Boolean features 
represent yes/no decisions or features that can appear in the final system or not. Numerical features are 
features that require a value to be resolved. Variability sub-trees mean creating instances or clones and 
providing per-instance resolution for features in its sub-tree. Cardinality features apply restrictions over the 
number of children of a feature that can be chosen. The appearance of a feature in a selection can be 
mandatory or optional. The GEC variability model comprises six main branches: 

• Device: Edge computing hardware, as single-board and small appliances; in this evaluation, we 
consider four. 

• Architecture: The microprocessor running architecture –commonly x86 and x86 64. 
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• Operating System (OS): The running OS in which the software will be executed, where, besides 
the top 100 UNIX systems in use in 2021 yearly published by Distrowatch 4, Microsoft Windows is 
considered. Please note that only the last available updated version and the default kernel were 
considered. Additionally, cross-tree constraints were defined for unsupported Oss. 

• Programming Language (PL): The PL in which the operation is coded; in our evaluation, just the 
executed benchmarks are considered. 

• Edge technology: Our available libraries and peripherals are considered, including wireless 
communication, data storage, temperature sensors, remote controllers, etc. 

• Edge Context: Three key branches are located at this level. Parameters contain numerical 
features as natural numbers, usually input calculation parameters. Datatype represents the data 
types used in a specific operation. We used bytes for cases where several types are used 

simultaneously, like benchmarks. Operation contains the tasks performed in an IoT device; 
besides the common ones, such as starting or shutting down a device, the Phoronix Test Suite 
[32] operations are included in our evaluation. The suite ranges from battery power consumption 
monitoring for mobile devices to multi-threaded ray-tracing benchmarks and spans the CPU, 
graphics, system memory, disk storage, and motherboard components. While the suite 
comprises 403 tests, not all of them suits every OS or device of the variability model, but, on 
average, 100 are compatible for each system. As all the Oss, operations, and cross-tree 
constraints in Figure 19 are not graphically friendly, the complete ClaferVM is available [33]. 

 

 

Figure 19. VM of the Generic Edge Computing (GEC) large case study. 

Following the planning process for the energy-efficient software [69], we measured GEC energy 
consumption rate in Watts, triple checking with three professional tools: Watts UpPro Portable Power 
Meter, Multimeter Eversame C, and Eversame PowerMeter 2n1. The devices were highly cooled in a quiet 
and isolated room to avoid external factors affecting the readings. 

Clafer chocosolver reasoner generated the ∼5.3 ∗108 configurations of GEC in 36 hours for 552 Boolean 
and two numerical features with parent-children and cross-tree constraints. To approximate the GEC 
study to a real scenario, we performed 132500 different measurements, which account for 0.25% of the 
total search space – hence partially measured. TL confident scores were previously populated with 1,000 
runs with random parameters (e.g., strategy, number of samples) and variability model constraints. 

3.3.11 IoT devices dataset (D11) 

UNSW-IoT [67] is a classification use case based on measurement data for 28 Internet of Things (IoT) 
devices, collected in a living lab emulating a smart environment. The objective is identifying the type of 
IoT device generating each traffic flow by looking at statistical features of the data packets. We employ 
20 days of data that are made available to the research community, train the models over the first 15 
days and use the last 5 days for testing. 

3.3.12 Applications and protocols dataset (D12) 

UNIBS-2009 [68, 69] is a traffic classification task based on real-world traces collected on the edge router 
of the University of Brescia campus network, capturing traffic from 20 workstations. The traces include 
web traffic (HTTP/HTTPS), mail (POP3, IMAP4, SMTP), peer-to-peer applications (BitTorrent, Edonkey) and 
other protocols (FTP, SSH). The goal is associating each traffic flow to one of 8 application or protocol 
categories. We use one day of traffic for training and a second for testing. 
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3.3.13 Malicious attacks dataset (D13) 

NSL-KDD [70] is an anomaly detection case study that builds on 7 weeks of network traffic captured on 
a testbed recreating normal and attack traffic behaviors, by exploiting real hosts, live attacks and 
background traffic. The attacks fall in one of the following 4 categories: Denial of Service Attack (Dos), 
User to Root Attack (U2R), Remote to Local Attack (R2L), Probing Attack. The goal is again separating 
malicious and regular traffic. We consider the full data with the default training and test separation. 

3.3.14 Malicious packets dataset (D14) 

NSW-NB15 [71, 72] is an anomaly detection task employing a mix of real-world normal traffic and 
concurrent synthetic attack behaviors, produced in the Cyber Range Lab of UNSW Canberra. The 
measurements sum up to 100 GB of raw traffic with nine different types of attacks: Analysis, Backdoors, 
DoS, Exploits, Fuzzers, Generic, Reconnaissance, Shellcode, and Worms. Our goal, aligned with that of 

previous studies targeting this task, is once more to identify all malicious packets. In our experiments, we 
use 10 GB of data from the second day, and use 5 GB for model training and 5 GB for testing. 
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4 Results 
As anticipated in Section 1, the results achieved by the project to date are organized into a set of specific 

activities, which jointly contribute to progressing in each planned evaluation. Overall, the project carried 

out 23 activities to date. In the following subsections, we present the results for each evaluation E1-E7, 

and detail the outcome of each associated activity. 

At the start of each subsection we also summarize in a table the activities performed, also reporting the 
tools from Section 3 employed by each activity, the target and collected KPIs, the target Technology 
Readiness Level (TRL) and either the activity is planned or not for the PoC demo. Finally, the last column 
of summary tables provides an indicative figure of the current progress towards the completion of the 
activity. We also report in the same tables the main innovations entailed by each activity.  

We remark that neither all evaluations have the same volume of activities, nor all activities have the same 

level of progress. This was planned since the beginning, and it is due to the fact that (i) evaluations target 
network functionalities with diverse levels of maturity and complexity, hence requiring a more or less 
intense effort by the project, and (ii) activities employs very diverse NI models and tools, whose 
development over time cannot be uniform or perfectly aligned. In all cases, all evaluations have 
achieved some preliminary results to date: in some cases, those consist in the development of the 
platform needed to run experiments, in some other in a data-driven assessment of the problem, and in 
others yet in a first assessment of actual NI-assisted solutions. We expect all evaluations and activities to 
better align during the second iteration of the project, in the sense that they will all produce early or 
consolidated results about the performance of the NI-assisted solutions. This will be captured in the 
following deliverable of WP5. 

4.1 NI for sustainable virtualized RANs 

Evaluation E1 focuses on real-time control and non-real-time orchestration of vRAN services & resources. 
The DAEMON consortium performed assessments of challenges and solutions related to E1 via activities 
A1-A5. Table 10 summarizes the tools, KPIs, TRL, PoC plans, approximate progress and main innovations 
of such activities. 

Table 10. List of activities for E1. 

ID Name Evaluation Tool 
Planned 

KPIs 

Collected 

KPIs 

Target 

TRL 

Planned 

for PoC 

demo 

Progress 

A1 
Reliable RAN 
virtualization 

E1 T1 
K1, K2, 
K4, K5 

K2, K4, K5 4 Yes 30% 

 
Main innovation: 1) Reliable DU design suitable for Virtualization; 2) Centralized real-time control of radio 
and computing resources 

A2 
AI-driven O-
Cloud 

E1 T1 
K1, K2, 
K4, K5 

K2, K4 4 Yes 30% 

 Main innovation: Centralized real-time control of radio and computing resources 

A3 
Application 
aware radio 
scheduling 

E1 S2 K9 K9 3 TBD 30% 

 Main innovation: Traffic classifier to steer scheduler settings 

A4 

AI-aided 
energy-driven 
RAN 

orchestration 

E1 T5 K1, K4 K1 4 Yes 50% 

 Main innovation: Energy-driven O-RAN orchestration (non-real-time RIC)  

A5 
AI-aided 
RAN/edge 
orchestration 

E1 T5 K1, K4 K1 4 Yes 50% 

 Main innovation: Joint Energy-driven O-RAN orchestration (non-real-time RIC) and AI service  
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Overall, the preliminary results of these activities already led to a number of observations on the use of 
NI for virtualized RANs in next-generation mobile systems, as follows. 

• We identify gaps in the current implementations of vRANs, in terms of usage of shared resources 

across pools of Distributed Units (DU). This occurs both due to (i) the lack of guarantees of a timely 
completion of DU jobs when the processing times are non-deterministic, and (ii) substantial 
economic and energy costs of hardware accelerators (Has) used in such shared resources. 

These issues are explored in A1 and A2 below. Our results call for (i) a re-design of the DU pipeline, 
and (ii) NI-driven approaches for operating vRANs so as to limit the need for Has to a minimum, 
which will be designed and implemented during the second iteration within the project, and 
whose performance assessment will be presented in the next deliverable of WP5. 

• We implement and compare different strategies to address the currently open problem of traffic 

classification in vRAN, using local information about the channel bearer and radio link buffer. In 

A3, we show that a simple heuristic and a complex deep learning models perform similarly in this 
task, and can thus inform solutions for traffic-aware radio scheduling. As there is still space for 
improvement in the absolute performance of these classifiers, the second iteration of the activity 
will focus on further refining the solutions, and results will appear in the next deliverable of WP5. 

• We reveal that power consumption of virtualized Base Stations (vBS) in vRANs is in practice much 

more complicate than what assumed in the literature, and that it is linked to end-user QoS in 

introcated ways. Our results are obtained via experiments in A4 and A5, using a dedicated real-
world platform, and show tangled relationships of traffic, SNR, MCS and airtime, with non-linear 
and non-monotonic relations between system configurations and power usage or attained 
throughput. Similarly complex relations exist with application-level performance metrics such has 
the latency and throughout. While all these results clearly hinder the derivation of general 
consumption models and the use of simple decision models to drive resources, we plan to devise 
NI algorithms that can cope with such complexity in the second iteration of the project. 

4.1.1 Reliable distributed unit for virtualization (A1) 

As discussed in Section 4.1 of [34], achieving very high reliability for virtualized RAN on a shared cloud 
platform is one of the challenges of next generation mobile networks. In this Section, we provide some 
evidence of the fact that the current architecture of the mobile network u-plane pipeline is not optimized 
for its usage in a cloud computing environment. 

 

Figure 20. LTE and New Radio (NR) DU pipeline: DU job 𝑛. 

4.1.1.1 Reliability of the baseline pipeline 

The design of the baseline pipeline, described in section 4.1.1.2 of [34] and shown in Figure 20, is not 
suited for non-deterministic computing platforms such as shared clouds. Namely, existing solutions 
implementing the above baseline pipeline cannot guarantee the timely execution of individual jobs 
without the assistance of dedicated hardware acceleration or aggressive over-dimensioning [35], which 
compromise flexibility and cost-efficiency [36]. 

4.1.1.2 Timing Constraints 

3GPP defines several timing constraints [37]. Relevant to this discussion are C3 (the latency between 
ACK/NACK reception in Uplink (UL) UCI and the corresponding Downling (DL) re-transmission in PDSCH), 
and C4 (latency between PUSCH reception and delivery of HARQ feedback). In LTE, C4 = 3 ms, which 
implies M=4. Though these timings are more flexible in NR, they are set at longer timescales by the CU, 
however keeping the same choice [38]. As a consequence, there is a hard deadline to process each 
DU job within M-1 ms, as shown at the bottom of Figure 20. Violating this deadline prevents timely delivery 
of DL SFs and, as a result, loss of synchronization and connectivity between the DU and its users, as shown 
by the baseline performance in the experiment of Figure 21. 

4.1.1.3 Inter-task dependencies 

Regardless of individual processing optimizations [39], different DU tasks within a job have strong 
dependencies as shown by the blue arrows in Figure 20. DL grants must be computed before PDSCH 
because they carry information required to encode and modulate DL TBs. As a result, known 
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implementations (e.g., Samsung’s vDU [40], srsRAN and OpenAirInterface) perform each DU job in a 
single thread pipeline (Figure 20), or in a multi-thread pipeline where each thread has to wait and be 
executed in a precise order [41], which boils down to Figure 20 again. Although solutions like Agora and 
FlexRAN help to accelerate the processing of individual DU tasks, the aforementioned dependencies 
prevent running different DU tasks in a job in parallel to expedite the pipeline of Figure 20. 

 

Figure 21. Throughput measured for two vDUs competing for resources. 

 

Figure 22. Throughput performance for both uplink and downlink (top). CPU time required by different 
PHY layer functions (bottom). Different uplink/downlink load (relative to the maximum) and channel 

conditions (SNR). 

4.1.1.4 Non-deterministic tasks 

As hinted in our toy experiment shown in Figure 21, the computing time required by DU tasks highly 
depends on the instantaneous availability of computing resources. We note moreover that the most 
compute-intensive tasks also depend on the context, that is, on the data load (rate of TBs to 
decode/encode) and on the mobility patterns of the users (signal quality) [42], which can induce very 
quick fluctuations in the demand for computing resources. To illustrate this, we deploy the baseline vDU, 
implemented in srsRAN, processing downlink and uplink traffic over one Intel i7 core in a 10-MHz band. 
Figure 22 depicts the achieved throughput in both the uplink and downlink (top subplots), and the 
median time incurred by the CPU to perform DU tasks (bottom subplots). We take these measurements 
for different load intensities (relative to the capacity in UL and DL, respectively) and average signal-to-
noise ratios (SNR) indicating the channel quality for both UL and DL, and adapt the MCS to minimize the 
workload issued by the decoder, differently to our results. The results yield two observations. First, 
processing PDSCH and (especially) PUSCH are the two tasks that consume CPU time the most, which is 
not surprising as it has been observed before [43, 44]. Second, while the CPU time of the rest of tasks (and 
others not shown in the figure to reduce clutter) remains practically constant, the time required to 
process PDSCH and PUSCH highly depends on the context; that is, on the SNR—and so on the mobility 
patterns of the users, and on the load—and hence on the users behavior. Note that even if shared pools 
of hardware accelerators are used à la cloud to reduce the processing time of some of these tasks, 
queueing in the abstraction layer brokering access to the accelerators across multiple vDUs incur in 
similar issues [45]. 

4.1.1.5 Conclusion and outlook 

Because of the above, baseline solutions cannot guarantee the timely completion of DU jobs when 
facing computing fluctuations, which cause unreliability in scenarios such as that of Figure 20. We hence 
claim that a re-design of the DU pipeline is required for non-deterministic computing platforms such as 
shared clouds, which we will fully describe in the next version of the WP5 deliverable. 
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4.1.2 AI-driven O-Cloud (A2) 

vRAN solutions in the market today resort to offloading compute-intensive tasks, usually FEC operations, 
into dedicated hardware accelerators (HAs). HAs are GPUs, FPGAs, or even CPUs that are programmed 
to perform one single task. Because they are programmable and can carry out FEC LDPC work very fast, 
GPUs (NVIDIA Aerial) and FPGAs (Intel FlexRAN3) are the most popular HAs for 5G vRANs.  For instance, 
Figure 23 shows that a 10x latency reduction can be achieved when offloading LDPC workload into a 
GPU. In line with the industry, we focus on FEC offloading in this activity. 

 

Figure 23. Mean latency and energy consumption to decode an LDPC-encoded transport block. 

4.1.2.1 Limits of hardware accelerators for vRAN 

However, as acknowledged by top executives in the business, this approach is doomed to fail. The root 
cause is the strong dependency on HAs, which are more expensive and energy-inefficient than ASICs 
(see Figure 24) yet are dedicated to individual DUs. Notably, the energy toll of a GPU-based LDPC 
decoder has an average consumption of 8.25 nJ per bit per decoding iteration. In marked contrast, 
ASIC-based decoders consume as low as ~3 pJ/bit/iteration.  

This is a waste because (i) HA resources are highly underutilized most of the time, and (ii) less-performing 
yet low-cost processors are not sufficiently exploited to bear this workload. Note in Figure 23 (right) that 
CPUs can process FEC operations with a 6x lower energy toll. 

 

Figure 24. Comparison of HAs. Approximated figures. 

4.1.2.2 Conclusions and outlook 

Our current measurements reveal that HAs are not necessarily the silver bullet for vRAN functionality 
operation, due to the substantial capital expenditure and energy footprint they entail. This motivates the 
need for NI-assisted solutions that can take these costs in the equation, and take vRAN operation 
decisions (e.g., allocating bandwith to users associated to specific base stations) that optimize the 
utilization of (limited) HA resources, thus limiting the need for deployed HA capacity. We will explore these 
challenges and propose solutions in the next WP5 deliverable. 

4.1.3 Application aware radio scheduling (A3) 

With the simulator S2, described in Section 3.2.2, we generated data to assess the performance of the 
classification algorithm described in Section 4.3 of Deliverable D3.1 [34]. Typically, we let a number of 
mobile users, say 8, consume4 data under the form of a large file transfer, streaming video, web browsing 
or Internet radio and observe the air interface. Specifically, we observe the (downlink and uplink) 
throughput on the bearer and the (downlink and uplink) evolution of the RLC (radio link control) buffer. 
A typical example of a case where mobile 1 and 2 consume Youtube video, mobile 3 and 4 are web-
browsing, mobile 5 and 6 are consuming Internet radio and mobile 7 and 8 are downloading a large file, 
is shown in Figure 25. Note that the granularity of the RLC buffer occupancy, which has a granularity of 
10ms, is 100 times finer than that of the throughput, which has a granularity of 1 sec.  

 
3  Intel FlexRAN provides both FPGA drivers and CPU libraries (exploiting Intel AVX-512 instruction sets) for FEC 
acceleration. 
4 For now, we consider only applications that mainly download information, but later we may consider applications 

that produce information as well.  
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Based on such traces acquired in various conditions with various types of mixtures, we construct labeled 
data as follows. Each trace (for which we know the nature of the traffic that is being generated) is split 
in chunks of a finite size (say 20 sec) and that chunk inherits the label of the trace is belongs to. In that 
way we build up a data base of labeled chunks with which we can train, validate and test any 
classification algorithm that we care to investigate. We split the data set (randomly) in a training set that 
comprises 75% of the labelled data and a test set that consists of the remaining 25%.  

To illustrate the performance of the classification algorithms we show the confusion matrix calculated on 
the test set, i.e., entry 𝑐𝑚[𝑘, 𝑙] of the confusion matrix is the fraction of cases of class 𝑘 that we classified 
as class 𝑙. Ideally, we want the diagonal entries of the confusion matrix to be close to 1. Notice that each 
row of the confusion matrix sums to 1.     

Here we discuss in more details two of the three classification algorithms introduced in Section 4.3 of 
Deliverable D3.1 [34] that take 20sec (i.e., 2000 samples) of the RLC buffer occupancy as input vector 

and produce an application category as output. There are four categories: file transfer, video, web 
browsing and internet radio, and from the traces we extracted 20880 vectors of the file transfer category, 
9180 vectors of the video category, 6869 vectors of the web browsing category and 6964 vectors of the 
Internet radio category. 

 
Figure 25. Downstream throughput (left) and RLC buffer (right) evoluation in a typical experiment. 

4.1.3.1 K nearest neighbors algorithm 

When an input vector is presented to this algorithm, it determines the 𝐾  closest neighbors in the training 
set, then it determines the labels that are associated to these neighbors and takes a weighted majority 
vote to determine the class associated to this input vector. In the results below, we choose Euclidean 

distance as distance metric, 𝐾 = 4 and the weights are the inverse of the distance. 

Table 11 shows the confusion matrix of this classifier. File transfer and video can be easily identified. 
However, web is often misclassified as video and vice versa, while radio is misclassified very often, most 
of the time as video. Since radio does not consume too much bit rate this is not a major problem.  
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Table 11. Confusion matrix of K nearest neighbors. 

 Classified as: 

 
 File transfer Video Web Radio 

G
ro

u
n

d
 

tr
u

th
 

File transfer 0.964 0.027 0.003 0.007 

Video 0.013 0.837 0.149 0.001 

Web 0.013 0.22 0.766 0.001 

Radio 0.002 0.112 0.591 0.295 

4.1.3.2 Feed forward neural network  

We chose a neural network with an input layer of 2000 neurons and an output layer of as many neurons 
as there are traffic classes. We considered 3 hidden layers with 40 neurons each. The activation function 

for all neurons, except the output layer, is ReLu, where 𝑅𝑒𝐿(𝑥) = 𝑥 if 𝑥 > 0 and 0 otherwise. The output layer 
has softmax, where 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑘) =  exp (𝑥𝑘) ∑ exp (𝑥𝑖)𝑖⁄ , as its activation function and can be interpreted 
as the probability that the presented input vector belongs to class 𝑘. As loss function we used categorical 
cross entropy and we used ADAM as training algorithm. Of the training set, we set 20% of the data aside 
for validation. We trained, with a batch size of 32 samples, as long as the loss on the validation set 
substantially decreases, i.e., as long as it does not increase 10 epochs in a row, as illustrated in Figure 26. 

 

Figure 26. Evolution of the loss function and classification accuracy on the training and validation set. 

Table 12. Confusion matrix for the neural network classifier. 

  Classified as: 

  File transfer Video Web Radio 

G
ro

u
n

d
 

tr
u

th
 

File transfer 0.992 0.006 0.002 0.000 

Video 0.017 0.890 0.091 0.001 

Web 0.001 0.364 0.631 0.004 

Radio 0.008 0.003 0.020 0.969 

Table 12 shows the confusion matrix for this classifier. Again, file transfer is easily identified. Video is 
confused with web more often with this classifier than with the K nearest neighbors classifier, while on the 
contrary web traffic is classified better. Radio is nearly always classified correctly.   

4.1.3.3 Conclusions 

The two classifiers perform similarly. Classification based on a chunk of 20 sec in a heterogeneous 
environment is not trivial. Since the length of the chunk is also the (minimal) response time of the classifier, 
it cannot be taken it much longer. In future work we will investigate if a post-processing step, where we 
take into account how chunks that immediately precede the chunk to be classified are classified, can 
help. Such an analysis will be the focus of the second iteration of the activity, and its results will be 
reported in the next deliverable of WP5. 

4.1.4 AI-aided energy-driven RAN orchestration (A4) 

This NI-solution is outlined in Section 3.2.1 of Deliverable 4.1 [46]. We used testbed T5 to perform our 
evaluation. In this section we summarize the most important findings. 

4.1.4.1 BBU/CPU Power Cost & Impact of Platform 

The first important finding is that the power consumption associated with BBU processing is comparable 
to the RFR chain’s transmission power. This result is consistent with previous studies. Figure 27 dissects the 
power consumption of a vBS deployed over a Small Factor (SF) PC into the share responsible by (𝑖) the 
BBU´s CPUs5, (𝑖𝑖) the BBU´s cloud platform except the CPUs, and (𝑖𝑖𝑖) the actual RU deployed over a 

Software Defined Radio (SDR) transceiver from National Instruments. We measure the power 

 

5 We use the Intel’s Running Average Power Limit (RAPL) functionality integrated into the Linux kernel to measure the 
CPU consumed power. 



Deliverable 5.1 

                                                                                                                                                                           H2020 – 101017109 

44 

consumption for four scenarios: (𝑖) the vBS is not deployed (baseline), (𝑖𝑖) the vBS is deployed with an idle 
user attached (vBS idle), (𝑖𝑖𝑖) the vBS is transmitting 20Mbps of DL traffic, and (𝑖𝑣) the user is transmitting 
20Mbps of UL traffic to vBS. 

Excluding the baseline scenario, the CPU power cost alone is, on average, 29% larger than that of the 
RU, while the overall BBU power exceeds it by 175%, on average (208% over full UL load). Interestingly, 
these numbers depend on the platform, which hosts the BBU. Namely, Figure 28 shows the BBU 
consumption over the baseline for different platforms.6 We compare the power consumed by the BBU in 
idle state and operating at full UL/DL buffer and subtract the baseline power. Indeed, the power cost 
changes significantly, and is affected also by the vBS bandwidth. 

  

Figure 27. Comparison of power 
consumption at: the BBU (Intel NUC i7-

8559U@2.70GHz), the BBU’s CPU, and the RU 
(an USRP SDR), with 20Mbps DL and UL traffic. 

Figure 28. Consumed power over the baseline 
for different radio bandwidths and hardware 

platforms. SF PC 1: Intel NUC i7-8559U@2.70GHz; 
SF PC 2: Intel NUC i7-8650U@1.90GHz; Server 1: 
Dell XPS 8900 i7-6700@3.40GHz; Server 2: Dell 

Aurora R5 i7-9700@3.00GHz. 

4.1.4.2 Impact of SNR & MCS 

The second finding is that the SNR of the wireless channel and the MCS in UL affect the BBU computing 
load, and hence, its power consumption in a non-linear fashion. This is because the decoder needs more 
iterations when the received signal becomes noisier. Thus, the decoding time per subframe increases, 
e.g., by 52% between 20 and 15 dBs for MCS 23, see Figure 29; and this induces a commensurate increase 
in power consumption, see Figure 30. Besides, Figure 30 shows that, even for a given decoding time, 
higher MCS values induce more power consumption, which is attributed to their more intricate 
demodulation. Importantly, excessive decoding delays can induce throughput loss since they lead to 

violations of vBS deadlines [47]. Hence, maximizing throughput does not only have an unpredictable 
effect on power, but it is indeed highly non-trivial. 
 

 

 

Figure 29. vBS over SF PC 1 at full UL buffer. UL 
decoding time as a function of SNR and different 

MCS values. 

 

Figure 30. vBS over SF PC 1 at full UL buffer. 
Power consumption as a function of the 

decoder performance (high correlation). 

 

 

 

6 The small factor PCs consume less power than the servers, which however can host more vBSs hence are expected 
to consume less power per user. 
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4.1.4.3 Configuration Options & Impact of Scheduler 

The above vBS control challenges are exacerbated by the plenitude of configuration options. Figure 31, 
for instance, presents combinations of MCS and airtime values (percentage of used subframes) 
achieving the same UL throughput. Configurations with higher MCSs (and therefore lower airtime) reduce 
power by 38%. However, this relation is non-monotonic, as we have also measured higher power when 
the MCS increases and SNR is relatively low; this is due to the fast increase of computing load (see Figure 
30). On the other hand, configurations 6 to 8 have the same power consumption, but still differ since 
configuration 8 involves lower airtime and thus can serve more users, while configuration 6 is more resilient 
to noise. These decisions are made by the vBS radio scheduler which based on the SNR selects the MCS 
and airtime. Figure 32 shows the power consumption as a function of MCS and airtime for UL transmissions. 
We observe that both parameters have a smooth impact on power, but in practice this characterization 
is not available and needs to be learned. 

 

Figure 31. 8x combinations of normalized 
MCS and airtime providing 2.6Mbps in UL, 

and its associated power (idle mode 
power is subtracted). 

 

Figure 32. Normalized power consumption at 
the BBU over baseline for full buffer UL 

transmissions and high SNR, as a function of MCS 
and airtime. 

4.1.4.4 Conclusions 

Characterizing the vBS power consumption is intricate as it depends on traffic, SNR, MCS and airtime. 
There are many DL and UL configurations and some of them present non-linear and non-monotonic 
relations with power and throughput. Moreover, the power consumption depends on the BBU platform 

and radio scheduler. This hinders the derivation of general consumption models.  

4.1.5  AI-aided RAN/edge orchestration (A5) 

This experimental activity targets the performance assessment of the solution for NI-assisted RAN/edge 
orchestration reported in D4.1, Section 3.3.1 [46]. Here, we summarize the main findings of the evaluation. 

4.1.5.1 GPU-enabled Edge server for mobile video analytics 

We have built a fully-fledged prototype system with a software-defined BS (using srsRAN suite) and a 
GPU-enabled edge server that offers a Mobile Video Analytics (MVA) service to mobile users. We 
measure the joint impact that resource control policies at the user device (frame size), the BS (radio 
configuration) and the server (GPU speed) have on the service accuracy and end-to-end latency (QoS), 
and on power consumption (cost). Our experiments show that, unlike other services, performance is 
highly volatile and depends on the underlying hardware, the AI service configuration, and even the 
actual user data. Furthermore, these services include a wide range of configuration options, e.g., 
selecting different architectures of neural networks, different processing equipment, or even adjusting 
the data sources. All these parameters affect in an unknown way the latency and accuracy, which in 
turn renders traditional resource orchestration techniques ineffective for this problem. 

We have performed an exhaustive set of experiments using a testbed. In a nutshell, the testbed is 
comprised of a 3GPP R10-compliant LTE BS, a UE generating service requests via the BS to a well-known 
object recognition service, and an off-the-shelf server with an NVIDIA GPU running the service. Each 
request consists of an image with a variable number of objects from the COCO dataset7. The images are 
sent to the service via the uplink channel of the LTE interface, and the service returns to the user a 
bounding box and a classification label for each identified object in the image. This information is sent 
via the downlink channel of the LTE interface. Each measurement shown as a dot in the figures of this 

section is an average of 150 images. The dataset collecting all the measurements shown in this section is 

 
7 https://cocodataset.org/ 
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available online8 to enable reproducibility and to facilitate further research in this area. In the following, 
we analyze the trade-offs between different configuration policies and performance indicators that are 
relevant to the system stakeholders: (𝑖) quality of service experienced by the end-users, (𝑖𝑖) the cost 
associated with the service provider, and (𝑖𝑖𝑖) the cost associated with the MNO. 

4.1.5.2 Latency and precision 

We start off by analyzing two metrics of interest for the user’s quality of service: the service’s performance 
to recognize objects and the service delay, formally introduced in Performance Indicator 1 (Service 
Delay) and 2 (Mean Average Precision), respectively. According to our measurements, the most relevant 
feature that affects the mAP is the image resolution, defined in Policy 1. 

We illustrate this in Figure 33, which shows the trade-off between service delay and mAP for the COCO 
images dataset encoded with different resolutions. The remaining configuration policies (described later) 
are fixed so the service delay is minimum. The results are rather intuitive: (𝑖) Higher-resolution images carry 

more pixels encoded in a larger amount of data. Therefore, higher-resolution images incur higher delay 
due to longer transmission time over the radio interface. (𝑖𝑖) Lower-resolution images cause the service 
to provide lower mAP performance because they carry less useful information for the object detection 
engine. Specifically, in our experiments, a 72% improvement in service delay is associated with a 
reduction of precision that goes between 10% to 50%. 

 

Figure 33. Mean average precision (mAP) vs.service delay for images with different resolutions. 

4.1.5.3 Including power consumption in the picture 

There also exists a trade-off, which naturally appears in many resource control problems, between the 
users’ QoS and the associated cost to the provider of such service. To explore this trade-off, we introduce 

a policy that governs the allocation of radio resources, defined as Policy 2, and an additional metric that 
assesses part of the aforementioned cost: the server’s power consumption, defined as Performance 
Indicator 3. 
 

 

Figure 34. Service delay vs. server’s power consumption for images with different resolutions and radio 

policies. 

Figure 34 depicts the service delay versus the server power consumption, for different airtime radio 
policies and image resolutions. Similarly, as before, higher resolution images increase service delay due 
to the longer transmission time of the requests. We now observe that this occurs irrespective of the radio 
policy configuration. However, the selected radio policy has an important impact on service delay as 
well, which is intuitive as lower airtime implies lower usage of radio resources, which further increase the 
transmission time of the requests at the radio interface. Specifically, our experiments show that an 80% 
increase of the airtime produces improves the delay between 65% and 80%. Concerning the server’s 
power consumption, lower resolution images and lower radio resource allocations increase this cost for 

 

8 https://github.com/jaayala/ 
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the service provider. Specifically, there is a 56% increase in power consumption for an 80% increase in 
spectrum time resource; a similar increase attained when there is a 75% increase in image resolution. This 
is explained because larger amounts of radio resources allow the user to send a higher rate of requests 
in a similar way than lower resolution images do, which ultimately increase the amount of work assigned 
to the service’s resources (the GPU in this case). 

4.1.5.4 Conclusions 

The relationships between key performance indicators in the context of MVA in a GPU-enabled Edge 
server are entangled and offers a number of trade-offs. Note that additional trade-offs to those above 
are also detailed in D4.1 [46], Section 3.3.1. Clearly, simple decision-making models cannot capture such 
complex relations, which paves the road to the development of dedicated date-driven NI algorithms 
that can effectively learn such intricated correlations. This will be the objective of the activity during the 
second iteration of the project. 

4.2 NI for VNF placement and control 

Evaluation E2 focuses on NI solutions that support network slice management & orchestration operations. 
The DAEMON consortium performed assessments of challenges and solutions related to E2 via activities 
A6-A8. Table 13 summarizes the tools, KPIs, TRL, PoC plans, approximate progress and main innovations 
of such activities. 

Table 13. List of activities for E2. 

ID Name Evaluation Tool 
Planned 

KPIs 

Collected 

KPIs 

Target 

TRL 

Planned 

for PoC 

demo 

Progress 

A6 

Energy-aware 
deployment of 
VNFs for 
genenric Edge 
computing 

E2 D10 K1 K1 3 TBD 10% 

 Main innovation: Optimization of edge computing system deployments exploiting variability  

A7 

Combining 

VNFs at the 
edge 

E2 None9 K1, K2 K1, K2 3 TBD 10% 

 Main innovation: Adaptation of VNFs resource requirements to the available Edge resources  

A8 
AI Enhanced 
MANO 

E2 T8 K3, K8 K3 5 Yes 30% 

 Main innovation: Automated resource reallocation for supporting critical services 

Overall, the preliminary results of these activities already led to a number of observations on the 
management and orchestration of network slices in next-generation mobile systems, as follows. 

• We contribute to the challenging endeavor of making VNF placement and control more energy 

friendly in complex mobile Edge settings, where the configuration space is extremely large and 
network services developers can measure the energy consumption of only a subset of these 

configurations. Specifcally, activities A6 and A7 tackle this problem by (i) developing an 
interactive and statistical approach to provide energy consumption insights based on a small 
subset of directly accessible measurements, and (ii) discovering and adapting Edge resources 

to the VNFs requirements in an energy-aware fashion, respectively. 

• We developed a complete framework for NI-assisted MANO. By engineering together a number 

of components, in activity A8 we deployed an experimental platform that will support, in the rest 
of the project lifetime, real-world tests of NI instances that can automate MANO operations in 
next-generation mobile networks. The actual implementation and integration of such instances 
will be carried out during the second iteration of the project, with results presented in the next 
deliverable of WP5. 

 
9 Activities A7 makes use of randomly generated data to validate the solution. 
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4.2.1 Energy-aware deployment of VNFs for genenric Edge computing (A6) 

In this Section we report the results of the evaluation of the SAVRUS (Smart Analyser of Variability 
Requirements of Unknown Spaces) approach presented in Section 5.3.2 of deliverable D3.1 [34]. The 
main objective of SAVRUS is to guide in the optimization of Edge computing system deployments by 
identifying the specific features with a high probability to improve the energy consumption if they are 
replaced by their alternatives. 

We have performed a proof of concept of SAVRUS using an Edge computing case study. In addition, we 
have evaluated and compared the two implementations of our approach, using the product sampling 
techniques Diversified Distance-based Sampling (DDbS) and Statistical Recursive Search (SRS). The results 
are shown in Table 14 and discussed below. Our evaluation is based on variability models and the dataset 
D10 presented in Section 3.3.10. 

Table 14. Details of the quality measured numerical variability models (NVM) used to validate SAVRUS. 

NVM Description #Boolean #Numericals Space QA #Measurements 

Dune Muti-grid solver 11 3 2,304 

Equation 

solving time 

2,304 

HSMGP Stencil-grid solver 14 3 3,456 3,456 

HiPAcc 
Image processing 
framework 

33 2 13,485 13,485 

Trimesh Triangle mesh library 13 4 239,360 239,360 

GEC 
Generic edge 
computing 

552 2 ~ 5.3 * 108 
Energy 
Consumption 

132,500 

4.2.1.1 Generic Edge computing case study 

Firstly, we tested SAVRUS with a Generic Edge Computing (GEC) case study – a variability model with a 
large configuration space that we have designed to represent a regular IoT/Edge/Cloud system for VNFs 
(described in Section 3.3.10). Its main details are shown at the bottom of Table 14. The clafer chocosolver 
reasoner10 was used to generate the ∼ 5.3 ∗ 108 configurations of GEC in 36 hours for 552 Boolean and 
two numerical features with parent-children and cross-tree constraints. GEC search space details are 
also specified in the last row of Table 14, being the largest space considered to evaluate this work. To 
approximate GEC study to a real scenario, we performed 132,500 different measurements, which 
account for 0.25% of the total search space – hence partially measured. We found interesting feature 
interactions and optimization insights, where the hosting Operating System, the running Device, and the 
network interface were the main culprits of the system's energy consumption for whatever configuration. 

4.2.1.2 Comparative analysis 

Then, we evaluated and compared the two implementations of our approach (i.e., DDbS and SRS). To 
prove that SAVRUS results are correct, we required completely measured variability models for a well-
known quality attributes. Consequently, we opted to test the accuracy of SAVRUS for quality attributes 
atruntime as the results are aligned with the quality attribute energy consumption. The variability models, 
detailed in Table 14, are: Dune, HSMGP, HiPAcc [48] and Trimesh [49]. To emulate our issues, we purposely 
removed random chunks of measurements mimicking the issues of large variability models modelling 
energy-aware VNFs systems (i.e., randomly spread measurements). To obtain domain unknown 
configuration spaces with scattered measures, we degrade the data by randomly erasing parts of the 
variability models measured space. For scalability testing, we increased the number of samples from 25 
to 6,400. 

We validated SAVRUS effectiveness regarding: (i) the quality of the features insights; (ii) the size of the 
sample sets with respect to the space size; and, (iii) the analyses times. SAVRUS generated a correct 
ranking of noteworthy features and interactions 80% of the times for every incompletely quality attribute 
measured model. Regarding SAVRUS performance, the current prototype has a base runtime of 1 

minute, taking less than 3 minutes for comprehensible cases and scenarios. Between the two sampling 
implementations, DDbS was the most balanced alternative due to its speed, accuracy, and scalability, 
especially for large and complex systems. Anyhow, if the analysis time is not an issue for a developer, SRS 
is the most accurate alternative. 

4.2.1.3 Conclusions and future work 

Currently, we have developed a SAVRUS prototype and proved its usefulness with a large case study 
from the domain of Edge computing systems, comprising 554 features and a total of 108 legal 
configurations. This case study didn´t consider the variability of VNFs. We plan to apply our approach to 
reason about the energy consumption of highly variable VNFs required in the context of Augmented 
Reality applications. Specifically, with an offline SAVRUS analysis, we will create a learned energy model 

 
10 https://github.com/gsdlab/clafer. 

https://github.com/gsdlab/clafer
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that transfers the knowledge to real-time algorithms acting on predictors or heuristics. If the network, 
functions, services or devices are updated, the energy model will evolve with an extra offline adjustment 
executing SAVRUS again. We expect to improve the speed and accuracy of real-time and dynamic 
algorithms in the second iteration of the project.  This solution will impact mainly KPI K1, and its results will 
be presented in the next deliverable of WP5. 

4.2.2 Combining VNFs at the edge (A7) 

In this Section, we present the results of the evaluation of the algorithms present in Section 5.3.3 of 
deliverable D3.1 [34]. These two algorithms are the Application Variability Adaptor (AVA) and the New 
Devices Finder (NDF); they target the configuration of VNF requirements and edge-based infrastructure 
capabilities for a better the estimation of energy consumption. 

4.2.2.1 Campus-wide cyber physical system use case 

By now, we have applied the AVA and NDF to a real case of an academic campus where several 
devices, those typical of cyber physical systems (CPSs), are geographically distributed serving different 
applications. The campus infrastructure includes sensing units, IoT gateways, computers, cloudlets, and 
dedicated cloud servers, scattered across the campus. These devices are not using all their computation 
and communication capacities (or even are suspended most of the time). All of them are located at the 
far edge of the Internet, connected to the campus institutional access network. Both algorithms were 
able to obtain an optimal solution for their given problems in the case study. 

The time needed by our modules to provide a solution varies according to the size of the problem [50]. 
For this reason, we have evaluated the execution time for different problem sizes. With this purpose, we 
have developed a Benchmark version of the algorithms, which allows setting the number of features and 
devices in case of the AVA and the number of services and devices for the NDF. Each experiment is 
performed 30 times on one thread of an AMD Ryzen 7 1700X processor. 

In all the experiments the infrastructure considered is formed by 30 different devices with arbitrary 
characteristics (set on each experiment). These random characteristics involve software and hardware 
components, as well as the location. Table 15 shows the results. 

Table 15. AVA and NDF algorithms execution time. 

Problem size: 

AVA: (D/F) 

NDF: (D/S) 

30/10 30/20 30/30 30/40 30/50 30/60 30/70 30/80 30/90 30/100 

AVA Mean (s) 0.07 0.14 0.24 0.41 0.60 0.88 1.39 1.99 2.95 4.23 

Std 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.04 0.03 

NDF Mean (s) 0.12 0.50 1.09 1.97 3.03 4.49 6.03 7.94 10.11 12.21 

Std 0.00 0.01 0.01 0.02 0.03 0.07 0.06 0.06 0.16 0.30 

D: Devices. F: Features. S: Services. 

4.2.2.2 Algorithm performance 

For the first algorithm (AVA) the number of features has been incremented up to 100. Experiments show 
that the AVA returns a solution almost instantaneously in most cases, requiring around 4.2 seconds in the 
worst case of a very big application formed by 100 heterogeneous features. 

Regarding the experiments of the NDF, the number of services has been incremented from 10 to 100. 
Services characteristics such as computational load, data to transmit, location requirements, type of 
device, peripherals, sensing units, operating system and interaction ways have been randomly set for 
each experiment. Results show that, for an application formed by 10 different services, the NDF needs 
around 0.12 seconds to return a solution, being 12.2 seconds in the worst case of an application formed 

by 100 different services. 

4.2.2.3 Conclusions 

The utility of the AVA and NDF is shown by applying them to manage the evolution of an application and 
the infrastructure of a real IoT scenario [51]. The execution time of our algorithms for different problem 
sizes has been also evaluated using a Benchmark, and the conclusion is that they return a solution in a 
reasonable amount of time. These solutions will have an impact on both KPIs K1 and K2. 

4.2.3 AI-enhanced MANO (A8) 

This activity targets the development and experimental assessment of a platform for AI-supported MANO. 
Currently, the work has focused on the integration of the components of the platform towards deploying 
a comprehensive and flexible architecture that will enable structured MANO tests in presence of NI. 
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4.2.3.1 Platform components 

The AI-enhanced MANO solution is deployed on a set of servers on which the OSM and OpenStack are 
deployed. To enable the intelligence at the orchestration and management level, multiple interfaces 
with different components are used. Specifically, the connection with Open-Source MANO has been 
enabled through the OSM’s Northbound API featuring ETSI NFV SOL005. Communication with OpenStack 
has been done through its provided API with a RESTful web service endpoint to access, provision, allocate 
and automate the resources. Data and logs are retrieved directly from Elasticsearch REST API, that is also 
used in cases of configuration and access to other Elasticsearch features. Additionally, custom APIs have 
been designed and developed for enabling the acquisition of information from VNFs, applications and 
infrastructure with the use of exporters that send specific metrics to the Elasticsearch and Diagnostic 
components. Finally, the connection with Verticals has been performed with a custom API that directly 
connects the AI-enhanced MANO with the Verticals retrieving in this way all requirements or specific SLAs. 

4.2.3.2 Plartform architectural design 

The architecture of the AI-component is shown in Figure 35 and its connections and functions are 
explained below. 

1. Direct Verticals info (i.e., Metrics/KPIs) of the Network Service (NS) that will be deployed acquired 
from AI-enhanced MANO or by utilizing the 5G EVE APIs. 

2. Internally an API SERVER gets the request and triggers the AI component to evaluate the optimal 
deployment of the VNFs based on Vertical requirements and KPIs. 

3. The API SERVER gets the VNF’s info from the OSM (OSM NB API) and historical data from db. 

4. The API SERVER retrieves the metrics exported from the MEC platform and the MEC’s VNF in-
stances, to evaluate the metrics in real time. 

5. The AI component acquires all information in real time (MEC’s metrics, VNF IDs, and VNF re-
quirements) from the API SERVER and uses old data and previous decisions. The AI finds the op-
timal deployments and migrations for the NSs in MECs. 

6. The AI component triggers the OSM (OSM NB API), through API SERVER, for any migration or 
reallocation of resources. 

 

Figure 35. AI-enhanced MANO solutions. 

4.2.3.3 Summary and future work 

With the platform deployed, the activity will focus on integrating NI instances for MANO therein. Thus, in 
the second iteration of the project, we will work towards designing and plugging into the AI block in 
Figure 35 smart algorithms for improved MANO. The results of such integration, in terms of engineering 
work and possibly of performance evaluation results, will be reported in the next deliverable of WP5. 

4.3 NI for real-time anomaly detection 

Evaluation E3 focuses on NI solutions that support anomaly detection in real-time in both controlled 
environments and in a production core network. The DAEMON consortium performed assessments of 

challenges and solutions related to E3 via activity A9. Table 16 summarizes the tools, KPIs, TRL, PoC plans, 
approximate progress and main innovations of such activities. 
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Table 16. List of activities for E3. 

ID Name Evaluation Tool 
Planned 

KPIs 

Collected 

KPIs 

Target 

TRL 

Planned 

for PoC 
demo 

Progress 

A9 

Federated 
Learning-
based 
Anomaly 
Detection 

E3 T8 K3, K7 K3 4 Yes 40% 

 Main innovation: Use federated learning for improving the efficiency of Anomaly Detection 

A single activity A9 is targeting E3, by investigating Federated Learning-based anomaly detection. Details 
on A9 are provided next. Note that the consortium is considering the option of merging this evaluation 
with E5, given the proximity of the two evaluations and the fact that only one activity was carried out in 
E3 and two in E5 to date. We will assess the advantages of this option, and possibly consolidate E3 and 
E4 during the second iteration of the project. 

4.3.1 Federated Learning-based Anomaly Detection (A9) 

B5G/6G infrastructures are deployed to serve diverse verticals. These verticals will be requesting a set of 
services, which can generate diverse traffic profiles. For instance, a utility can generate traffic from 
sensors, from video streams, or even audio; these streams can vary in requirements, for instance in terms 
delay and reliability. All these aspects (demands and system organization) can appear organized in the 
form of a set of slices that are concurrently supported by the infrastructure. Bypassing the aspects of 
whether slicing is used, and by adopting a more general perspective, it can be assumed that the network 
will be asked to serve a sheer amount of traffic sources. These traffic sources should exhibit a behavior 
within a certain framework. In parallel, the system should provide a certain (agreed) service to each 
traffic source, and to the aggregation of sources, per geographical area and time zone. 

4.3.1.1 Anomaly detection in presence of shared sources 

However, things do not always operate as they should, or as agreed. Therefore, systems should be 
prepared to handle situations that exhibit a behavior beyond what is “ordinary”, agreed, etc. This is 
important for preserving the services of all verticals served by a network segment. The reason for the 
unordinary behavior can be due to malevolent reasons or to something else, e.g., some device 
malfunctioning, extraordinary requirements from the vertical, underestimation (or overestimation) of 
resources, etc.  In other words, anomalies can be security incidents or may indicate faulty sensors, or may 
be related to aspects of interest to the vertical domain (i.e., the concern is on the data and on the 
control plane). 

In light of the above, a key problem that needs to be solved can be generally stated as follows: “Given 
(a) an area / network segment, (b) the verticals / services supported in the area and their anticipated / 
agreed behavior in time and space, and (c) the network configuration set up for supporting the services, 
find the sources that exhibit and unordinary behavior”.   

The problem above can fall in the class of problems that is generally called “anomaly detection”. The 
problem has attracted attention in various domains and for various solution approaches. Our main 
approach will be to rely on unsupervised learning and pattern recognition. This are representative 
solutions that enable the experimentation with diverse levels of data availability.  

4.3.1.2 An architecture of FL anomaly detection 

Our architecture will follow the Federated Learning (FL) approach [52], for reasons of scalability and data 
protection. Scalability is important in our case since we consider an environment with numerous traffic 
sources. Likewise, the aspect of keeping data locally is important. Therefore, our work will experiment with 

the FL approach for the realization of the anomaly detection mechanisms. 

Figure 36 gives an overview of our approach. In high level terms, the inputs, outputs and algorithm are 
indicated. A knowledge base is highlighted. It will contain local information regarding the performance 
of the model. Certain information is communicated to a controller of the FL model. Likewise, the controller 
will be tuning the algorithm in accordance with the FL paradigm. 
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Figure 36. FL-based architecture for anomaly detection. 

 

Figure 37. Dashboard. 

4.3.1.3 Summary and future steps 

The activity has currently focused on the implementation of the FL-based architecture, including the 
coding of a graphic user interface, a sample of which is shown in Figure 37. Therefore, no experiment has 
been run to date. Based on the scoping so far, the next steps concern the development of models, the 
realization of validation activities (result collection and analysis), and the support of dissemination and 
demonstration activities. These will be carried out during the second iteration of the project and the 
results will be presented in the next deliverable of WP5. 

4.4 NI for Edge orchestration 

Evaluation E4 targets NI solutions for service orchestration and resource allocation algorithms in the Edge 
micro-domain. The DAEMON consortium performed assessments of challenges and solutions related to 
E4 via activity A10-A17. Table 17 summarizes the tools, KPIs, TRL, PoC plans, approximate progress and 
main innovations of such activities. 

Table 17. List of activities for E4. 

ID Name Evaluation Tool 
Planned 

KPIs 

Collected 

KPIs 

Target 

TRL 

Planned 

for PoC 
demo 

Progress 

A10 

Video analytics 
with  
edge 
computing 

E4 D5 K2 K2 3 TBD 70% 

 Main innovation: Compute-aware scheduling for analytics VNF  

A11 
Multi-timescale 
edge 
orchestration 

E4 T4 K2, K5, K8 K8 4 Yes 50% 

 Main innovation: Multi-timescale management and orchestration of edge services and resources  

A12 

WLAN 
performance 

prediction for 
spectrum 
management 

E4 D6 K5, K8 None 3 No 10% 

 Main innovation: Enabling fast WLAN performance prediction for spectrum optimization  

A13 
Data-driven 
resource 
orchestration 

E4 D1 K5, K8, K9 K5, K8, K9 4 No 30% 

 Main innovation: Clustering of device population to extract resource requirement profiles 
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A14 
Multi-timescale 
network slice 
reservation 

E4 None11 K4 K4 2 No 60% 

 Main innovation: Slice reservation policies for optimal resource employment based on OCO  

A15 
Testing 
EnergyEdgeCl

oudSim 
E4 S4 

K1, K2, 

K3, K4 
K1, K2 3 TBD 10% 

 Main innovation: Enery-aware VNF orchestration  

A16 
Towards 
autonomous 
VNF scaling 

E4 S1 K4 K4 3 No 50% 

 Main innovation: General-purpose NI solution for autonomous VNF auto-scaling at edge  

A17 
Auto scaling 
Virtualized RAN 
caches 

E4 D9 K3, K4 K3, K4 2 No 30% 

 
Main innovation: Jointly optimize dynamic cache rental, content placement, and request-cache 
association in wireless scenarios 

Overall, the preliminary results of these activities already led to a number of key observations on the 
orchestration of services and allocation of resources in the Edge micro-domain, as follows. 

• A first line of activities target an improved, flexible and automated management & orchestration 

of Edge resources based on NI solutions. Here, the proejct activities A10, A11, A15, A16 and A17 
have demonstrated NI algorithms that span across multiple aspects of the problem. Specifically, 
these aspects include: (i) how to dynamically instantiate and auto-scale Edge instances and the 
VNFs they run, so as to best serve mobile devices and reduce the energy footprint of the mobile 
Edge; (ii) how to best offload computational tasks from mobile devices to such deployed Edge 
instances; and, (iii) how to cache contents at the Edge instances so as to maximize the QoE. 

• A second line of activities for this evaluation aimed at investigating NI solutions in sliced Edge 

environments, by studying the impact of NI solutions on the management of specific mobile 

services. More precisely, the project carried out activities A13 and A14 that studied (i) algorithms 

for managing pricing of the service provider market in network slicing settings at the Edge, and 
(ii) a characterization of the current 5G deployments towards supporting service-specific M-IoT 
(i..e, multimedia IoT) requirements. 

• Finally, we carried out comprehensive comparative assessments of different types of NI models, 

including based on statistical, control and machine learning tools, for Edge orchestration. These 

activities were performed in A12 and A16, and showed that there is no one-size-fits-all approach, 
and the most appropriate model must be picked based on the specific Edge orchestration task. 
For instance, our results prove that a Graph Neural Network (GNN) grants substantial gains in 
performance with respect to simpler models for Edge prediction problems; however, Deep Q 
Learning (DQL) incurs into substantial operational costs that make simpler threshold-based 
solutions preferable for Edge instance autoscaling. 

4.4.1 Video analytics with edge computing (A10) 

This activity assesses the performance of solutions for the offloading of tasks from mobile devices to the 
mobile edge, using algorithms presented in Section 4.4 of deliverable D4.1 [46]. The goal is improving end 
users’ Quality of Experience (QoE) by taking scheduling decisions (i.e., dynamically adapting the 
offloading parameters) in an efficient manner. 

4.4.1.1 Video frame recognition at the mobile edge 

We consider object recognition in video frames as the analytics task, where a mobile device capturing 
a video aims to recognize the object in those videos with the maximum accuracy possible and minimum 
latency. To this end, mobile devices can offload computationl expensive operations to an edge server. 
To this end, the NI must decide on (i) how to set the compression ratio for each device, (ii) the time slice 
dedicated for processing the device data at the edge facility, and (iii) the input size to the neural network 
deployed on the edge facility to process such data. Details are in Section 4.4 of Deliverable D4.1 [46]. 

 
11 At this level of the development, activity A14 has been validated by using simple Python scripts. 
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4.4.1.2 Overall performance 

First, we consider two users with minimum frame-rate requirements of λ = 10 and 20, and we plot the 
average regret with time in Figure 38 (left), together with a light blue shaded area indicating the 1-std 
area over 100 evaluations. The figure confirms that the policy (i.e., online decisions) is zero-regret. In Figure 
38 (right), we see the performance in terms of cumulative confidence and frame rate simultaneously (on 
different axis). Initially, the images are over-compressed, leading to a smaller data size and lower latency. 
Thus, we observe the high frame-rate, but an unsatisfactory performance in terms of cumulative 
confidence. However, as time progresses the policy is more balanced and does achieve high 
confidence while respecting the required frame-rates. 

 

Figure 38. (Left) Average regret of the proposed method. (Right) Cumulative confidence & frame rate. 

To evaluate the scalability of the approach presented in Section 4.4 of deliverable D4.1 [46], we measure 
its average iteration delay. Figure 39 (left)depicts this delay as a fraction of slot duration Δ for different 
number of users N. We observe that for the first 30 slots (expansion stage), the delay increases both with 
the slot t (matrix inversions of size t) and users N (more configurations), but when safe set has been fixed 
and posteriors do not require updates, it drops substantially. After that, the iteration delay starts increasing 
again with t for the same reason as before, but is kept low until the algorithm converges to an acceptable 
solution. We consider more users in Figure 39 (right) where we set a low frame rate requirement λ = 2. In 
the top graph, we show the maximum value of the iteration delay within a 200 slots evaluation and in 
the lower graph, we show the slot in which (on average) the stopping of our algorithm occurs for different 
values of N. For the former, we can see that the delay gets much bigger than the slot duration for N ≥ 12 
and for the later, that the differences are insignificant and that we can always stop the algorithm in fewer 
than 200 slots. 

 

Figure 39. (Left) Algorithm mean iteration delay. (Right) Maximum iteration delay & convergence time. 

 

Figure 40. Reward of (a) preassigned users, (b) user-to-GPU assignment, (c) AP-to-GPU assignment. 
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4.4.1.3 Generalization to additional settings 

To demonstrate the generality of the proposed solution framework, we additionally evaluate the 
framework for three different settings: (i) Multiple GPUs (i.e., each user can configure the neural network 
size differently), (ii) the number of users N is higher than the number of GPUs, and (iii) the users can be 
served J Access points. Specifically, we set N = 4;K = 2; J = 1 for Scenario (ii), and N = 4;K = 2;J = 2 for 
Scenario (iii). From Figure 40, it can be seen that the reward (sum of confidences) keeps improving 
towards the optimal one. The observed performance is within 6%, 4% and 5% of the optimal in each 
Scenario, after 200 slots. 

4.4.1.4 Conclusions 

We developed and evaluated a compute-aware online framework that allows configuring mobile edge 
resources and models so as to best accommodate offloaded operations from mobile devices, and 
maximize the end users’ QoE. The results show how the proposed approach can firstly identify feasible 

networking and learning parameters, and then deduce online actions that provably reach those that 
are the best ones in hindsight. 

4.4.2 Multi-timescale edge orchestration (A11) 

To cope with the challenges of manual NFV MANO operations, which are a reactive approach that 
causes delayed operations, there is a need to switch to proactive one that is characterized by 
automation and intelligence in operations of orchestrating services and resources. The need for 
automated and more optimized orchestrations becomes critical for the services with stringent 
requirements for latency and capacity, such as those that belong to vehicular system. Thus, in this activity, 
we utilized the real-life testbeds, Smart Highway (T4) and Virtual Wall, to create a PoC for pursuing realistic 
experimentation and validation of the impact that AI/ML models have on the edge orchestration. 

4.4.2.1  Collecting and analyzing training data 

To collect training data (response time measured at client side), we created a scenario in which we 
utilized the PoC described in Section 3.1.4, and we gradually stressed the edge V2X deployment on the 
RSU 3 by using stress tool Locust. If we observe the average response time presented in Figure 41, we can 
see how much communication and computational delays are contributing to the overall edge service 
response time. Samples indicate 20 batches of successive measurements, where each of the 
measurements lasted for 5 minutes, and is represented by the mean value. The stress test in our scenario 
caused an increase in average response time, and as we can see in Figure 41, communication latency 
remains stable despite the stress test, thus, the computational latency on the edge node is affected.  

In Figure 41 (b) we show the average values of CPU load, RAM load, and power consumption, in the 
Kubernetes cluster on the Edge node 1, i.e., RSU 3. Samples of measurements correspond to the samples 

of edge service response time in Figure 41 (a). Given that the scenario indicates a gradual stress test from 
sample 1 to sample 20, in Figure 41 (b) we can see an increasing trend in CPU load, and the goal is to 
explore the dependency of service quality experienced by users (i.e., vehicle) on infrastructure metrics, 
such as CPU load. We further exploit this dependency to improve the service quality experienced by user 
(i.e., vehicle), while other collected metrics are used by the MCDM algorithm to improve the final decision 
on service relocation (e.g., avoiding using an edge node with high power consumption). In this 
experimentation setup, we used python to apply two types of Support Vector Regression (SVR) 
depending on the kernel, i.e., Radial Basis Function (RBF) and Linear. Finally, we created two datasets, 
one for training (gradually applying stress test), and another for testing (randomly applying stress test). 

4.4.2.2 Performance results and discussion 

Figure 42 (a) shows the prediction of an average response time based on the training data, while Figure 
42 (b) presents the prediction based on the testing data. As we notice that SVR with RBF kernel produces 
larger R-squared value (better fits the input to output), and lower Mean-Squared Error (MSE) (determines 
the accuracy of our model), this model is further used and applied in our algorithm for selecting the edge 
deployment. 

The SVR model achieves a high value of R-squared, i.e., 0.9979 (cf. Table 18), and produces an MSE of 
2.64471, which can be considered as a satisfactory level of prediction accuracy, given that average 
difference between predicted and measured data is less than 1ms (0.6651ms) with standard deviation 
of 1.484ms. For the type of V2X use cases where notifications/warnings are generated and collected 
from edge services, to extend the contextual perception of a vehicle, the result we obtained can be 
considered as satisfactory due to the following reasons. In case a vehicle is moving with an average 
speed of 80km/h, 15ms can be considered as a tolerable latency for retrieving important warnings, as a 
vehicle moves only for 0.33m until it gets a new notification. This of course needs to be studied with a 

more prominent attention in case of autonomous driving, or teleoperation of a vehicle. Finally, Figure 42 
(c) shows the result of the gain in average service response time that can be achieved by performing 
edge V2X service relocation in a proactive and automated way. As the cloud orchestrator is constantly 
monitoring CPU data from different edge domains, it applies SVR model to predict the average response 
time for a particular type of edge V2X application. If predicted values of average response time in the 
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upcoming sample (lower than 5min) are larger than the threshold, which we consider as 15ms for a used 
type of service, then the cloud orchestrator applies the MCDM, and potentially requests an application 
relocation to Edge 2 (RSU 5) from Edge 1 (RSU 3). In Figure 42 (c), this happens in the sample 17, where 
the decision for application relocation is applied by edge orchestrators, and vehicle client starts 
consuming edge V2X service deployed on the RSU 5. 

 

 

Figure 41. (a) Latency, (b) Training data 

     

Figure 42. Results: (a) Prediction based on training data, (b) Prediction based on testing data, (c) Gain 

achieved by service relocation. 

We can clearly see the benefit of applying proactive relocation and re-attaching the user from one 

edge to another, as from sample 17 onward, clients would experience an increased average response 
time if no relocation happens (no relocation from Edge 1). Hence, our model improves NFV MANO 
operation making a quality-aware decision to proactively instantiate instance in the target edge 
domain, and to re-attach vehicle client from one edge to another. This is particularly visible in sample 29, 
in which the average response time decreases for 92.3% if the relocation happened. On the other hand, 
a simple rule-based algorithm that compares a single predicted value of latency with a predefined 
threshold might be inefficient, as they might lead to frequent requests for service relocation that need to 
be handled by edge orchestrators. 

Table 18. Results of multi-timescale edge orchestration (Average is an average difference between 
measured and predicted data). 

Model R-squared Mean Squared 

Error (MSE) 
Average Standard 

deviation 

SVR (RBF Kernel) 0.9979 2.64471 0.6651ms 1.484ms 

SVR (Linear Kernel) 0.8277 221.8706 9.985ms 11.7372ms 

4.4.2.3 Conclusions 

We utilized the real-life testbeds, Smart Highway (T4) and Virtual Wall, to create a PoC for pursuing realistic 
experimentation and validation of the impact that AI/ML models have on the edge orchestration. We 
presented our progress on improving MANO operation of service relocation towards achieving service 
continuity and required service quality, by applying an ML-based quality-aware concept that automates 
service relocation and minimizes average vertical service response time. In the second iteration of the 
project, we will work towards refining the NI design and performing more complete assessment of their 
quality in our target real-world scenario. Results will be presented in the following WP5 deliverable. 
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4.4.3 WLAN performance prediction for spectrum management  (A12) 

In this activity, using the dataset D6, described in Section 3.3.6, we trained and evaluated four state-of-
the-art ML models to predict the throughput of all devices in an enterprise-like scenario containing a 
different number of APs and STAs applying DCB. The ML models were described in deliverable D3.1 [34]. 
Two deep learning based models, a CNN and an FNN, and a Gradient Boost (GB)-based model were 
designed to predict the throughput in IEEE 802.11 WLANs that support DCB. To complement the models, 
a Graph Neural Network (GNN) architecture was also designed. Details are provided next. 

4.4.3.1 ML models comparison 

As a baseline for all ML approaches, we use a random guesser. We assume that the throughput can be 
obtained from a normal distribution with the mean and standard deviation found during data analysis to 
build this random guesser. Given that the throughput in STAs varies between 0 and 88 Mbps (cf. Table 7), 
we use a truncated normal distribution between those values. This random approach represents a naive 

and cheap way to generate predictions in this particular problem.  

The models were trained on the corresponding data set with a fixed split (80% for training and 20% for 
validation). Every model uses the Root Mean-Squared Error (RMSE) as a loss function. The error was 
obtained across the predictions (𝑥𝑖) compared to the actual results (𝑥𝑖), where 𝑁 is the number of devices 
in the batch. We trained the models using different combinations of all available features (cf. Table 19) 
to quantify how they affect the prediction accuracy. This procedure was performed ten times per 
experiment to observe each model’s convergence.  

Table 19. Features available for training. 

Feature  Definition  Feature  Definition 

Node Type  Wireless node type, AP = 0, STA = 1  Distance  Euclidean distance between AP and 
STAs   

x(m)  x-coordinate of the wireless node  Bandwidth  Maximum channel bandwidth  

y(m)  y-coordinate of the wireless node  RSSI  Received Signal Strength Indicator  

Channel 

Configuration  

Combination of Primary, minimum and 
maximum channel  

Interference Inter-AP interference sensed from every 
AP (mean)  

SINR  Signal to Interference plus Noise Ratio  Airtime  Percentage of time each AP occupies 
each of the assigned channels (mean)  

The trained models were used to predict the throughput of all devices in the test data set. Figure 43 shows 
the mean RMSE across all test scenarios’ deployments in a given experiment for all the generated models 

and its standard deviation. As can be seen from the figure, GNN outperforms all other approaches in all 
defined experiments. The random approach performs the same, independent of the features used. 
However, learning from data represents at least a 20% improvement regarding this random approach, 
using all trainable features (Exp 1). Focused on Exp 1, i.e., the experiment with all features, GNN can 
obtain up to 64%, 56%, 55%, and 54% when comparing it against the random approach, the CNN, the 
FNN, and the GB, respectively. Surprisingly, GB performs slightly better in several experiments when 
compared to the CNN and the FNN. Despite its complexity, the CNN does not perform better than the 
FNN and the GB. This poor performance might be due to data representation. CNNs outperform other 
ML approaches when dealing with high-dimensional data (e.g., images, time-series). Even though the 
wireless environment is too complex to be modeled, the provided data do not include an extra 
dimension (e.g., time) that CNN can benefit from.  

 

Figure 43. Mean and standard deviation of the obtained RMSE by all models on the test data set. 
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In some experiments (e.g., Exp 5, Exp 6, Exp 8, Exp 13, Exp 14, and Exp 15), the random guesser performs 
better than some ML approaches since the combination of input features does not benefit from the 
learning process. In fact, the Gaussian assumption works well in some cases, and it is widely adopted in 
many communications aspects. Moreover, the random guesser performs the same, independent of the 
input features, while for some experiments, the ML approaches benefit from certain features (e.g., Exp 1, 
Exp 2). This random guesser includes some basic information and performs better than a best-effort 
approach. It serves as an upper bound to the ML approaches, as it shows if the ML model is learning.  

4.4.3.2 Feature relevance 

In terms of feature relevance, including airtime, there is a strong improvement to the results of all ML 
models. For instance, the only difference between Exp 1/Exp 7 and Exp 15/Exp 8 is that the latter does 
not consider airtime while the former does. It can be seen that not considering airtime represents 
between 85% and 87% decrease for the GNN, while other ML approaches perform even worse than the 

random approach. Nonetheless, considering only airtime as an input feature does not ensure good 
performance. For example, in Exp 16, GNN decreases its performance by more than 100% regarding Exp 
1, except for other ML approaches, where using airtime as an input feature performs even better than 
considering the rest of the features (see Exp 15).  

Analyzing other features, RSSI and distance give more information about the throughput than SINR, node 
type, and interference. For instance, in Exp 9 and Exp 10, all models improve their performance by 
including RSSI: 48%, 5%, 10%, and 6% in the GNN, GB, CNN, and FNN, respectively. Similarly, in Exp 11 and 
Exp 12, GNN obtains around 26% improvement, while CNN and GB obtain 2.4% and 7.5% improvement, 
respectively, when considering the distance. Interestingly, the GNN is the only model in which features 
such as node type (Exp 3 vs. Exp 4) and SINR (Exp 5 vs. Exp 6) are relevant and improve its performance. 
Even when considering interference (Exp 13 vs. Exp 14), a factor that seems to decrease other ML models’ 
performance, GNN obtains a 5% improvement.  

4.4.3.3 Conclusions 

Network models and optimization algorithms are developed to offer a high degree of automation to 
accelerate service delivery while meeting economical goals. By learning from data, Neuronal Networks 
are able to build a function that abstract complex network behavior. Our comprehensive comparative 
evaluation shows that GNN models are especially well suited to the WLAN performance prediction 
problem, where information is also embedded in the topological representation. 

4.4.4 Data driven resource orchestration in the MNO (A13) 

This activity targets the development of novel algorithms and solutions based on new concepts of cellular 
networks to support multimedia IoT (M-IoT) application requirements. As a starting point, to recognize the 
demands of these applications, we have studied Connected Cars as a use case in this deliverable. Then, 

we will focus on devising learning-based resource management techniques to meet these requirements. 
Moreover, learning algorithms can be leveraged to predict near-future traffic patterns, and such 
predictions enable proactive and accurate resource management decisions. 

Relying on dataset D1, we explore the performance of the operational 5G network at the radio sector 
level and capture the demand from the population of devices that the operator serves. With this, we 
then work towards identifying fine-granular clusters of devices with similar requirements in terms of quality 
of performance and network resources. Having these profiles is an important input for achieving efficient 
resource orchestration. 

 

Figure 44. Yearly trend of cell sites launch over 
the past decade. 

 

Figure 45. The number of radio sectors per cell 
site over the last decade. 

4.4.4.1 Network deployment evolution 

We start with an analysis of the radio access network deployment evolution. Monitoring this information 
together with the performance status of the network allows us to capture from the real-world dataset the 
operator’s decisions in terms of deploying new cell sites and configuring new carriers at these sites. The 
results we present in this section open the door for exploring network intelligence approaches for 
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automatic and accurate generation of new carrier configuration parameter values using learning and 
recommendation techniques. We first investigate the network deployment in terms of the new number 
of cell sites that are deployed and activated for different technologies. In Figure 44 and Figure 45Error! R

eference source not found., we illustrate the number of cell sites and sectors per cell deployed annually 
over the last decade. We note that while over 95% of the cell sites in recent years are 4G, they also are 
equipped with 2G/3G. We see especially a sharp increase in 2019, which we believe is a response to the 
substantial growth in the number of cellular devices (both new cellular IoT devices, and smartphones). 

We turn our attention to 5G deployment and have a closer look into the network deployment during the 
last two years, since commercial 5G support from the MNO started. In our dataset, we record radio 
sectors that had radio signalling activities. We count the number of the active sectors on the first date of 
every month from January 2020 to November 2021. The motivation behind counting the number of 
sectors instead of cell sites is to show and accurate evolution in the available resources in the network. 

Due to the operator confidentiality, we only present the delta variation over the first day of January 2020 
in Figure 46. We observe that 5G capable devices started to connect to the 5G sectors in December 
2020. Furthermore, over the last two years, the number of 5G active sectors has increased 90.3%, and 
continues to present an overrising trend. 

 

Figure 46. Delta variation of the number of 
active sectors per radio access technology. 

We employ as reference the first 
measurement date on the x-axis. 

 

Figure 47. Daily performance of 5G vs. 4G sectors in 
the same locations (for a non-standalone 5G 

deployment). Each plot indicates the median of the 
metric we show in the title per geolocation. 

4.4.4.2 5G network performance  

We investigate the network performance metrics over all bearers corresponding to QoS class Identiters 
(QCIs) of 5G sectors as compared to 4G sectors through two months (September-October) in 2021. By 
taking median values over two months, we minimize the impact of abnormal traffic behaviour, special 
events, or the differences between days of the week. We aggregate per sector hourly metrics per day 
and per location and compare median of each performance metric of 4G and 5G sectors in the same 
location. We begin our analysis with throughput performance (average DL/UL throughput over all users). 

We show in Figure 47 that in 75% of locations 5G technology can increase the median of DL user 
throughput at least 157% (i.e., median of 5G and 4G are 59Mbps and 17Mbps, respectively). While we 
have been failed to see any 4G sectors with DL user throughput more than 34Mbps, more than 75% of 
5G sectors gain at least DL user throughput of 36Mbps. We also compare it with the DL user Carrier-
aggregation (CA) throughput of 4G sectors and find on average 203% increase. On the other hand, 
comparing UL user throughput of 5G and 4G sectors indicates only in 7% of locations 5G sectors provide 
more UL user throughput. Plus, we observe a 90% drop when comparing median UL user throughput of 

5G with 4G in the 25% of the locations.  

However, considering small UL data volume, throughput may not be a good measurement to evaluate 
performance. This is because most of the traffic may only use a single TTI, and may be excluded from the 
data volume counters. We note total amount of DL data volume per5Gsector is still 50% lower than 4G 
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sectors. Meanwhile, the total number of connected 5G users, and DL active users are 97% and 72% less 
than 4G (comparing their median). 

4.4.4.3 Conclusions 

In this section we explored the performance of an operational cellular network, relying on dataset D1. 
We first analyzed  the evolution of 5G sites, showing that an increase of 90.3% in the number of sites have 
been achieved. Second, we analyzed the 5G network performance in terms of throughput. The most 
interesting results are a 157% increase in DL with respect to 4G and the total amount of 5G DL data 
volume 50% lower than 4G while the number of DL active users is just 72% lower than 4G. These results 
suggests network traffic growth by adoption of 5G in the following years. In the second iteraton of the 
project, we will build on these insights to build a data-driven approach to develop, implement and 
experiment with radio resource management algorithms. 

4.4.5 Multi-timescale network slice reservation (A14) 

In this activity, we carry out simulation experiments to evaluate the performance of the Online Learning 
for Reservations (OLR) algorithm and its extensions, proposed in Section 5.5.1 of Deliverable 3.1 [34], in 
different scenarios. Specifically, a slicing market with the following properties is considered: the Network 
Operator (NO) manages B cellular base stations connected through a backhaul network of 100 paths to 
N = 20 core nodes with data processing and storage capabilities. Thus, the Service Provider (SP) reserves 
slices with the following four resources: wireless and backhaul bandwidth, storage, and CPU capacity. 
The maximum slice size of D units is determined by the scarcest of these resources. Two cases are studied, 

based on the distribution of the parameters of interest (i.e., user needs and price evolution): Case 1: 
parameters are uniformly distributed and Case 2: parameters are drawn from non-stationary process. For 
the evaluation, average regret over time and constraint violation over time are used as metrics. 

4.4.5.1 Main performance evaluation results 

Figure 48, delineates the convergence of algorithm OLR for the two aforementioned cases, for K = 5 slots. 
We observe that the average regret converges to zero and the constraint violation remains consistently 
below zero. In Figure 49 there is a comparison between OLR and OLR for Mixed-Time Scale (OLR-MTS) 
algorithms for Case 1 and 2, for different number of slots K. In OLR-MTS, we allow the policy to change 
the "slots" decisions within the same period, whereas in OLR, the slots decisions are committed at the 
beginning of the period. OLR-MTS performs better in both cases, which is rather expected, since the SP 
updates its decisions as new information becomes available. 

Finally, Figure 50 and Figure 51 concern the OLR Slice Orchestration (OLR-SO) algorithm, where the 
provider is responsible for the slice composition. More precisely, in Figure 50, the convergence of OLR-SO 
is presented for K = 5, while in Figure 51, different values of K are taken into account. For the latter, 
constraint violation approaches 0 for Case 1 and has very small values for Case 2, while K increases. 

 

Figure 48. Regret and violation convergence of OLR with B=10 base stations and K=5 slots. 

 

Figure 49. Regret and violations comparison of OLR and OLR-MTS, for different values of slots K. 

 



Deliverable 5.1 

                                                                                                                                                                           H2020 – 101017109 

61 

 

Figure 50. Regret and violation convergence of OLR-SO with B=10 base stations and K=5 slots. 

 

Figure 51. Regret and violations comparison of OLR-SO, for different values of slots K. 

4.4.5.2 Conclusions 

In this section we evaluated the performance of the proposed algorithms, for slice reservation, OLR and 
its variants OLR-MTS and OLR-SO. The results shows the convergence of OLR and OLR-SO in both cases 
analyzed. Furthermore, OLR-MTS performs better than OLR. 

4.4.6 Testing EnergyEdgeCloudSim (A15) 

In this section, we evaluate to what extent we can reduce energy consumption with the algorithms that 
we have developed for EnergyEdgeCloudSim, its impact on the number of failed requests and the 
scalability of our approach (K1 and K2). We construct an IoT scenario using the EnergyEdgeCloudSim 
simulator to evaluate our approach. To simulate the edge workload, we use the Shanghai Telcom 
dataset [53]. It contains six months of mobile phone records accessing the Internet via base stations 
distributed over Shanghai city. The data set contains more than 7.2 million records from 9481 mobile 
devices and 3233 base stations. 

We consider an infrastructure formed by 14 edge devices with randomized characteristics. Concretely, 
their maximal energy consumption is between 20 and 300 Watts; the idle energy consumption ( 𝛼 ) 
between 20 and 50%, 𝑃𝑇𝑥 and 𝑃𝑅𝑥 between 1-3 Watts; the sleep energy consumption (β) between 0.01 
and 0.5; the deployment energy consumption between 0.5-1 Joules; the instructions per second of the 
CPU between 100000 and 300000 million; 𝑒𝑤 is 1 in all cases; the disk’s capacity between 200-1000 Gb; 
and their RAM’s capacity between 8-32 Gb (we can deactivate all nodes). This randomization considers 
that the most computationally powerful nodes are more energy-intensive. We make this assumption 
because the CPU frequency is directly related to the energy consumption. In the same way, we 
randomized the applications’ requirements (CPU, RAM, disk, data to send and receive) and repeated 
experiments 30 times. 

4.4.6.1 Dynamic energy consumption 

Sometimes, other applications and users share the nodes that form the edge infrastructure, so they must 
always be active. Thus, this section focuses on the reduction obtained only through the new orchestrator 
policy, presented in Section 3.2.4. We compare the energy consumption using the Green fit policy with 
the energy obtained by Best fit, first fit, random fit and fastest fit policies. Best fit and First fit are included 
by default in EdgeCloudSim, while we have implemented Random fit and Fastest fit. In this scenario, the 
nodes remain active all the time, being the reduction in consumption obtained part of the dynamic 
energy consumption of the nodes. 

Figure 52 shows the results in terms of energy consumption for the three periods of time considered and 
compares it with our orchestration policy (Green fit). In all cases, our policy obtains a minor energy 
consumption. Specifically, in our experiments, we have got a 1.6% reduction in the worst case (Random 
fit, 2nd hour) and up to 15.9% in the best case (14th hour) compared with Fastest-fit. As expected, the 
reduction in the energy consumption is significant for the 12th and 14th hours (the ones with more 
requests) since we focus on the dynamic energy consumption, and it is directly related to the workload. 
Regarding the execution time, predictably Fastest fit obtains the lowest service time on average, having 
Green fit and Random fit similar service times on average. Note that all the assignments accomplish the 
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applications’ requirements in terms of QoS. The number of failed requests is 0 in all cases, as the 
infrastructure has resources enough to allocate the user requests. 

 

Figure 52. Energy consumption and percentage of failed requests for each orchestration policy. 

4.4.6.2 Dynamic and idle energy consumption 

We apply our auto-scaling approach for the same infrastructure, set of applications, and periods. We 
have selected the auto-scaling interval in one minute, and the orchestration policy used is Green fit. 

Some workload datasets and predictive models provide information about the number of expected 
requests, not about the applications demanded–as is our case [54]. Given that the number of resources 
needed to meet these requests will depend on the required applications, we have elaborated four 
different resource reservation policies. Suppose we expect ten requests in the following period, and we 
handle six applications with an equal probability of being demanded. By likelihood, each application 
would be required 1.66 times, which is impossible. Considering that each application is demanded once, 
there will be four uncertain requests. So, we apply random assignment (it assigns the four remaining 
requests randomly), an oversizing (it considers that each application is demanded twice) and a most/lest 
resource demanding assignment. Note that our algorithm gives a solution for the worst-case scenario, in 
which the entire workload arrives at once right after performing the auto-scaling process. 

Figure 53 shows the average energy consumption and percentage of failed requests obtained with the 
different resource reservation policies and operation modes. Concerning OM1 (left side), the second 
hour is the period with the most failed requests, with 1.5% in the best case (Most and Least resource-
demanding policies, respectively). Experiments show a 24.8% decrease in the failed requests between 

using the Most resource-demanding policy compared with Oversizing. The least resource-demanding 
policy has the highest number of failed requests–and better energy consumption. Nevertheless, in the 
12th and 14th hours, the Least resource-demanding policy obtains an affordable 1,5% (12th hour) and 
1.8% (14th hour) of failed requests, with a decrease in the energy consumption of 14% and 13% 
respectively when compared with Random policy, which is the second-best in terms of energy 
consumption. These results mean that this policy could be a good choice in some scenarios. Regarding 
OM2 (right side of Figure 53), the percentage of failed requests is 0 or almost 0 in most cases, 3% in the 
worst case (2nd hour and Least resource-demanding policy). The energy consumption increases 26% on 
average in comparison with OM1 

 

Figure 53. Energy consumption and percentage of failed requests applying our auto-scaling approach 
for OM1 (left) and OM2 (right). 

4.4.6.3 Conclusions 

Regarding energy consumption in edge-based infrastructure (K1 and K2), when the infrastructure nodes 
are shared with other applications and users and cannot be deactivated, we have achieved a 15.9% 
reduction in energy consumption. In this scenario, the more requests received, the more energy saved 
(compared with other policies). Applying our auto-scaling approach, we have reduced the energy 
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consumption by about 44% in the worst case, and up to 91% (Fastest fit compared with OM1 and Most 
resource-demanding policy (failed requests: 1,4%), 2nd hour) when applied to a randomized scenario. 
The factors that influence the lower energy consumption are the time the nodes remain idle, the lower 
the workload and the extended downtime.  

Regarding which policy performs best, decreasing energy consumption and minimizing the number of 
failed deployments, the most significant reduction in energy consumption has been obtained using OM1 
and the Least resource-demanding policy. Although this policy has received a high percentage of failed 
requests for one of the periods evaluated (2nd hour), it has an affordable 1,5% and 1.8% of failed requests 
in the two other periods considered. When the service must have high availability, the ENI’s resource-
preservative operation mode (OM2) obtains 0 or almost 0 failed requests in most cases. 

4.4.7 Towards autonomous VNF scaling (A16) 

The auto-scaling problem was introduced in deliverable D4.1 [46]. To recapitulate, a network application 
can be deployed over multiple VNFs. The workload of that application can be generated by users or 
from other applications. This workload enters a load balancer that distributes it according to some 
weights among the active VNFs. Each VNF has a First In, First Out (FIFO) queue for processing the assigned 
workload. When the queue is empty, the workload is processed immediately. If the workload cannot be 
processed, it waits in the FIFO queue until it can be processed. Additionally, a monitor constantly delivers 
usage metrics to a decision-making agent, which determines the amount of VNF replicas in an automatic 
way. The auto-scaling problem can be defined as dynamically adding or removing VNF instances to 
serve a variable workload [55]. In this section, we show the comparison of three auto-scaling mechanisms 
that do not require any information about the workload and yet can dynamically adapt the number of 
VNF instances while keeping them at a reasonable level without over- nor under-dimensioning the 
problem. The three proposed methods are a Deep Reinforcement Learning (DRL) agent based on Q-
Learning, a Proportional–Integral–Derivative (PID) agent and a Threshold (THD)-based as a reactive 
scaler. The agent’s definition details are shown in [56]. The evaluations are obtained using the simulator 
described in Section 3.2.1. 

4.4.7.1 System scenario 

A decision-making agent interacts with the simulator (i.e., environment) in regular time ticks (time steps). 
In practice, the agent communicates its scaling decision every tick and then waits until the monitor 
module generates a new report. Once a report is ready, the agent will receive it and evaluate the impact 
of its decisions. Moreover, the traffic generator (workload module in Figure 10) follows a known pattern 
in data centers, as shown in Figure 54. Generally, the traffic to a data center is low at night and peaks 
during working hours. This pattern repeats more or less during the weekday. The traffic is generated using:  

𝑊(𝑡) = max (0, 300 ∙ (0.9 + 0.1 cos(𝜋 ∙ 𝑇 10⁄ ))

∙ (4 + 1.2 sin(2𝜋 ∙ 𝑇) − 0.6 sin(6𝜋 ∙ 𝑇) + 0.02(sin(503𝜋 ∙ 𝑇) − sin(709𝜋 ∙ 𝑇)))) + 5𝑁(𝑡) + 𝐼(𝑡) 

Where 𝑇 =
𝑡

86400
, which re-expresses the time 𝑡  expressed in ticks (i.e., seconds) in 𝑇  days, the term 

sin(2𝜋 ∙ 𝑇) introduces a daily pattern and sin(6𝜋 ∙ 𝑇) an 8h pattern. The rest of the terms introduce some 
randomness so that this pattern does not repeat itself every day. In particular, 𝑁(𝑡) is a zero-mean, unit-
variance Gaussian random variable and 𝐼(𝑡) introduces exponentially decaying impulses on average 
every 10 000s of average height 200 jobs lasting about 500s. 

 

Figure 54. Complete workload trace used in activity A16. 
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4.4.7.2 Models implementation 

We implemented our DQN agent using Stable-Baselines3 (SB3) [57], a framework that implements 
popular RL algorithms in Pytorch12. In the definition of the DQN agent, we used the default values given 
by the SB3 framework. During training, the agent tries to maximize a reward function, if the peak latency 
or the CPU usage of the active VNFs are within a tolerance range, the agent is rewarded; otherwise, the 
agent is not rewarded. Typically, the agent is more likely to take actions that produced a reward in the 
past by taking the actions that led to that situation (exploitation). However, the agent must take random 
and possibly new actions (exploration) to discover the actions that maximize its reward. 

On the other hand, the PID agent tries to keep the peak latency around 𝑑𝑡𝑔𝑡 = 20𝑚𝑠. The optimal values 

for its parameters 𝛼 and 𝛽 were determined by an exhaustive search. The parameter space ((𝛼, 𝛽) was 
sampled by letting 𝛼 range over the values {0.125; 0.25; 0.5; 1; 2; 4; 8} and 𝛽 over {50; 100; 200; 400}. Then 
it was determined for which of all these combinations the latency was the least amount of time above 

the tolerated upper bound of (1 + 𝜖)𝑑𝑡𝑔𝑡, when the PID agent controls the first part of the workload trace, 

i.e., the training set. It turns out that if the training set spans the first day, the optimal parameters are  
(𝛼, 𝛽) = (16, 200), while if the training set spans the first two days, the optimal parameters are (𝛼, 𝛽) =
(0.25, 200). In both these cases, the minimum is broad: relatively small changes in 𝛼 and 𝛽 do not alter the 
number of latency violations drastically so that the choice of 𝛼 and 𝛽 is not critical. 

4.4.7.3 Main results 

To test the agents’ behavior in unseen workload traces, they were tested using the last 172.8K workload 
values. It is important to notice that the DQN (and THD-based) agent and the PID agent use different 
information as input. The former uses the instant peak latency and CPU load, while the latter uses the 
instant and previous peak latency. Also, the RL agent learns automatically, while the PID agent is 
manually tuned. Both of these facts mean that care should be taken when comparing the performance 
of these agents. 

Table 20. Comparison results of DQN, THD and PID agents in terms of number of VNFs and peak latency. 

Metric Approach Mean Std Min 25% 50% 75% Max 

Number of 
VNFs 

DQN 4.87 0.84 1 5 5 5 8 

THD 4.32 1.25 1 3 4 5 17 

PID 4.06 1.09 1 3 4 5 10 

Peak 
Latency [s] 

DQN 0.0095 0.0025 0.0058 0.0088 0.0090 0.0093 0.0785 

THD 0.0153 0.007 0.0058 0.0099 0.0118 0.0195 0.1432 

PID 0.0198 0.0048 0.0033 0.0163 0.0194 0.0228 0.0689 

Table 20 gives a quantitative analysis of the behavior by showing the main statistical figures: mean, 
standard deviation, minimum, maximum, and the most representative quartiles of the peak latency and 
number of created VNFs. As can be seen, the DQN can maintain a more stable number of created VNFs 
than the PID and the THD-based agents. However, this is more a secondary effect since all the agents 
are not designed to optimize the number of replicas. Regarding the peak latency, most of the time, all 
the agents can keep this metric under the upper bound (24ms). Nonetheless, as shown in Table 21, the 
PID agent violates the upper bound 16.57% of the time while, the THD-based and the DQN are reducing 
the violations to 12.2% and 0.69%, respectively. 

Table 21. SLA Violations from the DQN, THD and PID agents. 

Approach % SLA Violations 

DQN 0.69% 

THD 12.20% 

PID 16.57% 

4.4.7.4 Conclusions 

We designed and evaluated three autonomous scaling agents using known techniques such as 
heuristics, classic control and RL. We compared the three agents in terms of the peak latency, the 
amount of created VNFs, and the amount of SLA violations.  However, choosing the applicable agent is 
a task beyond only performance evaluation. It also depends on both business- and operational-related 
conditions. On the one hand, a multi-tier SLA between stakeholders might show different amounts of 
marginal penalty among agreed objectives, e.g., a high penalty even when slightly violating the 
maximum service latency; therefore, the auto-scaler agent may have a higher chance to disregard the 

 
12 https://pytorch.org/ 
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number of created VNFs. On the other hand, from the operational point of view, an operator might not 
have the required hardware to support ML solutions. Therefore, a DRL agent is ruled out due to its 
requirement to explore new actions to improve the reward, leading to unpredictable behavior on lower-
end hardware. 

4.4.8 Auto scaling Virtualized RAN caches (A17)  

In this activity, we evaluation the elastic femtocaching algorithms proposed in Section 6.2.2 of D4.1 [46], 
by assessing their performance in a series of experiments with real data traces (D9). 

4.4.8.1 Elastic femtocaching evaluation 

Firstly, for the topology of BSs, we considered two cases in the simulations: (1) linear BS topology with 
manual parameters; (2) real BS topology of a mobile operator on the west side of the US for rural, 
suburban and urban areas, as shown in Figure 55, with real parameters. In order to analyze the 

performance of the proposed General Algorithm  with Joint Cache Rental and File Caching (GA+JCC) 
and with Joint Cache Rental, File Caching and Routing (GA+JGCA), sum delay utilities of all subareas 
are employed. The aforementioned elastic algorithms are compared with four known static algorithms, 
namely Fixed Cache Lease Budget (FCB), Fixed File Caching (FFC), Least Recently Used (LRU), multi-LRU 
and q-LRU and Least Frequently Used (LFU).  

 

Figure 55. Rural and Suburban Deployment of BSs used in evaluation of vRAN rescaling Algorithm. 

To delineate the impact of different parameters (variance of delay, mean traffic arrival, and variance of 

pricing) on the system performance, we first show the simulation results in the linear BS topology, under 
two scenarios: non-overlapping SBSs and overlapping SBSs. In the former case, as can be viewed from 
Figure 56, GA with JCC is an optimal algorithm since the subarea-SBS association and content caching 
is uncoupled. At the same time, GA+JGCA algorithm achieves a similar performance with the optimal 
and they both outperform the existing static cache leasing algorithms in the case that the network 
environments and pricing drastically change (i.e, the variation of input parameters becomes higher and 
mean traffic arrival increases). For the latter case, GA+JGCA is the optimal algorithm since the subarea-
SBS association and content caching are tightly coupled with each other. Similar to the previous 
scenario, the elastic cache leasing policies (GA+JCC and GA+JGCA) are much better than the existing 
static cache leasing policies (FCB, FFC, LFU, LRU, multi-LRU, q-LRU). Results are depicted in Figure 57.  

 

Figure 56. Sum utilities in linear BS topology case and non-overlapping SBSs scenario. 
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Figure 57. Sum utilities in linear BS topology case and overlapping SBSs scenario. 

Lastly, in Figure 58 the performance gain (i.e., the gain of sum delay utilities) of the proposed GA+JGCA 
algorithm over static FCB algorithm and the proposed GA+JCC algorithm which uncouples routing and 
caching decision is shown, for the real BS topology. There, the delay profile of each user from each BS is 
more heterogeneous. Hence, for denser BS topologies (urban area), the impact of the elastic cache 
leasing policy (i.e., GA+JGCA) on the system performance increases. Finally, joint control of cache 
leasing, file caching and routing becomes more important as BS topology becomes denser. This 
interpretation can be driven from the fact that as BS topology gets denser (i.e., from rural area to urban 
area), the gain from the routing-caching the uncoupled solution, i.e., GA+JCC to the joint solution, i.e., 
GA+JGCA becomes higher. 

 

Figure 58. Performance gain of the proposed algorithms under  real BS topologies and SBSs scenarios. 

4.4.8.2 Conclusions 

In this section we evaluated the performance of two elastic femotchaching algorithms, namely GA+JCC 
and GA+JGCA, by means of a comparison with four different static algorithms. Our results shows that our 

proposed algorithms perform better than the static ones, which are outperformed in case the network 
environment and pricing drastically change. Furthermore, GA+JGCA shows a performance gain 
increase, against static algorithms and GA+JCC, as the BS deployment increases. 

4.5 NI for automated anomaly response 

Evaluation E5 aims at evaluating NI solutions for anomaly response. The DAEMON consortium performed 

assessments of challenges and solutions related to E5 via activity A18 and A19. Table 22 summarizes the 
tools, KPIs, TRL, PoC plans, approximate progress and main innovations of such activities. 

Table 22. List of activities for E5. 

ID Name Evaluation Tool 
Planned 

KPIs 
Collected 

KPIs 
Target 

TRL 

Planned 

for PoC 

demo 

Progress 

A18 
In-backhaul 
learning 

E5 D7 K3 None13 2 TBD 5% 

 Main innovation: Inference fully performed in the user plane, at line rate, via programmable switches  

A19 

Anomaly 
detection for a 
roaming 
platform 

E5 D8 K3, K7 K7 5 Yes 60% 

 Main innovation: Device-level anomaly detection for IoT verticals  

 
13 At this level of the development, we have not collected any KPI yet for A18. 
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Overall, the preliminary results of these activities already led to key observations on potential approaches 
to NI-assisted anomaly detection in future-generation mobile networks, as follows. 

• We demonstrate that traditional Random Forest models perform as a well as more complex 

neural networks in classification and anomaly detection tasks in highly constrained user-plane 

environments. The results of A18 pave the road for future steps in the project towards developing 
NI models that are suitable for integration in programmable user planes. We will build on these 
insights to design and implement NI models for line-rate inference during the second iteration of 
the project. 

• We show that NI models based on deep learning approaches can identify anomalies in the 

network signaling data for roaming operations, which are not reported by legacy systems. To 
achieve this result, we developed a methodology of measurement data analysis and clustering, 
which allowed testing NI models with unprecedented real-world ground-truth data. The activities 

in A19 thus pave the road for NI-assisted generation of alarms that the operations team of the 
mobile network can study in real-time. The deployment of such solutions in a pre-production 
system will be at the core of the work during the second iteration of the project for this activity. 

As anticipated in Section 4.3, the consortium will also consider the possibility of merging E3 and E5 during 
the second iteration of the project. This will be reflected in the next deliverable of WP5 in case the option 
concretizes. 

4.5.1 In-backhaul learning (A18) 

DAEMON’s architecture addresses the challenge of meeting the very stringent requirements of beyond 
5G services, in terms of throughput and latency, at different levels of the edge to core continuum. In 
particular, we bring intelligence at the Transport level, to achieve a 1-ms response time of the NI 
algorithms, targeting KPI K3. In this section, we present our study and our initial implementation of the 
inference phase of supervised classification directly into the user plane of programmable switches. Our 
study and considerations on the challenges represented by such implementations, due to hardware 
limitations of the programmable switches, are described in section 7.1 of Deliverable 3.1 [34]. 

 

Figure 59. Summary of the different approaches for in-backhaul inference. 

4.5.1.1 In-backhaul inference approaches 

Given the limitations of programmable switches and smartNICs, all existing approaches in scope of our 
study assume that computationally expensive training is performed offline; the problem is then deploying 

the trained model entirely in the user plane, so as to achieve line-rate operation. Figure 59 offers a 
comprehensive view of the workflow adopted by different proposed approaches to address such a 
problem. Common to all approaches is a second stage in the control plane, where the trained model is 
encoded for operation in the user plane, e.g., by rendering it via a network programming language such 
as P4. Where proposals vary is in the family of machine learning models considered, and  in the nature 
of the programmable hardware targeted. In the following, we describe 4 different approaches. 

i. Decision tree-based models on switches: Decision tree (DT) or Random Forest (RF) models [58, 
59, 62, 63], with a relatively low complexity, are deployed the complete ML in a single off-the-

shelf switch. Hence, as shown in Figure 59, solutions like Planter [59] or pForest [58] let P4-
programmed DT and RF models process packets at line-rate using solely the match-action 
pipelines of the switch. The different approaches are told apart by the way they map tree 
structures to match-action tables. 

ii. Neural networks on Switches: more complex DNN models have also been considered for in-
switch implementation, with the sole example of N2Net [64]. N2Net uses Binarized Neural Network 
(BNN) models, which rely on +1/−1 weights and sign activations, enjoying a much reduced 
memory footprint, thus more suitable for in-switch implementation than regular DNNs. As 



Deliverable 5.1 

                                                                                                                                                                           H2020 – 101017109 

68 

illustrated in Figure 59, the workflow is the same of DT and RF models above. The difference is the 
mapping of the model to the match-action tables, which is specific to BNN architectures. In fact, 
it is important to stress that even BNNs are onerous to deploy in-switch: a basic BNN with two 
layers of 64 and 32 neurons would exhaust completely the resources of a Tofino ASIC [64].   

iii. Neural Networks on SmartNICs: BNNs are integrated on SmartNICs. N3IC [65] realizes the 
integration using both the micro-C language (for Netronome system-on-chip NICs) and P4 (for 

NetFPGAs NICs configured with a PISA architecture). Figure 59 highlights how N3IC maps the ML 
model to a SmartNIC hardware located in a server. The SmartNIC environment offers a good 
amount of computational resources and increased memory size, which allow to implement a 3-
layer BNN that operates at line-rate. Yet, SmartNICs are deployed at network appliances that 
reside in a host within the network datacenter, thus granting inference at specific locations of 
the network only, and not at any point of the transport domain as with in-switch solutions. 

iv. Neural networks on custom switches: dedicated hardware is added to switches or smartNICs to 
implement complex DNN models. Taurus [66] framework employs a custom accelerator to 
implement DNNs via flexible MapReduce operations. Taurus-enhanced switches grant complete 
freedom in the deployment of ML models in user planes. However, Taurus’ adoption at scale 
would require revisiting the user plane design of network transport domains, deploying significant 
custom hardware next to already expensive programmable switches and smartNICs. 

4.5.1.2 Comparative evaluation of ML models 

We compared the different studies presented and assessed the performance of the solutions they 
propose with assorted use cases and diverse traffic datasets. We tested the performance of the DT, RF, 
DNN and BNN models parametrized according to the indications in the original works. 

To ensure maximum fairness of the evaluation, we produce results for all use cases (that are publicly 
available) explored in the original works presenting each inference model. This results into two traffic 
classification tasks and three anomaly detection tasks, which correspond to the datasets D7, D11, D12, 
D13, D14 described in Section 3.3. The results are summarized in  

Figure 60. Results of the comparative evaluation of machine learning models used for in-band inference. 
The best result for each use case and metric is highlighted in bold, the second best in blue. and are quite 
manifest, as the DT, RF and NN models achieve performance that can be considered satisfactory across 
all use cases, with F1-scores typically in the 95 − 100 range, and consistently good in all other metrics as 
well. BNNs lag instead behind with less consistent and lower accuracy. A second takeaway is that all 
metrics show nearly identical values under full and early flows approaches: since computing features on 
early flows grants anticipated classification of traffic or detection of anomalies, the second strategy is 
largely preferable in all considered use cases. Thirdly, and most importantly, RF emerges as the overall 
winner of our comparative evaluation. The model is often the best performing one, or is a close second 
otherwise. 

 

Figure 60. Results of the comparative evaluation of machine learning models used for in-band 
inference. The best result for each use case and metric is highlighted in bold, the second best in blue. 

4.5.1.3 Conclusion and outlook 

Our comparative analysis shows that RF models based on early flows are a promising candidate for 
deployment of machine learning in the user plane, assuming that they can be efficiently integrated in 

off-the-shelf programmable hardware. Whether this is the case is an open question that we aim to dispel 
in the second part of our verification study. We plan to implement RF models in P4 and evaluate their 
performance in bmv2 software switches and on real hardware, by exploiting testbed T12, described in 
Section 3.1.12, and to report such results in the next deliverables of WP5. 
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4.5.2 Anomaly detection for a roaming platform (A19) 

In this activity, using the dataset D8 we previously introduced, we aim to test the performance of the 
anomaly detection models we introduced in deliverable D4.1 [46]. Given the heterogeneity of signaling 
behavior corresponding to the IoT devices we monitor, our methodology includes a clustering step that 
allows us to run the anomaly detection models on devices with similar behavior under non-anomalous 
circumstances. We detail this step next. 

4.5.2.1 Clustering devices 

We run the clustering algorithm on the test set to identify to which cluster each device belongs, and train 
and apply the anomaly detection algorithm on each cluster independently. For the December 1st, 2019 
– January 12th, 2020 period, the clustering algorithm divides the devices of the customer in three groups 
accounting for 79%, 17% and 4% of the total amount of active devices, respectively. We report on the 
distribution of the signaling volume of each cluster in Figure 61, where we show the distribution of the 

average amount of daily messages per device. We observe that the third cluster is the one with highest 
signaling frequency (with about 2,000 daily messages generated per device on average), and that 
devices belonging to cluster one and two generate 24 and 215 average daily messages, respectively. 

 

Figure 61. Clusters of devices: We find three groups of devices containing different amount of signaling 
traffic each. Groups are well defined as the upper and lower quartiles of the boxplots do not overlap 

between them in the vertical axis. 

For each cluster, we obtain a ranked list of anomalies from each model, where top-most devices 
correspond to detected anomalies. In the GMM model, devices are ranked based on the probability of 
pertaining to the Gaussian distribution (lower values first). A low probability means the device behaves 
different from the rest, likely being an anomaly. Regarding VAE models we use the KL divergence, which 

corresponds to the difference between the learned latent space and the normal distribution 𝑁(0,1). 
Being zero if the compared distributions are identical, and greater than zero depending on how much 
they differ. The higher the KL divergence score, the more probable of being an anomaly. 

4.5.2.2 Models performance evaluation 

To evaluate our models, we built a meaningful and representative ground truth dataset by collecting 
trouble SIMs from the network ticketing system (incidences occurred during our testing period) and 
compute the accuracy of detecting those SIMs by each of four models. Our goal is not only detecting 
already known incidences but missed anomalies that were not registered in the alarm system, but 
because somebody reported them.  

Due to the manner in which we choose to run our clustering, and also represent our data, we are able 
to capture SIMs with aggressive behavior in terms of signaling. Specifically, in Table 23 we show a few 
examples of tickets that reported anomalies related to the behavior of several SIMs active in Belgium. 
We note that our deep learning models were able to capture these anomalies by generating a high 
value of the KLD metric.   

Table 23. Examples of anomalies we collected from the ticketinig system of the IPX operations team. 

Devices Tickets date Description 

10 SIMs in Belgium 2020-02-10 Aggressive sim behaviour against Belgium radio network. 

5 SIMs 2020-02-10 
URGENT (Recurrent) Ticket: Data connection is blocked for the device, 
cannot establish data communications because of a erroneous alarm 
of high data consumption.   

2 SIMs 2020-02-10 
Aggressive behavior of devices against the radio network provider in 
Belgium. One device stopped the aggressive signaling, while the other 
continues.  

1 SIM 2020-02-11 
2020-02-23 

Long PING delay reported as an anomaly by the Client, was actually 
the normal behavior for M2M SIM card and roaming scenario and works 
as expected. 
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10 SIMs in Belgium 2020-02-23 Aggressive signaling behaviour of devices in Belgium.  

1 SIM in Canada 2020-02-23 
Client trying to test one device in Canada using the indicated SIM, but 
the device is not coming online.  

4.5.2.3 Conclusions and future directions 

Overall, we notice that the DL models are able to capture the aggressive signaling behavior of the IoT 
devices in our dataset. We especially mention that our tool was able to draw the attention of the 
operations team to the aggressive behavior of device in Belgium. This type of anomalies are indeed very 
harmful to the local operator in Belgium, and as well to the IPX operator. In fact, the devices that our 
approach tagged as anomalous were to blame for compromising the partnership agreements between 
the home network of the SIMs and the local operator in Belgium.  

Our next effort goes towards validating with the platform operations team a set of anomalies that only 
our anomaly detection approaches were able to capture. For this, we monitor the evolution of the KLD 
anomaly score to generate alarms for the operations team to study.  

4.6 NI for capacity forecasting and self-learning 

Evaluation E6 focuses on the evaluation of NI solutions for long-timescale operations, i.e., MANO, VNF 
placement and the associated resource allocation. The DAEMON consortium performed assessments of 
challenges and solutions related to E6 via activity A20 and A22. Table 24 summarizes the tools, KPIs, TRL, 

PoC plans, approximate progress and main innovations of such activities. 

Table 24. List of activities for E6. 

ID Name 
Evaluatio

n 
Tool 

Planne

d KPIs 

Collected 

KPIs 

Target 

TRL 

Planned 

for PoC 

demo 

Progress 

A20 
Anticipatory 
capacity 
allocation 

E6 D1 K2, K4 K2, K4 3 No 60% 

 
Main innovation: Anticipatory provisioning of network resources to individual network slices so as to avoid 

underprovisioning while minimizing the unnecessary allocation of resources  

A21 
Virtual 
Machine 
reservation 

E6 D1 K2, K9 K2, K9 3 No 40% 

 
Main innovation: Prediction of the number of VMs that need to be allocated in advance to each NSSI, so as 
to run the VNFs required to serve the demand generated by the corresponding mobile service  

A22 

Minimization of 
video 

streaming slice 
OPEX 

E6 D1 K4, K9 K4, K9 3 No 40% 

 
Main innovation: Minimization of the monetary OPerating EXpenses (OPEX) associated to running the video 
streaming slices at the network Edge  

Overall, the preliminary results of these activities already led to observations on the performance of NI 
solutions that can anticipate the allocation of resources in future-generation mobile networks, as follows. 

• We prove how hybrid NI design that combine statistical modelling and machine learning can 

outperform pure deep learning approaches in traditional resource allocation tasks. The activities 

carried out in A20 showcase this in practical settings and with large-scale measurement data, 
hence supporting further investigations of such a NI design strategy during the second iteration. 

• We demonstrate that automating the design of loss functions for deep learning models can 

largely benefit anticipatory networking tasks. Extensive tests in realistic settings and against state-
of-the-art benchmarks demonstrate the viability of this concept, as well as the potential 

performance gains it can unlock. Both activities A21 and A22 contribute to the evaluation of 
such an original model, setting forth important contributions towards practical IBN systems. The 
results of A21 and A22 thus pave the road to refinements and enhancements of the loss-learning 
paradigm during the second iteration of the project, whose results are expected to be presented 
in the next deliverable of WP5. 

4.6.1 Anticipatory capacity allocation (A20) 

This activity targets a capacity forecasting scenario where anticipatory NI is in charge of the allocation 
of network (e.g., compute, transport, memory) resources to individual network slices. Here, it is critical 
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that the capacity prediction avoids all underestimation (which causes allocation of insufficient capacity 
to slices, hence disruption of the service experienced by the end user) while minimizing overprovisioning 
(determining an unnecessary allocation of resources that will ultimately go wasted). 

The NI solution developed by the project to address this problem is named TES-RNN, and is outlined in 
Section 4.1 of Deliverable 4.1 [46], where formal definitions of the target system and problem are also 
provided. Here, we detail the evaluation settings and performance results. 

We set the capacity allocation use case in a network core Cloud scenario, where a single large 
datacenter runs VNFs for the traffic generated in the whole target region by four traffic-intensive mobile 
applications, i.e., Facebook, Instagram, Snapchat and YouTube. The traffic demands for each service 
are derived from dataset D3 described in Section 3.3.3. We assume that each service above is assigned 
a dedicated network slice, and that the NI responsible for capacity allocation at the datacenter must 
reserve in advance enough resources to accommodate the future demand of single slices. Therefore, 

this setup allows evaluating how forecasting models such as the one we propose can assist NI in a multi-
service and multi-slice environment. In the following, we compare our proposed TES-RNN model against 
three relevant benchmarks, as indicated in Section 4.1 of Deliverable 4.1 [46]. 

4.6.1.1 Overall capacity forecasting performance 

 

Figure 62. Additional capacity allocation cost caused by INFOCOM19, RNN, ES-RNN, and TES-RNN 
prediction errors. Results refer to four slices assigned to specific services at a network core datacenter. 

We start by comparing the total costs incurred by the operator when using the different forecasting 
models to support capacity allocation, in Figure 62. Costs are expressed as the percent excess over a 
baseline given by an oracle that makes a perfect prediction, telling apart the fraction of the cost resulting 
from resource overprovisioning and SLA violations. The key observation is that TES-RNN consistently 
outperforms the benchmarks, with gains over the second-best solution that range between 8% and 25%, 
as well as very low SLA violation probabilities. 

4.6.1.2 In-depth analysis of one prediction instance 

 

Figure 63. Time series of the real traffic of the Facebook slice, and of the relative capacity predictions of 
INFOCOM19, RNN, ES-RNN and TES-RNN. Left: weekly time serie. Center: view of the 3:00-6:00 interval of 
Tuesday, with SLA violation periods of ES-RNN in red. Right: zview of the 11:00-14:00 interval of Wednesday. 

To gain additional understanding on the behaviors of the forecasting models presented above, we detail 

a representative case of capacity prediction in Figure 63. The plots show the time series of the real traffic 
in the Facebook slice, as well as the corresponding capacity allocation foreseen by each predictor. 

The left plot portrays the traffic dynamics over a full week, and underscores how all models follow well 
the long-timescale fluctuations of the demands, such as low overnight traffic or different activity peaks 
during daylight. Center and right plots present a close-in view of two specific 3-hour periods, which are 
evidenced by vertical shades in the left plot. The zoom magnifies how TES-RNN and ES-RNN help 
dimensioning a capacity that is closer to the real demand than that anticipated by INFOCOM19 and 

RNN, especially in low traffic conditions. 
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4.6.1.3 Control of SLA violations 

 

Figure 64. Left: Additional capacity allocation cost of INFOCOM19, RNN, ES-RNN, TES-RNN prediction 

errors, versus  and for the Facebook slice. Right: Limits in terms of SLA violations and overprovisioning 
costs that can be attained by TES-RNN, and the chosen benchmarks for the Facebook slice. 

The results presented before are for one specific value of the parameter  that controls the equilibrium 
of overprovisioning and SLA violation risk in the considered loss function (see Section 4.1.1 of Deliverable 
4.1 [46] for details). The left plot in Figure 64 illustrates the capability of each model to enforce the desired 
control above, for the case of the Facebook slice. We observe that TES-RNN yields again the best 
performance in all settings. More importantly, it keeps the overall cost low by progressively decreasing 

the occurrence of SLA violations as α grows, which is exactly the desired behavior. INFOCOM19 and RNN 
can also achieve this result, however at a cost in terms of overprovisioning that is almost twice that of our 

hybrid model. ES-RNN is instead unable to modulate the SLA violation cost, which in fact grows with . 

The right plot of Figure 64 gives a view of the operating points of each forecasting method. TES-RNN offers 
the best options to the operator, as it allows choosing among configurations that simultaneously provide 
less SLA violations and lower overprovisioning costs than the benchmarks. 

4.6.1.4 Conclusions 

By enhancing a recently proposed method for joint optimization of statistical models and neural network 
architectures, a hybrid model such as TES-RNN offers significant performance gains in anticipatory 
networking tasks. When confronted with a practical application use cases characterized by real-world 
traffic volumes and dynamics, TES-RNN granted gains up to 25% over state-of-the-art predictors that were 
specifically designed for the target problem. These results lay solid foundations to further research on 
hybrid approaches to NI design, which will be explored during the second iteration of the project. 

4.6.2 Virtual Machine reservation (A21) 

This activity focuses on a capacity forecasting use case centered around a core network datacenter 
setting. There, different video streaming services are assigned individual and dedicated Network Slice 
Subnet Instances (NSSI). The Virtual Infrastructure Manager (VIM) responsible for controlling datacenter 
resources must predict the number of VMs that need to be allocated in advance to each NSSI, so as to 
run the VNFs required to serve the demand generated by the corresponding mobile service. Clearly, 
every VM has an operating cost (e.g., due to power consumption) so it is desirable that only the strictly 
necessary set of VMs is reserved for each NSSI. The problem consists in developing a suitable NI to 
manage VM reservations to accommodate future demands for each NSSI or, equivalently, service. 

In order to perform our experiments, we employ traffic demands for each video streaming service from 
Dataset D3 described in Section 3.3.3. Also, we emulate the actual operating costs of the datacenter 
and the local VM management strategies with a realistic expression 𝑓ℳ for the management objective. 
Note that such an expression may not be (fully) known by the network operator a priori, in which case 
the NI needs to learn 𝑓ℳ from experience, i.e., by observing how the system responds to VM reservations 
over time. The solution we devise for the NI algorithm is the Loss Learning Predictor, or LossLeaP, whose 
architecture is detailed in Section 4.2 of Deliverable 4.1 [46], where more information on the expression 

𝑓ℳ used in the tests are also provided. 

We assume that the VM orchestration takes place every 5 minutes, which is thus the forecast horizon of 
the predictor. We feed LossLeaP with past traffic information, and let it (i) learn an approximation of 𝑓ℳ 
and, jointly, (ii) learn to produce a forecast 𝑑𝑡 that minimizes such 𝑓ℳ. We consider two benchmarks for 
comparison, as follows. 

• An Oracle predictor, which has perfect knowledge of the future and always allocates the 
optimal minimum number of VMs to serve the upcoming demand. 

• A legacy recurrent neural network (RNN) forecasting model trained to minimize a Mean Square 
Error (MSE) loss. A downstream decision-making block uses the forecast to make VM reservations. 
Details on the decision-making block are in Section 4.2 of Deliverable 4.1 [46]. 
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4.6.2.1 Comparative performance summary 

 

Figure 65. VM reservation for diverse slices. Left: reserved VMs. Right: fraction of 
time when the slice demand cannot be served. 

Figure 65 summarizes the performance of LossLeaP in the considered case study. Even when fine-tuned, 
a decision-making policy based on a legacy prediction is substantially less efficient than LossLeaP. Our 

model allocates around the same VMs as legacy, but with an extremely limited under-provisioning that 
is one or two orders of magnitude lower than that of legacy. 

4.6.2.2 In-depth analysis of model performance 

 

Figure 66. Example of VM reservation for the Facebook NSSI. 

The reason is illustrated in Figure 66, for one sample NSSI, i.e., the Facebook video streaming service: 

LossLeaP anticipates a constant overdimensioning at all times; instead, the solution based on the Legacy 
predictor tends to allocate excess VMs during the high-traffic daylight hours, and does not leave a wide 
enough safety margin overnight, when it allocates less VMs than Oracle, hence not servicing part of the 
demand. Instead, LossLeaP learns that a static overprovisioning factor is not a good strategy to cope 
with the inherent forecast inaccuracy, and automatically identifies a better loss to minimize the 
(unknown) expression of 𝑓ℳ. By doing so, our proposed NI performs in fact fairly close to the Oracle. 

4.6.2.3 Conclusions 

Automating the design of loss functions for anticipatory reservation of VMs allows achieving significant 
gains, with a 4x  to 20x reduction of SLA violations due to the underprovisioning of VMs in a network core 
datacenter. Our results are obtained in realistic settings and against a state-of-the-art benchmark. 
Building on the excellent results achieved in this use case, we plan to refine and make more robust the 
design of loss-learning architectures for NI in the second iteration of the project. 

4.6.3 Minimization of video streaming slice OPEX (A22) 

This activity casts the capacity forecasting problem in a mobile Edge environment where computational 

facilities serve a large number of individual radio access base stations located in their proximity, so as to 
reduce latency in service provisioning. As in the case of A17 presented in Section 4.6.2, we assume that 
each of four video streaming services has a dedicated NSSI at the Edge facilities, and we derive realistic 
traffic demands for such services from Dataset D3 described in Section 3.3.3. Here, the management 
goal is minimizing the monetary Operating Expenses (OPEX) associated to running the video streaming 
slices at the network Edge. This maps to an objective of periodically and preemptively rescaling the 
compute resources assigned to each NSSI in a facility, to smoothly run the needed VNFs. 

The ground-truth OPEX is emulated via a complex numerical model that takes advantage of real-world 
measurements from studies  in the literature and that relates the OPEX to the system variables. It is worth 
noting that also in this case the expression of the objective involved and typically not known to the 
operator in practical cases, since, e.g., the OPEX depends on the QoE and MOS of end users in entangled 
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ways. This makes LossLeaP a suitable forecasting model to support a NI for compute resource allocation 
in the target scenario. Details on the system and OPEX models are in Section 4.3 of Deliverable 4.1 [46]. 

We compare the proposed LossLeaP solution against two benchmarks, as follows: (i) an Oracle predictor 
that knows the future and OPEX model, and returns an optimal allocation; (ii) DeepCog, a state-of-the-
art capacity predictor [60] for capacity forecasting, whose manually designed loss function is configured 
with prior knowledge of the OPEX model. 

4.6.3.1 Comparative performance summary 

 

Figure 67. OPEX performance in the Facebook Live slice case. Left: 
overall cost. Right: loss function learned by LossLeaP. 

For the sake of brevity, we only show results for the Facebook Live NSSI, in the left plot of Figure 67, yet 
performances are homogeneous across services. All costs are relative to that of the minimum static 
capacity allocation that always services the full demand, and are shown for different parametrizations 
of the OPEX model (along the x axis). Despite the fact that we feed it with information about the true 
parameters used in the OPEX model, DeepCog is still constrained by its unflexible and manually designed 
loss function. Instead, LossLeaP can autonomously learn a much better loss, which results in a reduced 
cost closer to the Oracle one. 

4.6.3.2 In-depth analysis of the learned loss function 

The right plot of Figure 67 offers a glance at the fairly complex loss function captured by the loss-learning 
DNN of LossLeaP: even if full knowledge of the numerical OPEX models were available, manually devising 
the shape in the plot would be an exacting task. Our proposed approach effectively automates such 
design, which lays an important stone in the path to more efficient NI for capacity forecasting and 

network management in beyond 5G systems. 

4.6.3.3 Conclusions 

Similarly to what observed in Section 4.6.2, loss-learning models can effectively support NI also in the case 
of resource allocations that target the reduction of OPEX (expressed here as a combination of the costs 
of end-user QoE disruption and SLA violations). Experiments with real-world measurement data prove the 
significant advantage that a loss-learning approach yields over a state-of-the-art capacity predictor. 
These results will also feed the improved design of loss-learning architectures during the second iteration 
of the project. 

4.7 NI to configure a Reconfigurable Intelligent Surface 

Evaluation E7 targets on the assessment of NI solutions for the control of Reconfigurable Intelligent 
Surfaces (RIS). The DAEMON consortium performed assessments of challenges and solutions related to E7 

via activity A23. Table 25 summarizes the tools, KPIs, TRL, PoC plans, approximate progress and main 
innovations of such activity. 

Table 25. List of activities for E7. 

ID Name Evaluation Tool 
Planne

d KPIs 

Collected 

KPIs 

Target 

TRL 

Planned 
for PoC 

demo 

Progress 

A23 

Reconfigurabl
e Intelligent 
Surfaces 
Prototype 

E7 T9 K5, K6 None 3 Yes 10% 

 Main innovation: Increase spectrum capacity by using reconfigurable reflectors  
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A single activity is devoted to the evaluation of NI for RIS control. This is due to the fact that this activity 
was originally included in E1 in the DoA. However, the high specificity of the Beyond Edge domain that 
RIS create is not aligned with the characteristics of the more traditional vRAN environments targeted in 
E1: this pushed the introduction of a new and highly focused evaluation E7, dedicated to RIS control only. 
Although the effort on E7 is expected to be much lower than on other evaluations of more mature 
network technologies, isolating the activity of RIS allows for more correct and consistent separation of 
the evaluations across network domains. The current progress of the single activity A23 is detailed next. 

4.7.1 Reconfigurable Intelligent Surfaces Prototype (A23) 

This activity involves experimental work for the control of RIS. At this stage, the activity has essentially 
focused on developing testbed T9, which is described in detail in Section 3.1.9. Although no actual 
evaluation has been carried out yet using T9, the experience matured by implementing the platform 
itself has proven very useful to understand the characteristics of a real-world RIS system, which will be key 

during the second iteration of the RIS-related work in the project. Experiment for RIS control will be carried 
out during such a second iteration and will be reported in the next WP5 deliverable. 
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5 Conclusion and outlook 
In this document, we presented the preliminary results of WP5 work on the evaluation of the performance, 
sustainability and reliability of the NI-solutions developed in WP3 and WP4. We validated such solutions 
against 9 target KPIs, which have been measured and assessed by a comprehensive set of 7 evaluations 
involving technical tools such experimental testbeds, simulators or emulators, and datasets. 

In Evaluation E1, we focused on real-time control and non-real-time orchestration of vRAN services & 
resources. We report three main observations: i) gaps are present in the usage of shared resources across 
pools of DUs which calls for a redesign of the DU pipeline and for NI-driven approaches to limit the 
employment of costly and energy-consuming hardware accelerators, which actual implementations will 
be presented in the next WP5 deliverable; ii) there may be still space for improvement in the absolute 
performance of the different strategies for traffic classification in the vRAN that we compared, which will 

be eventually reported in the next WP5 deliverable; iii) specific NI algorithms need to be designed to 
cope with the power consumption of vBSs, as it is much more complicated than what assumed in 
literature and it is linked to end-user QoS in intricated ways. 

In Evaluation E2, we focused on NI solutions to support network slice management & orchestration 
operations. Our main contributions are two: i) the development of two solutions to tackle the challenging 
problem of making VNF placement more energy friendly in complex mobile Edge settings; ii) the 
development of a complete framework for NI-assisted MANO, putting together a number of components 
that will be actually implemented and integrated during the second iteration of the project. 

In Evaluation E3, we focused on NI solutions that support anomaly detection in real-time in both 
controlled environments and in a production core network. As a single activity is targeting E3, and due 
its proximity with Evaluation E5, the consortium is considering the option to merge this evaluation with E5 
in the second iteration of the project. This decision will be reflected in the next deliverable of WP5. 

In Evaluation E4, we targeted NI solutions for service orchestration and resource allocation algorithms in 
the Edge micro-domain. Three are the main lines of activities that we report: i) improved, flexible and 
automated management & orchestration of Edge resources based on NI solutions; ii) study of the impact 
of NI solutions on the management of specific mobile services in sliced Edge environments; iii) 
comprehensive comparative assessments of different types of NI models, including based on statistical, 
control and machine learning tools, for Edge orchestration. 

In Evaluation E5, we aimed at evaluating NI solutions for anomaly response. We report two main 
achievements: i) we demonstrated that traditional Random Forest models perform as a well as more 
complex neural networks in classification and anomaly detection tasks in highly constrained user-plane 
environments, and we will build on such insights to implement NI models for line-rate inference in the 
second iteration of the project; ii) we paved the way for NI-assisted alarm generation (whose integration 

in a pre-production system will be at the core of the second iteration of the project) based on deep 
learning approaches that can identify anomalies in the signaling data for roaming operations. 

In Evaluation E6, we focused on the evaluation of NI solutions for long-timescale operations, i.e., MANO, 
VNF placement and the associated resource allocation. We report two main achievements: i) we proved 
that hybrid NI design combining statistical modelling and ML can outperform pure deep learning 
approaches in resource allocation tasks; ii) we demonstrated that anticipatory networking tasks can 
largely benefit from the automation of the design of loss functions for deep learning models.  

In Evaluation E7, we targeted the assessment of NI solutions for the control of Reconfigurable Intelligent 
Surfaces (RIS). Although no actual evaluation has been yet carried out in the only activity included in E7, 
it has been possible to understand the characteristics of a real-world RIS system by implementing the 
testbed T9. Experiments for RIS control will be carried out during the second iteration of the project. 
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