

H2020 DAEMON Project

Grant Agreement No. 101017109

Deliverable 5.1
Preliminary evaluation results and plan for proof-of-concept demonstrations

Abstract

This document presents the current status of DAEMON WP5 activities. It presents the validation activities,
performance evaluations and functional assessment tests of all the NI-solutions developed in WP3 and
WP4 to date. The performance evaluation aims at meeting 9 target KPIs in well-defined scenarios, which
are measured and assessed by developing 7 evaluations. Each evaluation relies on a set of technical
tools, employed to perform 23 experimental activities. Such activities target different facets of a single
evaluation.

Deliverable 5.1

 H2020 – 101017109

2

Document properties

Document number D5.1

Document title Preliminary evaluation results and plan for proof-of-concept
demonstrations

Document responsible IMDEA

Document editor Michele Gucciardo (IMDEA)

Editorial team Marco Fiore (IMDEA)
Gines Garcia Avilés (i2CAT)
Michele Gucciardo (IMDEA)
Antonio Bazco Nogueras (IMDEA)
Gabriele Baldoni (ADLINK)

Ivan Paez (ADLINK)
Inmaculada Ayala (UMA)
Danny De Vleeschauwer (NBL)
Chia-Yu Chang (NBL)
Paola Soto (IMEC)
Nina Slamnik (IMEC)
Miguel Camelo (IMEC)
Michail Kalntis (TUD)
Marco Gramaglia (UC3M)
Evangelos Kosmatos (WINGS)
Ioannis Chondroulis (WINGS)
Sokratis Mparmpounakis (WINGS)
Ioannis-Prodromos Belikaidis (WINGS)
Theodoros Kasidakis (WINGS)
Panagiotis Demestichas (WINGS)
To be completed – person D (partner acronym)

Target dissemination level Public

Status of the document Final

Version 1.0

Production properties

Reviewers Marco Fiore (IMDEA)

 Evangelos Kosmatos (WINGS)

 Andres Garcia Saavedra (NEC)

Document history

Revision Date Issued by Description

0.1 15/02/22 All partners Initial content

0.2 01/03/22 Editor First version, ready to be reviewed

0.3 15/03/22 All partners Updated content based on feedback
of editor and Marco Fiore

0.4 24/03/22 External reviewers Version reviewed outside WP5

1.0 31/03/22 Editor Final version

Disclaimer

This document has been produced in the context of the DAEMON Project. The research leading to these
results has received funding from the European Union Horizon 2020 research and innovation programme
under grant agreement no.101017109.

All information in this document is provided “as is" and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

For the avoidance of all doubts, the European Commission has no liability in respect of this document,
which is merely representing the authors view.

Deliverable 5.1

 H2020 – 101017109

3

Table of Contents

1 Introduction.. 11
2 Target KPIs and evaluations .. 14

2.1 Target KPIs ... 14
2.2 Evaluations .. 15

3 Technical tools... 17
3.1 Experimental testbed sites.. 17

3.1.1 Virtualised radio stack (T1) .. 17
3.1.2 5Tonic (T2) .. 18
3.1.3 Multi-site 5G radio testbed (T3) .. 18
3.1.4 Smart highway (T4) ... 18
3.1.5 Software-Defined Radio (SDR) testbed with power meter (T5) .. 19
3.1.6 Cloud-native mobile network emulators (T6) .. 20
3.1.7 VNF deployment and Edge Infrastructure (T7) .. 21
3.1.8 Virtualized platform, OSM and open stack (T8) .. 21
3.1.9 Reconfigurable Intelligent Surfaces (T9) ... 21
3.1.10 Eclipse Zenoh testbed (T10) .. 22
3.1.11 Network capabilities and cloud resources testbed (T11) .. 23
3.1.12 P4 programmable testbed for in-backhaul NI (T12) ... 23

3.2 Simulators and emulators ... 24
3.2.1 Edge/Cloud simulator (S1) .. 24
3.2.2 P4 programmable RAN (S2) .. 25
3.2.3 System-level simulator (S3) .. 26
3.2.4 EnergyEdgeCloudSim (S4) ... 27

3.3 Datasets ... 28
3.3.1 MNO radio performance (D1) .. 29
3.3.2 End-user performance (D2) .. 30
3.3.3 Service-level traffic demand (D3).. 30
3.3.4 vRAN performance and power consumption (D4) .. 31
3.3.5 Edge dataset (D5) .. 31
3.3.6 Wireless interactions in multiple BSS using Channel Bonding (D6) ... 32
3.3.7 Intrusion Detection Evaluation Dataset (D7).. 33
3.3.8 IPX Signaling Dataset for IoT (D8) ... 34
3.3.9 YouTube file requests (D9) ... 35
3.3.10 GEC case study (D10) .. 35
3.3.11 IoT devices dataset (D11).. 36
3.3.12 Applications and protocols dataset (D12)... 36
3.3.13 Malicious attacks dataset (D13) .. 37
3.3.14 Malicious packets dataset (D14) ... 37

4 Results .. 38
4.1 NI for sustainable virtualized RANs .. 38

4.1.1 Reliable distributed unit for virtualization (A1) ... 39
4.1.2 AI-driven O-Cloud (A2) .. 41
4.1.3 Application aware radio scheduling (A3).. 41
4.1.4 AI-aided energy-driven RAN orchestration (A4) ... 43
4.1.5 AI-aided RAN/edge orchestration (A5) .. 45

4.2 NI for VNF placement and control ... 47
4.2.1 Energy-aware deployment of VNFs for genenric Edge computing (A6) ... 48
4.2.2 Combining VNFs at the edge (A7) .. 49
4.2.3 AI-enhanced MANO (A8) ... 49

Deliverable 5.1

 H2020 – 101017109

4

4.3 NI for real-time anomaly detection .. 50
4.3.1 Federated Learning-based Anomaly Detection (A9).. 51

4.4 NI for Edge orchestration.. 52
4.4.1 Video analytics with edge computing (A10) .. 53
4.4.2 Multi-timescale edge orchestration (A11).. 55
4.4.3 WLAN performance prediction for spectrum management (A12) .. 57
4.4.4 Data driven resource orchestration in the MNO (A13) .. 58
4.4.5 Multi-timescale network slice reservation (A14) .. 60
4.4.6 Testing EnergyEdgeCloudSim (A15) .. 61
4.4.7 Towards autonomous VNF scaling (A16) .. 63
4.4.8 Auto scaling Virtualized RAN caches (A17) ... 65

4.5 NI for automated anomaly response ... 66
4.5.1 In-backhaul learning (A18) ... 67
4.5.2 Anomaly detection for a roaming platform (A19) ... 69

4.6 NI for capacity forecasting and self-learning ... 70
4.6.1 Anticipatory capacity allocation (A20) .. 70
4.6.2 Virtual Machine reservation (A21) ... 72
4.6.3 Minimization of video streaming slice OPEX (A22) .. 73

4.7 NI to configure a Reconfigurable Intelligent Surface ... 74
4.7.1 Reconfigurable Intelligent Surfaces Prototype (A23) ... 75

5 Conclusion and outlook .. 76
6 References ... 77

Deliverable 5.1

 H2020 – 101017109

5

List of Figures

Figure 1. Positioning of WP5 in the DAEMON project work plan. .. 11
Figure 2. PoC combining distributed testbed environments. .. 19
Figure 3. SDR testbed with power meter. .. 20
Figure 4. WINGS testbed with OSM and open stack. .. 21
Figure 5. RIS general overview... 22
Figure 6. RIS unit cell. ... 22
Figure 7. ADLINK’s testbed with Eclipse Zenoh installed. .. 23
Figure 8. Topology of OTE’s cloud testbed.. 23
Figure 9. Image of the P4 programmable testbed hardware installed on the rack. .. 24
Figure 10. Sim-Diasca Architecture... 25
Figure 11. P4-PRAN emulation platform. .. 26
Figure 12. System level simulator. .. 26
Figure 13. Orchestration and auto-scaling in EnergyEdgeCloudSim. .. 28
Figure 14. High-level architecture of the measurement infrastructure integrated in the cellular network. 29
Figure 15. Simplified 3G/4G mobile network architecture. .. 31
Figure 16. (a)-(b): Cumulative Confidence (CC) and frame rate for various neural network sizes and encoding rates; results

are averaged across 32K images of the COCO dataset. (c)-(d): Distributions of CC and frame rate for (neural network size,

encoding rate) set to (256, 50%), (384, 100%)... 32
Figure 17. High level architecture of the IPX-P’s monitoring to build our dataset. We build our dataset using a commercial

software solution that processes the raw signaling traffic (SCCP, Diameter or GTP), and that rebuilds the dialogues between

the different core network elements. We build datasets for 2G/3G as well as 4G/LTE. ... 34
Figure 18. Total number of YouTube file requests in a certain university campus over time. .. 35
Figure 19. VM of the Generic Edge Computing (GEC) large case study. .. 36
Figure 20. LTE and New Radio (NR) DU pipeline: DU job 𝑛.. 39
Figure 21. Throughput measured for two vDUs competing for resources. .. 40
Figure 22. Throughput performance for both uplink and downlink (top). CPU time required by different PHY layer functions

(bottom). Different uplink/downlink load (relative to the maximum) and channel conditions (SNR). .. 40
Figure 23. Mean latency and energy consumption to decode an LDPC-encoded transport block. .. 41
Figure 24. Comparison of HAs. Approximated figures. ... 41
Figure 25. Downstream throughput (left) and RLC buffer (right) evoluation in a typical experiment. .. 42
Figure 26. Evolution of the loss function and classification accuracy on the training and validation set. 43
Figure 27. Comparison of power consumption at: the BBU (Intel NUC i7-8559U@2.70GHz), the BBU’s CPU, and the RU (an USRP

SDR), with 20Mbps DL and UL traffic. .. 44
Figure 28. Consumed power over the baseline for different radio bandwidths and hardware platforms. SF PC 1: Intel NUC i7-

8559U@2.70GHz; SF PC 2: Intel NUC i7-8650U@1.90GHz; Server 1: Dell XPS 8900 i7-6700@3.40GHz; Server 2: Dell Aurora R5 i7-

9700@3.00GHz. ... 44
Figure 29. vBS over SF PC 1 at full UL buffer. UL decoding time as a function of SNR and different MCS values........................... 44
Figure 30. vBS over SF PC 1 at full UL buffer. Power consumption as a function of the decoder performance (high correlation).

... 44
Figure 31. 8x combinations of normalized MCS and airtime providing 2.6Mbps in UL, and its associated power (idle mode

power is subtracted). .. 45
Figure 32. Normalized power consumption at the BBU over baseline for full buffer UL transmissions and high SNR, as a function

of MCS and airtime.. 45
Figure 33. Mean average precision (mAP) vs.service delay for images with different resolutions. .. 46
Figure 34. Service delay vs. server’s power consumption for images with different resolutions and radio policies. 46
Figure 35. AI-enhanced MANO solutions... 50
Figure 36. FL-based architecture for anomaly detection. ... 52
Figure 37. Dashboard. ... 52
Figure 38. (Left) Average regret of the proposed method. (Right) Cumulative confidence & frame rate. 54
Figure 39. (Left) Algorithm mean iteration delay. (Right) Maximum iteration delay & convergence time. 54
Figure 40. Reward of (a) preassigned users, (b) user-to-GPU assignment, (c) AP-to-GPU assignment. .. 54
Figure 41. (a) Latency, (b) Training data ... 56
Figure 42. Results: (a) Prediction based on training data, (b) Prediction based on testing data, (c) Gain achieved by service

relocation. ... 56
Figure 43. Mean and standard deviation of the obtained RMSE by all models on the test data set.. 57
Figure 44. Yearly trend of cell sites launch over the past decade. .. 58

Deliverable 5.1

 H2020 – 101017109

6

Figure 45. The number of radio sectors per cell site over the last decade. .. 58
Figure 46. Delta variation of the number of active sectors per radio access technology. We employ as reference the first

measurement date on the x-axis. ... 59
Figure 47. Daily performance of 5G vs. 4G sectors in the same locations (for a non-standalone 5G deployment). Each plot

indicates the median of the metric we show in the title per geolocation. .. 59
Figure 48. Regret and violation convergence of OLR with B=10 base stations and K=5 slots. .. 60
Figure 49. Regret and violations comparison of OLR and OLR-MTS, for different values of slots K. .. 60
Figure 50. Regret and violation convergence of OLR-SO with B=10 base stations and K=5 slots. .. 61
Figure 51. Regret and violations comparison of OLR-SO, for different values of slots K. ... 61
Figure 52. Energy consumption and percentage of failed requests for each orchestration policy. ... 62
Figure 53. Energy consumption and percentage of failed requests applying our auto-scaling approach for OM1 (left) and

OM2 (right). ... 62
Figure 54. Complete workload trace used in activity A16. .. 63
Figure 55. Rural and Suburban Deployment of BSs used in evaluation of vRAN rescaling Algorithm. ... 65
Figure 56. Sum utilities in linear BS topology case and non-overlapping SBSs scenario. .. 65
Figure 57. Sum utilities in linear BS topology case and overlapping SBSs scenario. ... 66
Figure 58. Performance gain of the proposed algorithms under real BS topologies and SBSs scenarios. 66
Figure 59. Summary of the different approaches for in-backhaul inference. .. 67
Figure 60. Results of the comparative evaluation of machine learning models used for in-band inference. The best result for

each use case and metric is highlighted in bold, the second best in blue. ... 68
Figure 61. Clusters of devices: We find three groups of devices containing different amount of signaling traffic each. Groups

are well defined as the upper and lower quartiles of the boxplots do not overlap between them in the vertical axis. 69
Figure 62. Additional capacity allocation cost caused by INFOCOM19, RNN, ES-RNN, and TES-RNN prediction errors. Results

refer to four slices assigned to specific services at a network core datacenter. .. 71
Figure 63. Time series of the real traffic of the Facebook slice, and of the relative capacity predictions of INFOCOM19, RNN,

ES-RNN and TES-RNN. Left: weekly time serie. Center: view of the 3:00-6:00 interval of Tuesday, with SLA violation periods of ES-

RNN in red. Right: zview of the 11:00-14:00 interval of Wednesday.. 71
Figure 64. Left: Additional capacity allocation cost of INFOCOM19, RNN, ES-RNN, TES-RNN prediction errors, versus  and for

the Facebook slice. Right: Limits in terms of SLA violations and overprovisioning costs that can be attained by TES-RNN, and
the chosen benchmarks for the Facebook slice. .. 72
Figure 65. VM reservation for diverse slices. Left: reserved VMs. Right: fraction of time when the slice demand cannot be served.

... 73
Figure 66. Example of VM reservation for the Facebook NSSI. .. 73
Figure 67. OPEX performance in the Facebook Live slice case. Left: overall cost. Right: loss function learned by LossLeaP. 74

Deliverable 5.1

 H2020 – 101017109

7

List of Tables

Table 1. List of performed evaluations to date, with the associated activities, tools and target KPIs. .. 12
Table 2. List of target KPIs: K1, K2, K4, K6 set the target relative to the current baseline; K3, K5, K7, K8, K9 define absolute targets

that involve substantial improvements over today’s state-of-the-art technology. ... 14
Table 3. Experimental sites available in the project, with related evaluations and KPIs. ... 17
Table 4. Simulators and emulators available in the project, with related evaluations and KPIs. .. 24
Table 5. Measurement datasets available in the project, with related evaluations and KPIs. ... 28
Table 6. First 3 records of D5 dataset.. 32
Table 7. Summary of the characteristic of the wireless interactions in multiple BSS dataset. .. 33
Table 8. Simulation parameters used to generate the training and test datasets. ... 33
Table 9. IPX-P Datasets for IoT. ... 34
Table 10. List of activities for E1. ... 38
Table 11. Confusion matrix of K nearest neighbors. ... 43
Table 12. Confusion matrix for the neural network classifier. ... 43
Table 13. List of activities for E2. ... 47
Table 14. Details of the quality measured numerical variability models (NVM) used to validate SAVRUS. 48
Table 15. AVA and NDF algorithms execution time. ... 49
Table 16. List of activities for E3. ... 51
Table 17. List of activities for E4. ... 52
Table 18. Results of multi-timescale edge orchestration (Average is an average difference between measured and predicted

data). ... 56
Table 19. Features available for training.. 57
Table 20. Comparison results of DQN, THD and PID agents in terms of number of VNFs and peak latency. 64
Table 21. SLA Violations from the DQN, THD and PID agents. ... 64
Table 22. List of activities for E5. ... 66
Table 23. Examples of anomalies we collected from the ticketinig system of the IPX operations team. 69
Table 24. List of activities for E6. ... 70
Table 25. List of activities for E7. ... 74

Deliverable 5.1

 H2020 – 101017109

8

List of Acronyms

4G – Fourth Generation 

5G – Fifth Generation

AI – Artificial Intelligence

ASIC – Application-Specific Integrated Circuit

AUC – Area Under Curve

B5G – Beyond 5th Generation  

BBU – Baseband Unit

BNN – Binarized Neural Network

BS – Base Station

C-ITS - Cooperative Intelligent Transportation System

CNN – Convolutional Neural Network

CORD – Central Office Rearchitected as Data Center

CUPS – Control-User Plane Separation

DoA – Description of Action

DCB – Dynamic Channel Bonding

DL – Downlink

DNN – Deep Neural Network

DT – Decision Tree

EPC – Evolved Packet Core

eNB – Evolved Node-B

FNN – Feedforward Neural Network

FPGA – Field Programmable Gateway Array

GA+JCC - General Algorithm with Joint Cache Rental and File Caching

GB – Gradient Boost

gNB – Next Generation Node-B

GNN – Graph Neural Network

GPU – Graphical Processing Unit

IPC – Inter-Process Communication

KPIs – Key Performance Indicators

LTE – Long-Term Evolution

MAC – Medium Access Control

MANO – Management and Orchestration

MCU – Micro-Controller Unit

MEC – Multi-access Edge Computing

ML – Machine Learning

MNO – Mobile Network Operator

MOS – Mean Opinion Score

Near-RT – Near Real-Time

Non-RT – Non Real-Time

NFV – Network Function Virtualization 

NFVI – Network Function Virtualization Infrastructure

NI – Network Intelligence

NR – New Radio

NSA – Non-Standalone

NS – Network Service

OBU – On-board Unit

OPEX – Operation Expenditure

OSM – Open-Source MANO

PHY – Physical layer

PoC – Proof-of-Concept

QoE – Quality of Experience

R-CNN – Region-based Convolutional Neural Network

RAN – Radio Access Network

RBF – Radial Basis Function

RCA – Root Cause Analysis

RIC – RAN Intelligent Controller

RIS – Reconfigurable Intelligent Surfaces

RMSE – Root Mean-Squared Error

RRC – Radio Resource Control

RSUs – Road-Side Units

RF – Rando Forest

RFR – Radio Frequency 

RT – Real Time

RU – Radio Unit

SA – Standalone

SDR – Software Defined Radio 

SLA – Service-Level Agreement

SMA – SubMiniature version A

SNR – Signal-to-Noise Ratio

SVR – Support Vector Regression

TCP – Transmission Control Protocol

ToR – Top of rack

TRL – Technology Readiness Level

UE – User Equipment

UL - Uplink

Deliverable 5.1

 H2020 – 101017109

9

URLLC – Ultra-Reliable Low-Latency Communications

V2X – Vehicular-to-Everything

VM – Virtual Machine

VNF – Virtual Network Function

vBS – virtual Base Station

vRAN – virtualized Radio Access Network

WP – Work Package

Deliverable 5.1

 H2020 – 101017109

10

Executive summary

This deliverable presents DAEMON’s preliminary evaluation results concerning some preliminary NI-
solutions developed in WP3 and WP4, targeting 8 network functionalities assisted via NI.

Specifically, WP5 receives the solutions for such functionalities with the goal of assessing them. The
evaluation methodology employed by WP5, makes use of a set of tools that includes experimental
testbeds, simulators or emulators, which are possibly fed with measurement data. Furthermore, WP5 is
responsible of the implementation of the solutions from WP3 and WP4 into such experimental, simulation
or emulation systems. Finally, WP5 provides feedback to WP2, WP3 and WP4 concerning the efficiency
of both the design and the operation of the NI solutions developed within the project. According to the
project timeline, such feedback occurs in three iterations of NI design/application/evaluation.

In this document, we present the results of WP5 activities in the very first of the three planned iterations.

Therefore, this document reports preliminary outcomes about the effectiveness of the NI algorithms
developed in the project to date, whose goal is also helping to improve NI design in WP2 and application
in WP3 and WP4. The document consists of five sections.

In Section 1, we describe the structure of our performance evaluation methodology. We introduce the
target KPIs defined to validate the NI-solutions, the evaluation methodology to measure such KPIs, and
the tools exploited to perform tests in the different experimental activities.

In Section 2, we detail the 9 target KPIs to assess the performance, reliability and sustainability of these
NI-solutions. We also describe 7 evaluations planned designed to prove the validity of the proposed

techniques in realistic experimental or measurement data-driven settings.

In Section 3, we illustrate the complete set of technical tools, employed during the performance tests,
which we categorized into experimental testbeds, simulators and emulators, and datasets.

In Section 4, we show the results of 23 experimental activities carried on by the consortium, each
targeting different facets of individual evaluations.

In Section 5, we provide some conclusions and a final outlook of the document.

Deliverable 5.1

 H2020 – 101017109

11

1 Introduction
Work Package (WP) 5 of the DAEMON project lays out all validation, performance evaluation and

functional assessment tests of the solutions developed in WP3 and WP4. As illustrated in Figure 1, WP5
receives the solutions developed in WP3 and WP4 for network functionalities that we assist and automate
via Network Intelligence (NI), and performs a comprehensive assessment of such solutions. The evaluation
carried out by WP5 uses diverse tools for each functionality, including experimental testbeds, simulators
or emulators, possibly fed with measurement data. Therefore, WP5 also takes care of implementing the
solutions from WP3 and WP4 into such experimental, simulation or emulation systems.

As also shown in Figure 1, WP5 provides feedback to WP2, WP3 and WP4 about the efficiency of the
design and operation of the NI algorithms developed in the project. According to the project timeline,
this occurs in three iterations of NI design/application/evaluation. Here, we present the results of WP5

activities in the very first iteration above: therefore, this document reports preliminary outcomes about

the effectiveness of the NI algorithms developed in the project to date, whose goal is also helping to

improve the NI design in WP2 and application in WP3 and WP4.

Figure 1. Positioning of WP5 in the DAEMON project work plan.

More precisely, and according to what stated in the Description of Action (DoA), the solutions developed

in WP3 and WP4, and thus evaluated in WP5, target 8 key NI-assisted network functionalities. Such
functionalities are distributed across different micro-domains of the next-generation mobile architecture
(namely, Core, Transport, Edge, Far Edge, and Beyond Edge), and across controllers, orchestrators and
functions that operate at different timescales. They are listed as follows.

• Reconfigurable Intelligent Surfaces (RIS) control ;

• Multi-timescale edge resource management;

• In-backhaul support for service intelligence;

• Compute-aware radio scheduling;

• Energy-aware Virtual Network Function (VNF) orchestration;

• Self-learning Management and Orchestration (MANO);

• Capacity forecasting; and

• Automated anomaly response.

In this deliverable, we report the current results of different performance evaluations across the 8 NI-
assisted solutions introduced above. Overall, the content of this document provides initial objective
evidence of the advantage of a structured, deep, and sensible integration of NI into network
infrastructures, and demonstrates the viability and performance of the NI-native vision for Beyond the
fifth Generation (B5G) networks set forth by the DAEMON project.

In order to organize our performance evaluation in a structured way, we aim at meeting clear targets on

a comprehensive range of Key Performance Indicators (KPIs) that illustrate the performance, reliability
and sustainability of the techniques proposed in the project to date. We remark that these targets are
clealy to be intended as limited to (i) the scope of the 8 specific functionalities developed in the project
and (ii) the evaluation scenarios where such functionalities are deployed as part of our tests; indeed, we
cannot make claims on performance beyond what we actually assess. The KPI targets are outlined in
Section 2.1.

Deliverable 5.1

 H2020 – 101017109

12

We measure the KPIs identified and assess whether the targets are satisfied by developing a complete

set of 7 evaluations that are designed to prove the feasibility of the proposed NI solutions in realistic
experimental or measurement data-driven settings. The list of evaluations is provided in Section 2.2, and
relies on a comprehensive methodology based on the following complementary approaches.

i. Real-world experiments. Implementations in experimental testbeds are the primary option for the

validation of the NI solutions. Within the project, we develop and/or take advantage of 10

experimental sites that feature cutting-edge research infrastructure and cover all network micro-
domains. Each site has specificities that make it especially suitable to investigate precise subsets

of the NI-assisted functionalities targeted by the project. The project evaluation sites allow for

credible Proofs-of-Concepts (PoC) in realistic but controlled environments, which showcase how
Network Intelligence (NI) can drive zero-touch network management to yield substantial
performance gains and savings in resource usage efficiency or energy consumption. The

experimental sites used for real-world NI assessment are described in Section 3.1.

ii. Data-driven evaluations. We leverage realistic datasets to feed simulations or emulations that

provide data-driven performance assessments of the NI solutions. We consider both large-scale

traffic measurements (e.g., collected in nationwide operational mobile networks), as well as

small-scale datasets (e.g., recorded in platforms deployed in laboratory environments). Such
real-world data allows validating the proposed NI instance orchestration and NI-assisted
functionalities in dependable settings, and possibly at scales that cannot be achieved with real-
world experiments. By using substantial volumes of mobile traffic data, which is paramount to the
proper training of the NI algorithms, we ensure that such algorithms are trained and tested in
realistic conditions – ultimately supporting that the observed NI performance are aligned with
those that could be expected in production systems. These evaluations do not solely rely on

baseline testing of machine learning solutions for NI, but we also feed the measurement data to

digital-twins implemented into simulation and emulation sandboxes, including proprietary tools
for real-time emulation developed by the project partners. In these cases, we follow a DevOps
approach, using data-driven models and micro-services architectures that capture system
dynamics at short timescales, so as to understand the scalability properties of the NI in controlled
environments. The simulation and emulation tools developed and/or employed in the project
are described in Section 3.2, whereas the datasets feeding them are described in Section 3.3.

The performance tests executed in the project to date, which employ the aforementioned tools, have

been structured into a wide range of 23 activities, each targeting a specific and focused technical
problem within scope of one of the 8 network functionalities addressed by WP3 and WP4. Specifcally,
multiple activities address different facets of each individual evaluation, and can be combined so as to
complete the whole set of target evaluations. The results of each activity are reported in Section 4.

Table 1. List of performed evaluations to date, with the associated activities, tools and target KPIs.

Evaluation Short description of the

evaluation

Planned KPIs Tools used Activities

E1 NI for sustainable virtualized Radio
Access Network (RAN)

K1, K2, K4, K5, K9,
K3, K8

T1, S2, T5 A1, A2, A3, A4, A5

E2 NI for VNF placement and control K1, K2, K3, K8, K4,
K5, K9, K7

T8, D10 A6, A7, A8

E3 NI for real-time anomaly detection K3, K7, K4, K5, K8 T8 A9

E4 NI for Edge orchestration K1, K2, K3, K4, K5,

K8, K9, K7

D5, T4, D6, D1,

S4, S1, D9

A10, A11, A12, A13,

A14, A15, A16, A17

E5 NI for automated anomaly response K3, K7, K5, K8, K9 D7, D8, D11,
D12, D13, D14

A18, A19

E6 NI for capacity forecasting and self-
learning

K2, K4, K9, K5, K6 D1 A20, A21, A22

E7 NI to configure a Reconfigurable
Intelligent Surface

K2, K4, K9, K5, K6 T9 A23

As a summary, the evaluations developed in the project aim at achieving the KPI targets in controlled,
yet relevant, environments. To do so, each evaluation relies on a set of technical tools (i.e., simulators
and emulators, experimental testbeds, or datasets) that are employed to perform a number of detailed

activities. Table 1 provides a complete view of all relationships among evaluations, KPIs and activities: for

each evaluation, in each row, we indicate the associated KPIs, the used tools and the list of activities.
Table 1 is thus intended as a reference that assists the reader and helps following the organization of the
performance evaluation of the project.

Deliverable 5.1

 H2020 – 101017109

13

The detailed description of KPIs, evaluations, tools and activities is provided in the remainder of the
document, which is structured as follows.

• Section 2 details the target KPIs set for the NI solutions developed in the project, and the different
evaluations that have been foreseen to validate such solutions.

• Section 3 lists the technical tools that have been employed to implement the evaluations above,
by assessing the performance of the NI solutions in realistic experimental or data-driven settings.

• Section 4 shows the final results of the evaluations carried out to date in the project, which
provide initial validations to the KPI targets through the different tools presented before.

Deliverable 5.1

 H2020 – 101017109

14

2 Target KPIs and evaluations
The ambitious vision and objectives of DAEMON call for a credible and solid validation and performance
evaluation of the eight NI-assisted functionalities introduced in WP3 and WP4 to improve B5G networks
performance, sustainability and reliability. To date, we developed preliminary NI solutions, which:

• Increase network performance end efficiency, by supporting network functionalities that allow
for extremely fast and adaptive control of (i) RIS in a new Beyond Edge domain, (ii)
computational resources in the Edge domain, and (iii) support for service intelligence in the user
plane of the Transport domain.

• Enable the sustainable operation of B5G systems, by means of solutions for (iv) computation-
aware radio scheduling, and (v) energy-aware VNF orchestration and (vi) self-learning MANO.

• Ensure an extreme reliability of zero-touch B5G, by exploiting (vii) capacity failure avoidance via

anticipatory allocation, and (viii) anomaly detection.

2.1 Target KPIs

To evaluate the performance of all the NI-assisted functionalities in the project, we introduce nine KPIs

accompanied by target values that we want to meet in controlled, but relevant, scenarios. Table 2 lists

the KPIs fixed by 5G-PPP [1] and additional technical KPIs originally proposed by the project, with their

respective targets. It also shows evidence supporting the feasibility of the targets and our progress
towards achieving those targets. As anticipated in Section 1, these targets and the evidence outlined in
Table 2 are to be intended as limited to (i) the scope of the 8 specific functionalities developed in the
project and (ii) the evaluation scenarios where such functionalities are deployed as part of our tests;
clearly, we cannot make claims on performance beyond what we actually assess.

More in detail: K3, K6, K8 and K9 are performance KPIs; K1, K2 and K4 are sustainability KPIs; K5 and K7
are reliability KPIs. The last column of Table 2 shows our progress achieving the assigned target for each
KPI: such a value is a qualitative indicator calculated, for each KPI, computed as the average of the
progress of all the experimental activities targeting that specific KPI. The detailed progress of the
individual activities that is informing such a global per-KPI progress will be presented later in Table 10.

Table 2. List of target KPIs: K1, K2, K4, K6 set the target relative to the current baseline; K3, K5, K7, K8, K9
define absolute targets that involve substantial improvements over today’s state-of-the-art technology.

KPI Description Target Evidence supporting the feasibility of the target

and improvement over the baseline

Average

overall

progress of the
assocated

activities

K1 VNF energy
consumption
reduction

50% According to recent assessments, energy consumption
in the edge and core of softwarized mobile networks
may increase as much as 25% due to the impact of
active cooling among other issues [2], [3]. Thus,
DAEMON aims at saving of up to 25% of energy costs
thanks to a NI-assisted VNF placement based on
energy considerations. Furthermore, additional 25%

savings will be allowed by NI-assisted VNFs that can
adapt their energy footprint to the context of the
location where they are running [4].

27%

K2 Saving of
computational
resources at the
edge

40% Current results of the DAEMON partners show that by
applying intelligent radio and CPU scheduling in O-RAN
architectures, one can reduce the requirement of the
computing resources required by virtualized base
stations by up to 20% with minimal impact on
performance [5], [6]. The improved NI design
developed by DAEMON shall advance those
techniques from multiple perspectives as outlined in

Objectives 1-3, hence making a 40% reduction target
viable in the scenarios considered here.

37%

K3 Response time
of AI-based NI

algorithms

1 ms By leveraging on recent advances on highly elastic
Artificial Intelligence (AI) models [7], DAEMON will build

NI algorithms capable of meeting the hard
requirements of delay- and reliability-sensitive traffic
through effective trade-offs with accuracy. To the best
of our knowledge, DAEMON will provide the first AI-
based NI with guarantees in terms of response time.

24%

K4 OPEX savings 60% Preliminary studies of the DAEMON consortium
demonstrate how AI models trained with customized
loss functions that reflect monetary costs can avoid

41%

Deliverable 5.1

 H2020 – 101017109

15

Service-Level Agreement (SLA) violations and reduce
Operation Expenditure (OPEX) by up to 40% [8]. While
these figures refer to local solutions, the structured
coordination of NI instances enabled by the DAEMON
architecture will allow targeting further cost savings of
up to 60%.

K5 Reliability Five
9’s

Current state-of-the-art solutions developed by the
DAEMON partners can satisfy SLA with a level of
reliability between three and four 9’s [9]. The

cooperative, multi-timescale NI orchestration model
envisaged in DAEMON will significantly improve the
amount and quality of information available to NI
algorithms, making it possible to target further gains in
the reliability of resource allocation decisions to, e.g.,
meet Ultra-Reliable Low-Latency Communication
(URLLC) requirements in certain conditions.

42%

K6 Wireless capacity
(bps/m2)
increase

100% NI-controlled intelligent surfaces that can adapt the
propagation properties of wireless channels to the
environment dynamics will allow DAEMON to, at least,
double the bit-rate per square meter in scenarios of
interest, in line with early results [10].

10%

K7 Anomaly
detection recall
and sensitivity

>0.85 Recent methods for network anomaly detection
achieve a precision-recall Area Under Curve (AUC) in
the 0.66-0.88 range [11] leaving substantial room for

improvement towards B5G systems. Having access to NI
coordination, as well as to novel tools for a tailored
design of AI, the NI-assisted anomaly detection
mechanisms designed by DAEMON will target a 0.9
precision-recall AUC with at least 85% scoring in both
precision and recall in scenarios of interest.

50%

K8 Vertical service
response time

O(sec) By taking advantage of in-network support, backhaul-
assisted computing as a service for third parties shall
contribute to reducing the response time of vertical
services from minutes in current production systems to
seconds with DAEMON NI-assisted functionalities.

30%

K9 Optimality gap of
network
management

decisions

1% Building on previous experience of the partners in
anticipatory networking over long time horizons [12],
DAEMON will ensure that decisions on network resource

and function allocation occurring at periodicities of
hours will perform very close (99%) to optimum oracles
in scenarios of interest where the optimum can be
defined. This will ensure that such decisions are precise
enough to assist constructively faster NI, which use such
longer timescale decisions (e.g. policies) as input.

35%

2.2 Evaluations

In order to assess the performance of the NI-assisted functionalities and demonstrate how they can
achieve the KPI targets set out above, we are performing seven dedicated evaluations, as follows.

• Evaluation 1 (E1) demonstrates real-time control and non-real time orchestration of virtualized
RAN (vRAN) services and resources. Experiments will have been carried out at sites T1 and T5 and
with emulator S2, and focus on evaluating mechanisms that maximize the sustainability of dense
vRAN deployments, minimizing their footprint and their operational and capital cost typically
associated with greenfield deployments. Associated functionalities: Compute-aware radio
scheduling.

• Evaluation 2 (E2) implements and demonstrates NI solutions that support network slice
management and orchestration operations. Experiments have been conducted at site T8 and
target the evaluation of the scalability, elasticity and stability of the NI-assisted automation and
orchestration approaches developed by the project. Associated functionalities: Energy-aware
VNF orchestration.

• Evaluation 3 (E3) validates tailored NI solutions for anomaly detection both in controlled
environments and in a production core network. Experiments have been carried out at site T8
using ground-truth information on resolved incidences in the real-world network infrastructure of
Telefonica, a major European operator. The NI-assisted anomaly detection designed within the
project is integrated in a big data platform where the Mobile Network Operator (MNO)
operations teams inject live telemetry data, allowing for real-time evaluations in realistic
scenarios. Associated functionalities: Automated anomaly response.

Deliverable 5.1

 H2020 – 101017109

16

• Evaluation 4 (E4) implements and deploy the NI-assisted solutions for service orchestration and
resource allocation algorithms in the Edge micro-domain. Experiments shall leverage site T4,
simulators S1 and S4 and datasets D1, D5, D6 and D9, validating the capabilities of the solutions
developed by the project to dynamically orchestrate, allocate and deploy radio and network
services. This setup is the ideal environment where to validate NI-driven tasks like, e.g., real-time
radio technology classification or traffic classification, in a real-world scenario characterized by
high-dimensional and very dynamic input data. Associated functionalities: Multi-timescale Edge
resource management.

• Evaluation 5 (E5) tests NI-assisted solutions for anomaly response in very large-scale settings. These
experiments take full advantage of datasets D7, D8, D11, D12, D13 and D14 in order to assess the
capability of the NI to (i) trigger alarms in the presence of network anomalies within the available
data, (ii) detect the root cause of such anomalies, and (iii) recommend network healing actions

that include anticipatory resource and VNF reallocations based on capacity forecasting.
Associated functionalities: Automated anomaly response, Capacity forecasting, In-backhaul
support for service intelligence.

• Evaluation 6 (E6) validates the NI solutions designed for long-timescale operations, i.e., MANO,
VNF orchestration and the associated allocation of resources. Experiments have built on dataset
D1, since the performance of such network functionalities is best evaluated in large-scale
scenarios. To this end, network load time series and other radio-cell-level and core network KPIs
are used to demonstrate NI-assisted network function and capacity orchestration in a
nationwide scenario. Associated functionalities: Self-learning MANO, Energy-aware VNF
placement, Capacity forecasting.

• Evaluation 7 (E7) targets the demonstration of NI to configure Reconfigurable Intelligent Surfaces
(RISs) in a controlled environment. Experiments will leverage site T9, where one transmitter will
send a flow of data to one receiver in non-line-of-sight. A large codebook, optimized through
NI, will be then tested to assess the passive beamforming gains of the reflective RISs. Associated
functionalities: RIS control.

We refer the reader to Table 1 for a complete view of the association between KPIs and evaluations, as
well as between evaluations and the tools they employ and the activities they entail. We clarify that, with
respect to the Description of Action (DoA), we decided to add an extra evaluation for RIS control, namely
E7. Our choice is motivated by the fact that during the implementation of RIS experimental platforms, we
found such technology to aim more at performance improvement than sustainability. Also, we moved
K6 from E1 to E7 accordingly.

Deliverable 5.1

 H2020 – 101017109

17

3 Technical tools
In this section, we present the technical tools that are employed for the performance evaluation of the

NI-assisted functionalities developed in the project. We tell apart three categories, i.e., (i) simulations and
emulators, (ii) experimental testbeds, and (iii) datasets. Tools in each category are detailed in separate
subsections in the remained of the section.

3.1 Experimental testbed sites

The project relies on 12 relevant platforms for the experimental evaluation of the proposed solutions.
Table 3 provides a list of these platforms, whose details are then expounded in the rest of the section. The
table also indicates what evaluations and KPIs rely on each testbed.

Table 3. Experimental sites available in the project, with related evaluations and KPIs.

ID Name Short description Related evaluation Related KPIs

T1
Virtualized radio
stack

This testbed will be used to demonstrate
compute-aware radio scheduling
solutions studied in T3.1

E1 K1, K2, K4, K5

T2 5Tonic
Large-scale facility for the testing of
orchestration solutions using a
commercial access network

E2 K1, K4, K5, K8, K9

T3
Multi-site 5G radio
testbed

Multi-site 5G Testbed, which spans
across two different sites in Barcelona
and Madrid (Spain), offers a novel and
unique framework for testing diverse
Multi-access Edge Computing (MEC)
applications

E3 K4, K5, K7, K8

T4 Smart highway
A real-life testbed for experimentation
with vehicular communications and

distributed edge computing

E4 K2, K5, K8

T5
SDR testbed with
power meter

Software Defined Radio (SDR) testbed
with a power meter to evaluate power
consumption in virtualized RANs

E4 K1, K4, K9

T6
Dockerized srsRAN
+ Open5GS

Fully virtualizable solution for the
creation of a 4G/5G network in a box,
using srsRAN

E1 K1, K2, K4, K5

T7

VNF deployment
and Edge
Infrastructure

Testbed comprised of Bullsequana

Edge nodes, which are for mobile
computation, and high-performance
commuters (Mellanox SN2100)

E1, E4 K1, K2, K3, K4

T8

Virtualized platform
OSM and open
stack

A set of servers on which an Open-
Source MANO (OSM) and Openstack
deployment is realized

E2, E3 K3, K7

T9
Reconfigurable

Intelligent Surfaces

A set of custom-made RIS prototypes
designed and built within DAEMON to

demonstrate RIS control solutions

E7 K6

T10
Eclipse Zenoh
testbed

The machines within this testbed will be
used to test Zenoh’s scalability, reliability
and performance under different
scenarios 10GbE are connected using a
ring topology.

E4 K2

T11

Network

capabilities, cloud
resource testbed

Openstack-based multi-cloud
infrastructure, consisting of 720+ CPU

cores, 1700GB+ RAM and 120+ TB
storage space, interconnected mostly
via 10Gbps fiber/copper links

E6 K2, K5, K9

T12

P4 programmable
tesbed for
in-backhaul NI

Three Intel Tofino programmable
switches deployed in a full 100-Gbps
testbed with two dedicated servers for
network emulation

E5 K3

3.1.1 Virtualised radio stack (T1)

Most of the results related to the evaluation E1 are performed on cloud-based deployment consisting of
vRAN network functions. This deployment relies on srsRAN (formerly srsLTE), an open source software
covering the lower protocols of the mobile network stack. More specifically, srsRAN provides the
functionality of the Physical (PHY) up to Radio Resource Control (RRC) layer for evolved Node-B (eNB) or
next Generation Node-B (gNB), while also supporting Fourth Generation (4G) or Fifth Generation (5G)
User Equipment (UE). It is written in C/C++, and its configuration parameters cover a wide range of the
base station and UE possible configurations. This software implementation runs, in a virtualized way, into

Deliverable 5.1

 H2020 – 101017109

18

several servers, which have been used in the different evaluation tasks. At the time of writing, the
virtualization infrastructure is composed by:

• 2 Supermicro SYS-E200-8D with Intel XEON processors and 16 GB of RAM each

• 1 Supermicro Superserver 6029U-TRT with:

o 2 x Intel Xeon Gold 6226R, 2.9GHz, 16 cores/32 threads

o 1x NVIDIA Tesla V100 32GB

o 1x Intel Field Programmable Gateway Array (FPGA) PAC N3000 Vista Creek.

srsRAN uses Radio Frequency (RFR) frontends based on Software Defined Radio to provide connectivity
between Ues and the base stations. srsRAN contributors have developed drivers for various commercial
hardware RFR-frontends like URSP, Soapy SDR and BladeRF. For this testbed, we have available a set of

10 USRP B210, which can be arranged to conform different topologies and provide variable load to the
infrastructure.

Additionally, some of the servers have hardware accelerators such as Graphical Processing Unit (GPU)
or FPGA, to study the effect on the computing infrastructure of these hardware elements. Through this
deployment we can measure, by probing the software implementation and the hardware infrastructure
K1, K2, K4, K5.

3.1.2 5Tonic (T2)

5Tonic is a laboratory for enhanced 5G experimentation. The 5TONIC site is currently located at IMDEA
Network premises in Leganés. This site provides a complete 4G and 5G network infrastructure, including
5G Non-Standalone (NSA) and Standalone (SA) support, in two different coverage areas. It is connected
with other European sites (in the context of different ICT-17 projects such as 5G-EVE or 5G VINNI) as well
as with Telefónica Spain Labs in Alcobendas, Madrid, and Telefónica I+D labs in Almagro Central Office,
also in Madrid.

The Network Function Virtualization (NFV) infrastructure in 5Tonic is operated through an Open Source
MANO orchestrator. Through 5Tonic, the Evaluation E2 can be performed, measuring the related KPIs K1,
K4, K5, K8, K9 accordingly, achieving hence a large-scale evaluation. IMDEA, TID, and UC3M are
members of the lab and can thus arrange evaluation activities leveraging the available infrastructure.
More details are also available [13].

3.1.3 Multi-site 5G radio testbed (T3)

The multi-site 5G TID Testbed, which spans across two different sites in Barcelona and Madrid (Spain),
offers a novel and unique framework for testing diverse MEC applications. In particular, its main goal

building an automation framework for testing diverse edge solutions, where edge encompasses the
portion of the mobile between the eNB and the CORD (Central Office Rearchitected as Data Center).
This is attained by means of integrating generic purpose server pools where controllers and VNFs such as
virtual core networks, virtual Baseband Unit (vBBU) are hosted in the form of a Virtual Machine (VM) or a
container with open source a proprietary RAN software and hardware equipment. To provide the
management and automation of the equipment, the Telefonica edge testbed leverages a set of open-
source software tools for fast prototyping, automation, and testing. As for the emulation of the CORD, TID
Testbed relies on four NFV servers physically located in Telefonica Datacenter premises, which form the
physical infrastructure for testing the diverse MEC/NFV applications under evaluation. The orchestration
of these NFV servers to host VNFs is based on Kubernetes container orchestration. A series of
reconfigurable multi-purpose network server elements (2 servers based on Intel Xeon ES-2697 2.6Ghz with
56 CPUs and 8 Gigabit Ethernet cards and 2 servers based on Intel Xeon ES-2680 2.5Ghz with 48 CPUs and
4 Gigabit Ethernet cards.

As for the RAN segment, the testbed also offers different potential units as gNBs/eNBs, based on SRS and
proprietary license-based (e.g., Amarisoft eNB and other eNB vendors). These 5G and 4G access
networks can leverage the aforementioned NFV server.

As for UE, the testbed includes as well as a proprietary UE simulator (based on Amarisoft software) that
allows the emulation of up to 128 Ues at the signal generation level, and real Ues based on the
commercial 4G and 5G Phones. In terms of core network functionalities, our facilities offer different
Evolved Packet Core (EPC) flavours, including open-source core flavours (e.g., open5GS) and proprietary
flavours (e.g., Affirmed Networks).

3.1.4 Smart highway (T4)

We are developing a Proof-of-concept (PoC) real-life testbed environments modelling an AI-enhanced
edge orchestration system. Figure 2, illustrates the PoC, which shall be employed for conducting realistic
experimentation with automated and intelligent edge orchestration of Vehicular-to-Everything (V2X)
services. The PoC leverages an existing Smart Highway testbed built along the E313 highway (Antwerp,
Belgium) [61]. To create an edge network, we provide the Network Function Virtualization Infrastructure

Deliverable 5.1

 H2020 – 101017109

19

(NFVI) by virtualizing computational resources in Road-side Units (RSUs) (RSU 3 and RSU 5), with the help
of Kubernetes. These computational resources are used for deploying V2X services, and for performing
their lifecycle management. The edge orchestrator is realized as an enhanced version of a Kubernetes
master, because i) it supports cross domain operations, i.e., edge-cloud and edge-edge interaction, and
ii) it is capable of training and using Machine Learning (ML) models for making intelligent decisions in an
automated way. In our PoC, both edge orchestrator and NFVI can be deployed on the bare metal, as
well as in Linux containers and virtual machines, which is a suitable practice for a shared experimentation
environment such as testbed.

Figure 2. PoC combining distributed testbed environments.

The Cloud orchestrator is running on the bare metal on top of the Virtual Wall testbed, located in Ghent,
Belgium (Figure 2). It is deployed as a web server (using Flask framework in python), which is capable of
i) processing decision-offloading requests coming from the edge orchestrators, ii) location data
processing and publishing on Zenoh, iii) injecting decisions on the north-bound interface of edge
orchestrators to instruct them to proactively migrate/relocate services from one edge to another, and
iv) receiving notifications from NIFs deployed on the cloud, which enhance their operations and help
them make efficient decisions on managing underlying resources and edge orchestrators.

As different types of data need to be collected to feed ML models (e.g., computational and network

resource utilization, energy consumption, KPIs measured at users’ side, and users’ locations), in this PoC
we deploy MEC value-added services, as per definition in ETSI MEC, which perform data retrieval and
pre-processing before publishing them on Zenoh. Given its minimal network overhead (as little as 5 Bytes),
and its small footprint (around 60 kBytes on Arduino board), Zenoh is adopted in our PoC as a framework
for data engineering pipeline. In particular, Zenoh provides a minimal set of primitives to deal with data
in motion (e.g., real-time stream of vehicles’ location/speed/destination), data at rest (e.g., historic data
for vehicles’ and edge nodes’ computational resource utilization and energy consumption) and remote
computations (e.g., on-demand calculation of the best route and speed limit). Each edge and cloud
orchestrator acts as a subscriber for various types of data that can be stored on edges, and used for
training or online learning/optimization.

Furthermore, concerning the vehicle as a client, our current includes one vehicle that is capable of
communicating with the edge services via long range 4G (to be extended with 5G in the future). Thus,
the client application is installed in the On-board Unit (OBU) of the vehicle, and it utilizes the Uu interface
between User Equipment (UE) and gNodeB to exchange Cooperative Intelligent Transportation System
(C-ITS) messages with services, and inform them about its location, speed, heading, and destination. The
testing service that we deploy on the edges for the purpose of testing and demonstrating the work of
PoC is the back-situation awareness V2X service, which addresses emergency situations on the road,
thereby proactively informing vehicles on the road about the arrival of an ambulance. This service is
containerized and designed in a cloud-native way, and thus orchestrated by the edge orchestrator.

3.1.5 Software-Defined Radio (SDR) testbed with power meter (T5)

This is a small testbed dedicated to collecting power consumption measurements on radio processing
software. More specifically, the testbed is comprised of a 3GPP R10-compliant Long-Term Evolution (LTE)
Base Station (BS), a UE, and a GPU server. The testbed is depicted in Figure 3.

Deliverable 5.1

 H2020 – 101017109

20

Figure 3. SDR testbed with power meter.

The BS and UE include an NI USRP B210 as Radio Unit (RU) and a general-purpose computer (Intel NUCs
with CPU i7-8559U@2.70GHz) deploying the near real time RAN Intelligent Controller (RIC) (for the BS) and
the baseband unit (BBU), implemented with the srsRAN suite (which emulates an O-eNB for
experimentation). The virtualized Base Station (vBS) and UE are connected through SubMiniature version
A (SMA) cables with 20 dB attenuators, and we adjust the transmission gain of the RU’s RFR chains to
attain different uplink Signal-to-Noise Ratio (SNR) values. The edge server is equipped with a CPU Intel i7-
8700K @ 3.70GHz and a GPU Nvidia GeForce RTX 2080 Ti. The vBS and server are connected using a switch
with Gigabit Ethernet technology.

To measure the power consumption of the BBU and the server, we use the digital power meter GW-Instek
GPM-8213 with the GW-Instek Measuring adapter GPM-001. The server supports AI services. As an
example, we have deployed Detectron2, developed by Facebook, which performs object recognition.
Specifically, Detectron2 is configured with a Faster Region-based Convolutional Neural Network (R-CNN)
comprising a ResNet backbone with conv4 layers and a conv5 head with a total of 101 layers. The UE
sends to server images from the COCO data set [14] through the LTE uplink. The images are resized at
the user side using the OpenCV library in Python. The bounding boxes and object classes are computed
by Detectron2 and sent back to the Ues (LTE downlink).

We introduced two key srsRAN modifications. First, we modified the radio Medium Access Control (MAC)
scheduler to implement different radio policies. Secondly, we integrated the O-RAN E2 interface to
enforce such radio control policies on-the-fly and send consumed power consumption samples to the
corresponding xApp. For the latter, we have added code into srsRAN to collect this information from the
power meter. We have also implemented a PoC Near Real-Time (Near-RT) and Non Real-Time (Non-RT)
RIC. We also have an interface to configure the GPU speed on-the-fly by using the Nvidia driver that
allows us to set the maximum power management limit, ranging between 100 and 280W. This runtime
configuration does not affect the GPU operation. Note that the actual GPU consumed power depends
on its duty cycle.

3.1.6 Cloud-native mobile network emulators (T6)

As discussed in Section 3.1.1, srsRAN works with real radio frontends based on SDRs. Additionally, srsRAN
have developed a software RFR-frontend based on ZeroM, an open source message queueing library
written in C. When using this driver, the transmitted I/Q baseband symbols between UE and base station
are transferred over various transport methods, like Inter-Process Communication (IPC) or Transmission
Control Protocol (TCP) sockets. Choosing this driver avoids the need for high expertise in RFR channel

configuration and facilitates the introduction of researchers who want to simulate a radio access network
environment, but whose RFR channel is not their main area of interest or would be reluctant to invest in
actual hardware transceivers.

Open5Gs, instead, is a very popular open source implementation of a mobile network core. Written in C,
it stands as a reference among researchers and mobile telecommunications practitioners for
experimentation and future enhancements. Currently supporting up to 3GPP 5G Release 16, it contains
the most important components of the 5G Core and 4G EPC with Control-User Plane Separation (CUPS),
meaning it can operate on both 5G NSA and SA modes, as it can serve both 4G eNBs and 5G gNBs. Its
straight-forward build procedure makes its deployment in small-scale private networks very easy, while
its modular architecture attracts its adoption into microservices-based cloud-native environment, that
fits well with solutions such as Kubernetes.

Deliverable 5.1

 H2020 – 101017109

21

3.1.7 VNF deployment and Edge Infrastructure (T7)

From the University of Málaga, we have at disposal the infrastructure of the I software institute that
includes equipment for VNF deployment and edge infrastructure. Concerning the VNF deployment
equipment, we have at disposal a dell Server with one 338-BSDH Intel Xeon Silver 4210, 2.2 GHz, ten cores,
20 subprocesses, 9.6 GT/s, a cache of 13.75 MB, Turbo, HT (85 W) DDR4 2400 MHz, two servers with 338-
BTWN Intel Xeon Gold 5220S, 2.7 GHz, 18 cores/36 subprocesses, 10.4 GT/s, a cache of 24.75 MB, Turbo,
HT (125 W), DDR4-2666. This equipment works with a 5G radio system with a Nokia AirScale System Module
Indoor base band Unit, a Nokia Micro RRH 474147A and a Nokia Micro RRH 5GC001274. The edge
infrastructure comprises seven nodes for Fog infrastructure with two CPU G62230R with 26 cores, 512 GB
RAM and 2 GPUS Tesla V100s and 2 Bullsequana Edge Nodes from ATOS that are portable. The
Bullsequana Edge nodes are for mobile computation and all the components are connected using high-
performance commuters (Mellanox SN2100).

3.1.8 Virtualized platform, OSM and open stack (T8)

The testbed includes 3 servers and a total of 12 mini PCs as illustrated in Figure 4. In the main server, the
OSM is deployed, while a set of capabilities including: a) AI enhanced MANO, b) Anomaly detection; c)
Root Cause Analysis (RCA) and d) Performance diagnosis are also deployed as docker containers.
Opendstack is deployed on top of the three other servers and the mini PCs. In detail, one server acts as
the OpenStack Control, while the rest of the servers act as Openstack Compute nodes. The mini PCs
have also Openstack capabilities. In the testbed a set of Services can be deployed in the GPU server
which has the higher specifications: 64vCPUs, 128GB RAM, 2TB SSD.

Figure 4. WINGS testbed with OSM and open stack.

In the testbed, NI functionalities can be developed and evaluated under different vertical scenarios, also

the testbed allows collecting various metrics that include metrics from OSM/Openstack, the network, the

application, and the functionalities for diagnostic, RCA and anomaly detection.

3.1.9 Reconfigurable Intelligent Surfaces (T9)

We have initiated the design of a RIS based on delay lines and RFR switches. The main purpose of our RIS
design is to realize passive beamforming [15]: to reflect incoming waves impinging onto the surface with
an arbitrary angle of departure defined by a controller with the goal of (i) (re-)focusing energy into the
desired direction, and (ii) in the least energy-consuming manner. Consequently, no signal processing nor
power amplification are permitted, and low-power electronic components must be carefully selected.

The basic element is a board made of a grid of cell units distributed in a 2D array with the ability to
enforce phase shifts over impinging signals programmatically. By configuring an appropriate phase shift
on each cell unit, we can attain beamforming gains passively, without resorting to power amplifiers or

signal processors. This is shown in Figure 5.

Phase shifts are configured by a Micro-Controller Unit (MCU). The MCU is the only active electronic
component in our design; hence, it is important to select a low-consuming microcontroller that is friendly
to energy harvesting or other low-power sources. The MCU communicates with an external controller
with a standard UART interface, a simple and low-power serial protocol. The MCU is not connected
directly to each unit cell, which would not be feasible boards with a large number of unit cells. A more
scalable approach is to connect each cell unit in the same row and column with a pair of buses, which
we call “row/column selection bus”, which select the cell unit to be configured. Then, another bus, the

“phase configuration bus”, communicates the desired configuration index (phase shift) out of a set of
possible configurations for that selected unit cell. In this way, in an 𝑁𝑥 × 𝑁𝑦 board, we reduce the

complexity of the design from 𝑁𝑦 × 𝑁𝑥 to 𝑁𝑦 + 𝑁𝑥 connections.

Deliverable 5.1

 H2020 – 101017109

22

Figure 5. RIS general overview.

Figure 6. RIS unit cell.

As depicted in Figure 6, each cell unit is connected to both column/row selection buses through an AND
gate. Hence, when the MCU sets a high voltage state in row x and column y, the MCU activates the
configuration bus for cell unit (x,y) whereas all the remaining gates will output a low voltage state (0V),
which de-selects them. A second relevant component in the design of our cell unit is a flip-flop D, which
has the ability to store 1 bit as long as it is powered. When a flip-flop senses a rising edge, it updates the
value in memory and then sends it out as output. To this end, the high state exiting the AND gate works
as a rising edge for the flip-flop.

We designed our RIS with a 3-bit resolution in the phase shift configuration space. Therefore, each cell
unit integrates three flip-flops, and we use three 1-bit phase configuration buses as shown in Figure 6. The
third important component in each unit is an RFR switch, which can redirect the RFR signal received in
an input port towards one output port selected by the configuration ports. This is also shown in Figure 6.
Each configuration port is directly connected to one configuration bus, as shown in the figure. Moreover,
each output port is connected to an open-ended transmission line, each with a (different) length
calculated to provide a specific time delay on the bouncing signal, and hence provide a desired phase
shift. We reserve one configuration output to connect a resistor matching the characteristic impedance

of line and the switch, which dissipates the incoming signal and prevents the signal to be irradiated back.
We call this configuration “absorption state” and enables us to change the size of the surface area that
can reflect signals and hence lets us virtually change the size of the RIS, which is useful for a number of
use cases. The last component of the unit is a patch antenna, a particularly cheap antenna with low
gain that is the ultimate responsible of interacting with electromagnetic waves.

Our approach is modular: multiple boards can be connected through a common UART bus, and each
of them can be singularly addressed by the external controller using different identifiers. The disposition
of the unit cells across cells within and across boards have been carefully designed to have a separation
of λ/2, where λ is the wavelength of the operating frequency. This provides us an ideal approach to
increase/decrease the physical area of our structure without compromise inter-antenna distance.

The next steps of the testbed development will be (i) designing and printing each component described
above in PCB (Printed Circuit Board), and (ii) empirically characterizing the resulting device. This has
several advantages such as low cost, fast production time, and suitability for large-scale implementation.

3.1.10 Eclipse Zenoh testbed (T10)

The Eclipse Zenoh testbed is composed by four servers, interconnected via 100 GbE fiber links as illustrated
in Figure 7. In each server a variable number of Zenoh routers, peers and Zenoh Flow runtimes is deployed
based on the different experiment.

In the testbed, Zenoh’s scalability, reliability and performance metrics are evaluated under different

scenarios, such as different topologies and payloads, leveraging on virtualization of both computing and

networking fabric. The same testbed is also used to evaluate Zenoh-Flow capability to run NI algorithms

and to leverage on heterogeneous computing devices such as CPUs and GPUs.

Different metrics are collected in the testbed including: (i) Zenoh latency and throughput metrics; (ii)

Zenoh scalability metrics; (iii) Zenoh footprint metrics; (iv) Zenoh Flow latency metrics; and, (v) Zenoh Flow

footprint metrics.

Deliverable 5.1

 H2020 – 101017109

23

Figure 7. ADLINK’s testbed with Eclipse Zenoh installed.

3.1.11 Network capabilities and cloud resources testbed (T11)

OTE will develop in the project a cloud testbed for hosting of a subset of the VNFs, which will be
developed in DAEMON project. The testbed includes an Openstack-based multi-cloud infrastructure. In
the current setup Openstack Queens 23oolean is available on Ubuntu Server 16.04/18.04 LTS. The testbed
collectively consists of >720 CPU cores, >1700GB RAM and >120TB storage space, and is interconnected
(mostly) via 10Gbps fiber/copper links. Compute and storage resources can be made available for
hosting relevant services. The setup can be split into one or more cloud slices (controllers/ compute
nodes/ hypervisors) of various sizes, either in bare metal or virtualized form, in order to allow high degrees
of freedom for customized configurations to meet projects’ needs. Moreover, a set of small cells are also
available. The next figure presents a conceptual view of OTE’s topology for the testbed which will be
used in the DAEMON project. OTE will also provide the necessary networking capabilities (e.g., VPN
access, certificates, etc.) for access provision to the involved partners. Figure 8 summarizes the testbed.

Figure 8. Topology of OTE’s cloud testbed.

3.1.12 P4 programmable testbed for in-backhaul NI (T12)

As part of the DAEMON activities, we developed a cutting-edge testbed to perform experimental

research on in-backhaul NI. The main purpose of the testbed is to evaluate the performance of machine
learning algorithms that run at line-rate in the user plane by means of implementation on real
programmable switches. The first use case that we already started to work on (but not the only one that
we planned) is the detection of malicious traffic to provide very fast response to anomalies. For such use
case, the target KPI is K3 and the evaluation that we perform is E5.

The testbed is composed of two servers and three P4 programmable switches equipped with Tofino
application-specific integrated circuits (ASIC). The hardware is installed on a rack and connected to the
Internet via a non-programmable Top of Rack (ToR) switch. In the current setup, the ToR switch is
connected to both servers on a dedicated subnet that we use to access the servers remotely and to
provide Internet connection. The three programmable switches are connected to both servers and to
each other in an isolated and fully-connected subnet that is used only for experiments. We run virtual
hosts, via either Docker containers or virtual machines, on both servers. Communicating to each other,

Deliverable 5.1

 H2020 – 101017109

24

the virtual hosts generate traffic that passes through the switches and that we monitor and classify
directly into the user plane. The control plane is implemented in one of the two servers, which is
responsible of the switches’ configuration and operation, of the injection of P4 compiled code and of
the runtime control of the switches.

Figure 9. Picture of the P4 programmable testbed hardware installed on the rack.

The relevant hardware components of the testbed are shown in Figure 9 and are detailed as follows:

• 2x DELL PowerEdge R7515, 2RU equipped with: CPU AMD EPYC 7402p, 2.8 GHz, 24 cores, 128M

cache; RAM RDIMM 128 GB, SSD 480 GB; 2x Mellanox ConnectX-5 dual port, QSFP28 (40/100 GB);

• 3x Edge-core Wedge 100BF-32QS, 1RU equipped with: Intel Tofino BFN-T10-032Q; Quad-pipe

programmable packet processing pipeline for 6.4 Tbps total bandwidth; 32x ports QSFP28

(40/100 GB); CPU Intel x86 Xeon D-1548, 8 cores; SSD 2 TB.

With regards to software, we rely on open-source operating systems for all the hardware. We installed
Ubuntu Server on both servers. Each switch is equipped with the full software stack to enable a full-
fledged SDN platform: Open Networking Linux (ONL) as OS, and Stratum as a thin OS for remote
configuration and control.

3.2 Simulators and emulators

The project counts with 4 simulation or emulation platforms, which are summarized in Table 4, and are
fully detailed in the following. The table also indicates which evaluations and KPIs rely on each simulator.

Table 4. Simulators and emulators available in the project, with related evaluations and KPIs.

ID Name Short descritpion Related evaluation Related KPIs

S1 Edge/Cloud simulator
Used for resource management
performance evaluation

E4 K4

S2 P4 programmable RAN
Include disaggregated RANs, P4 bmv2
switch and NBL CN

E1 K8

S3 System level simulator
Advanced component validation and
optimization

E3 K7

S4 EnergyEdgeCloudSim
Extension of EdgeCloudSim environment
that considers energy consumption

E4 K1, K2, K3, K4

3.2.1 Edge/Cloud simulator (S1)

This Edge/Cloud simulator, named DynamicSim, is based on Sim-Diasca (Simulation of Discrete Systems
of All Scales) [16]. Sim-Diasca is a general-purpose, parallel, and distributed discrete-time simulation
engine written in Erlang language. Sim-Diasca allows the simulation of complex systems focusing on
scalability, in order to handle simulation cases that may be very large (potentially involving millions of
interacting instances of models), while still preserving essential simulation properties, like causality, total
reproducibility and some form of ergodicity. Figure 10 shows the Sim-Diasca modular architecture. Its
internal modules are in charge of synchronizing time between the actors, evolving the system state,
sending and receiving messages to and from the controller, and managing the results.

Deliverable 5.1

 H2020 – 101017109

25

Figure 10. Sim-Diasca Architecture.

Sim-Diasca is based on the actor model; therefore, every single concept to be simulated is called an
actor. Actors communicate with each other through messages. In response, actors can make decisions,
create more actors, send messages to other actors, set how to respond to next messages. By using the
actor model, different use-case simulations can be created. In a simulation case, the duration of a time
step is user-defined. Within a time step, the actors simulate its functionality representing the work done in
such a duration. After each actor finishes its simulated work, the time manager increases the time step
by one, and the simulation goes to the next tick. At the beginning of the simulation, an initial set of actors
are generated based on the defined simulation case.

In our case, we created a layer on top of Sim-Diasca, called DynamicSim, in which we define an actor
model for Virtual Network Functions (VNFs), servers, load balancers, traffic generators and monitor
modules. Specifically, traffic generators and monitor modules act as an interface between the actors in
DynamicSim and high-level functions defined in other programming languages. Finally, several user-
defined simulation cases can be designed in a higher layer. Thanks to Sim-Diasca generality, end-to-end
metrics can be defined per use-case simulations. For example, using DynamicSim we can obtain low
level metrics such as the number of active VNFs, the CPU consumption of each VNF, and the peak
latency of the processed traffic and high-level metrics such as Service Level Objective (latency)
violations.

3.2.2 P4 programmable RAN (S2)

The P4 programmable RAN is an emulation platform that can be used to execute common user
applications (e.g., YouTube, web browsing, file transfer, etc.) over real protocol stacks and standardized
procedures. Specifically, it is built on top of several key components to formulate an end-to-end network
spanning the disaggregated radio access, transport, and core networks: (1) OpenAirInterface (OAI) [17],
(2) P4-based switch [18], and (3) Nokia Bell Labs core network. Furthermore, to serve multiple Ues and
execute UE-specific applications, we use the OAI-based UE modem interconnected with the OAI-based
DU to demodulate/decode traffic and forward per-UE traffic to the corresponding virtual machines
(VMs). Figure 11 shows all of the component: Server 1 hosts RAN, Transport Network (TN), and Core
Network (CN) entities, Server 0 hosts the UE dashboard and message adaptor, and the remaining servers
are used to host all Ues. Note that each UE is placed as an individual VM, and thus they are isolated from
each other.

To provide more insight into the platform, the L2-sim mode is used between OAI-DU and OAI-UE, in which
their MAC layers are connected directly using the nFAPI interface, and their physical layer processing is
omitted for simplicity. Nevertheless, to emulate the physical layer behaviors, two additional schemes are
added: (1) Time-varying channel quality model and (2) a transport block retransmission model. The
former aims to provide configurable CQI patterns/distributions for each UE (e.g., fixed pattern, uniform

random distribution, or Markov chain), whereas the latter applies the ARQ scheme (i.e., no redundancy
version) to retransmit uncoded MAC SDUs using three parameters (i.e., first transmission
acknowledgement probability, retransmission acknowledgment probability, and maximum
retransmission count) following the standardized retransmission timing for all HARQ processes. Therefore,
in our current setup, up to 32 Ues can be managed by the UE dashboard server and different user
applications (cf. Section 4.1.3) in the app repository can be independently executed within each VM.

Finally, the P4-Programmable RAN emulation platform is used to evaluate the related KPIs for application-
aware radio scheduling. The message adaptor at Server 0 can capture real-time user-plane information
feedback from the system (at the granularity of each radio bearer) and provide the required dataset to
facilitate the design of the corresponding algorithms.

Deliverable 5.1

 H2020 – 101017109

26

Figure 11. P4-PRAN emulation platform.

3.2.3 System-level simulator (S3)

The system-level simulation platform for 5G is a Discrete Event Simulation (DES) environment for the
simulation of heterogeneous networks. Also, the platform is extended with new features to support the
new functionalities of 5G. The main modules supported are macro cells, small cells and Ues nodes. Based
on the DES approach, created events are the basic signaling events, mobility events, application layer
events, and also system level events that enable the collection of measurements and the control of
auxiliary artifacts (graphics, controls etc.). The tool has the potential of simulating various scenarios under
different assumptions/ conditions. Through the flexibility of available modules, it is possible to customize
various parameters. As such, the simulator involves a series of input parameters such as customizing the
size of the simulation area; the area type (e.g., dense urban scenarios, etc.); the number and position of
3-sectorized macro base stations and their inter-site distances (ISDs); the number and position of small
cells per macro base station; the number and position of end-user devices; the mobility of the end-user

devices etc. that are used for various testing simulations and components.

The system-level simulation platform considers aspects related to configuration, environment models,
network (simulated system) models, analytics, event management. All these are managed via a user-
friendly graphical user interface (GUI), as depicted in Figure 12, and are presented next.

Figure 12. System level simulator.

Environment models and configuration: An important aspect of system-level simulations is to specify the
simulated system, designate the environments and select analytics. Environment concerns aspects
related to traffic (e.g. proper modeling of eMBB, mMTC etc., anticipated load, mobility and radio
conditions (e.g. propagation models). This is triggered by the fact that project use cases deal with
megacities and underserved areas and as a result, different traffic characteristics apply depending on
the use case. Such aspects will be properly documented for the considered use cases in order to consider
them in the simulations later on.

Deliverable 5.1

 H2020 – 101017109

27

Network (Simulated System) models: System aspects include considerations relevant to network
deployment (e.g. small cells and macro cells for use cases in underserved and megacities). Also,
spectrum aspects are considered for utilization of bands below 6GHz and to be expanded in mm-wave
as well. Abstraction of PHY/MAC is taken into account. Radio Resource management (RRM) algorithms
are also considered.

Analytics: The simulation results will be evaluated against the KPI targets (e.g. in terms of throughput,
latency). The results are analyzed and visualized.

Event Management: An event may be distinguished by time, location, type (e.g., session set up, call
request, packet transmission), services, devices, users and supplementary info. Details on event
management are provided later on in this paper.

Graphical User Interface (GUI): A user-friendly GUI is essential for easy handling of simulations and
demonstrations. The GUI consists of intuitive tabs, text boxes and input fields in order to create an easy-

to-use environment for data input as well as extraction of results by visualizing results in graphs and charts.

Overall, the simulator allows supporting ambitious use cases: for instance, use case families in NGMN that
include broadband access in dense areas and everywhere (eMBB), massive Internet of Things and
machine-type communications (mMTC) as well as ultra-reliable communications (URLLC). For the
needed representation/ modeling of such aspects, environment models shall take into account area
aspects, traffic, mobility and propagation models based on the classification. These features are also
captured in Figure 12.

3.2.4 EnergyEdgeCloudSim (S4)

EnergyEdgeCloudSim is an extension of the tool EdgeCloudSim [19] for energy consumption

measurements. The original tool, EdgeCloudSim, is a simulation environment specific to Edge Computing

scenarios where it is possible to conduct experiments that consider both computational and networking

resources. Our extension extends the nodes’ information with parameters related to energy consumption.

EnergyEdgeCloudSim considers both dynamic and idle energy consumption. The dynamic energy

consumption model distinguishes between computational and communication energy consumption.

The expression to estimate the computational energy consumption includes CPU usage storage, and

RAM, being the CPU usage the most influential factor [20]. The following is a list of the equations that

support our energy consumption model (in Joules) for a task 𝑖 which is running in a node 𝑛 associated to

computation (𝑒𝐶𝑜𝑚𝑝𝑛,𝑖), data sending and receiving (𝑒𝑆𝑒𝑛𝑑𝑑𝑎𝑡𝑎𝑈𝑝𝑖,𝑛 and 𝑒𝑅𝑐𝑝𝑡𝑑𝑎𝑡𝑎𝐷𝑜𝑤𝑛𝑖,𝑛), and the energy

consumption for idle or sleeping nodes (𝑒𝐼𝑑𝑙𝑒𝑛 and 𝑒𝑆𝑙𝑒𝑒𝑝𝑛):

𝑒𝐶𝑜𝑚𝑝𝑛,𝑖 = (1 − 𝛼𝑛)𝑒𝑀𝑎𝑥𝑛𝑣𝑖

𝑤𝑖

𝐶𝑃𝑈𝑛
𝑒𝑤𝑛 + 𝑒𝐷𝑒𝑝𝑙𝑜𝑦𝑛

𝑒𝐼𝑑𝑙𝑒𝑛 = 𝛼𝑛𝑒𝑀𝑎𝑥𝑛𝑡𝑒𝑤𝑛

𝑒𝑆𝑙𝑒𝑒𝑝𝑛 = 𝛽𝑛𝑒𝑀𝑎𝑥𝑛𝑡𝑒𝑤𝑛

𝑒𝑆𝑒𝑛𝑑𝑑𝑎𝑡𝑎𝑈𝑝𝑖,𝑛 = 𝑃𝑛
𝑇𝑥

𝑑𝑎𝑡𝑎𝑈𝑝𝑖

𝑅𝑛
𝑇𝑥 𝑒𝑤𝑛

𝑒𝑅𝑐𝑝𝑡𝑑𝑎𝑡𝑎𝐷𝑜𝑤𝑛𝑖,𝑛 = 𝑃𝑛
𝑅𝑥

𝑑𝑎𝑡𝑎𝐷𝑜𝑤𝑛𝑖

𝑅𝑛
𝑅𝑥 𝑒𝑤𝑛

Concerning the equation for 𝑒𝐶𝑜𝑚𝑝𝑛,𝑖, 𝑒𝑀𝑎𝑥𝑛 is the energy consumption for a fully-utilized server in terms

of CPU; 𝑣𝑖 the CPU utilisation ratio (0-1) for the task 𝑖; 𝑤𝑖 the CPU cycles required to compute task 𝑖; 𝛼𝑛 is

a value between 0 and 1 that represents the fraction of the idle energy consumption for the node 𝑛; and

𝑒𝐷𝑒𝑝𝑙𝑜𝑦𝑛 is the (fixed) amount of energy required by node 𝑛 to create a container. The equations for

𝑒𝐼𝑑𝑙𝑒𝑛 and 𝑒𝑆𝑙𝑒𝑒𝑝𝑛 considers additional factors like the time 𝑡 in seconds and 𝛽𝑛 which is the fraction of

the sleep energy consumption. Expressions to measure energy consumption for communication consider

the transmission power (𝑃𝑛
𝑇𝑥 and 𝑃𝑛

𝑅𝑥) and the transmission rates (𝑅𝑛
𝑇𝑥 and 𝑅𝑛

𝑅𝑥). Finally, 𝑒𝑤𝑛 (energy

weight), presented in all the expressions, allows to select the importance of saving energy in each device

separately. Thus, if you intend to reduce energy consumption in battery-powered devices, simply set that

variable to 1 for these devices and 0 for the rest of the nodes.

These models have supported the development of an approach for orchestration and auto-scaling that
minimizes energy consumption (see Figure 13). The system serves the users’ requests, who demand the
functionality offered by a series of applications contained in a repository (e.g., DockerHub). An
orchestrator manages the edge nodes (e.g., Kubernetes 1) that automates the deployment,

management, scaling, interconnection and availability of applications. The master nodes (there may be
more than one) are responsible for orchestrating the workloads between the associated devices (worker

1 https://kubernetes.io/es/docs/home/.

https://kubernetes.io/es/docs/home/

Deliverable 5.1

 H2020 – 101017109

28

nodes)–master nodes can also be worker nodes simultaneously. Once demanded, the orchestrator
assigns an application to an edge node, which executes it packaged in a container (e.g., Docker). The
scheduler decides which worker node will run that container. We modify this scheduler to assign tasks to
the most energy-efficient nodes to minimise energy consumption. Periodically, the master node (or one
of them) requests the Essential Node Identifier module, which starts the proactive horizontal auto-scaling.
This module receives the expected workload (number of requests) and the current state of the
infrastructure, and, using this information, it determines the demand of nodes in the next time interval
(defined by the infrastructure administrator). This module also has access to the applications’ data
contained in the repository. The auto-scaling process can run on a node in the infrastructure or an
external node (even in the cloud). Once the master node receives the information on the nodes to be
kept active, it is responsible for putting those not considered essential on sleep mode. In practice, nodes
are put on sleep mode through SSH commands and wake up again using Wake on LAN/WLAN.

Figure 13. Orchestration and auto-scaling in EnergyEdgeCloudSim.

Currently, we are performing experiments to measure the amount of energy saved through our proposal
comparing different orchestration policies. In addition, we are working on the issue of the number of
failed requests as the reduction in the number of available nodes can lead to a lack of available
resources. We are analysing the impact of more or less resource preservatives policies in this direction.
Finally, we are studying the scalability of our approach concerning the problem size. With this goal, we
are developing a benchmark version of the Essential Node Identifier module that can work with random
VNF’s requirements to increase the number of expected NFVs and the number of nodes.

In the context of DAEMON, EnergyEdgeCloudSim is part of our approach to validating NI for Edge
Orchestration (E4). Our goal is to demonstrate improvement in the following KPIs: K1-VNF for energy
consumption reduction, K2-saving of computational resources at the edge, K3-response time of AI-based

NI algorithms and K4-operating expense saving. We plan to collect SM1, SM3, TM2, TM4 and TM5. We
have already collected SM1 (throughput) and SM3 (energy consumption).

3.3 Datasets

The evaluations carried out in the project build upon 14 datasets to date. Table 5 provides a list of these
datasets, whose details are then expounded in the rest of the section. The table also indicates what
evaluations and KPIs are associateds to each dataset.

Table 5. Measurement datasets available in the project, with related evaluations and KPIs.

ID Name
Dataset

availability
Source Data velocity

Data

volume

Related

evaluation

Related

KPIs

D1
MNO radio
performance

Private Real

Depending on

the specific
data feed (e.g.,

hourly, per 15
min, real-time)

Order of TB
per day

E5
K5, K7,
K8, K9

D2
End-user
performance

Private Real
Depending on

the type of data

Depending
on the type

of data
E6

K2, K4,
K5, K6,
K9

D3
Service-level
traffic demand

Private Real
1 sample per

minute
Order of TB E1

K2, K4,
K9

D4

vRAN
performance

and power
consumption

Open source

(Link)
Real

1 sample every

20 seconds
12.2 MB E4

K1, K2,

K3

Nodes to
maintain

active

Nodes’
status

Expected
workload

Essential Node Identifier

Energy consumption

Application’s requirements

Considering...

EnergyEdgeCloudSim
Activation and
deactivation of

nodes

Energy
consumption
measurement

Energy-aware
Orchestrator

Workload
(requests)

Workload
Predictor
Workload
Predictor

https://github.com/jaayala/power_dlul_dataset

Deliverable 5.1

 H2020 – 101017109

29

D5 Edge Dataset
Open source
(Link)

Real
1 Sample per

minute
2.8 MB E4 K2

D6

Wireless

interactions in
multiple BSS
using Channel
Bonding

Open source
(Link)

Synthetic
3 sample per

minute
20 KB per

deployment
E4 K5, K8

D7

Intrusion
Detection
Evaluation
Dataset

Open source
(Link)

Real Variable2 8.3 GB E5 K3

D8
IPX Signaling
Dataset for IoT

Private Real
Signaling

dialogues arrive
every 5min

Order of GB
per day

E5
K5, K7,
K8, K9

D9
YouTube file
requests

Open source
(Link)

Real
1 sample every

5 minutes
Order of MB

per day
E4 K3, K4

D10
GEC case
study

Open
Source (link)

Real
1 sample every

second
14,3 MB E2 K1

D11
IoT devices
dataset

Open source
(link)

Real Variable2 12.7 GB E5 K3

D12

Applications

and protocols
dataset

Open source
(link)

Real Variable2 581 MB E5 K3

D13

Malicious

attacks
dataset

Open source
(link)

Real Variable2 22.6 MB E5 K3

D14

Malicious

packets
dataset

Open source
(link)

Real Variable2 10 GB E5 K3

3.3.1 MNO radio performance (D1)

We collect dataset D1 from an operational mobile network in the UK. The cellular network we study
supports 2G, 3G, 4G and 5G mobile communication technologies. In Figure 1, we illustrate a high-level
schema of the MNO architecture. Such a network Can be simplified to consist of three main domains: (i)

the Cellular device (in our case, the smartphone used as primary device by end-users), (ii) the RAN and
(iii) the Core Network (CN).

Figure 14. High-level architecture of the measurement infrastructure integrated in the cellular network.

2 The dataset is composed of .pcap files with packet traces that have a high variability of time of arrival.

https://github.com/apgalano/Edge-Dataset
https://zenodo.org/record/4106127#.YNBwAJMzZB0
https://www.unb.ca/cic/datasets/ids-2017.html
https://traces.cs.umass.edu/index.php/Network/Network
https://doi.org/10.5281/zenodo.6251045
https://iotanalytics.unsw.edu.au/iottraces.html
http://netweb.ing.unibs.it/~ntw/tools/traces/
https://www.unb.ca/cic/datasets/nsl.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset

Deliverable 5.1

 H2020 – 101017109

30

Our passive measurement approach relies on commercial solutions the MNO integrates within its
infrastructure. The red pins in Figure 14 mark the network elements that we monitor, namely the Mobility
Management Entity (MME), the Message Sequence Chart (MSC), the Serving GPRS Support Node
(SGSN)/Serving Gateway (SGW), and the Cell Sites. We collect control plane information for both voice
and data traffic from the total population of devices connected to the MNO’s radio network, as well as
KPIs of cell sites. From this measurement infrastructure, we capture various data feeds, described next.
These feeds are aggregated at postcode level or larger granularity.

General Signaling Data. We capture the activity of the users in the control plane for the different Radio
Access Technologies (RATs) supported By the cellular provider. The data includes control plane signalling
messages related to events triggered by the MNO’s subscribers, including Attach, Authentication, Session
establishment, Dedicated bearer establishment and deletion, Tracking Area Update (TAU), ECM-IDLE
mode transition, Service request, Handover and Detach. Each event we capture carries the anonymized

user ID, Subscriber Identity Module (SIM) Mobile Country Code (MCC) and Mobile Network Code (MNC),
Type Allocation Code (TAC) (the first 8. Digits of the device IMEI, which are statically allocated to device
vendors), the radio sector handling the communication, timestamp, and event result (success or failure).

Devices Catalog. Using a commercial database provided by Global System for Mobile communications
(GSM) Association (GSMA), we map the device TAC to a set of properties such as device manufacturer,
brand and model name, operating system, radio bands supported, etc. With this information, we are
able to distinguish between smartphones (likely used as primary devices by the mobile users) and
Machine-to-Machine (M2M) devices. Radio Network Topology. To account for potential structural
changes in the radio access network (e.g., new site deployments), we rely on a daily snapshot of the
network topology. This includes metadata (location and configuration) and the status (active/inactive)
of each cell tower.

Radio Network Performance. This dataset includes various hourly KPIs, including average cell throughout,
average user throughput, average percentage of resources occupied, average number of users, total
volume of data traffic uplink/downlink and total volume of conversational voice traffic.

Mobility Metrics. Using the signalling dataset described above, we can associate each (anonymized)
user to a radio tower throughout the time they are connected to the MNO’s network. Based on the radio
network topology, we further attach to each radio tower its geographic location (postal code and
approximate coordinates). With this, we then generate aggregated mobility statistics over six disjoint 4-
hour bins of the day, for roughly 22 million native users aggregated at postcode level. We then compute
two mobility metrics: entropy and radius of gyration. The combination of these metrics gives a wide view
of changes in mobility: while entropy measures the repeatability of movements, radius of gyration is an
indication of the distance travelled.

3.3.2 End-user performance (D2)

OTE is collecting large-scale datasets in order to provide input for the DAEMON automated anomaly
response-related algorithms. The measurement data is aggregated over geographical areas (e.g., from
antenna sector to urban statistical zones), temporal intervals, or flows generated by a significant number
of users, depending on which aggregation preserves data utility for the subsequent analysis carried out
by the project partners. The process of collection and aggregation occurs at the MNO premises. The
DAEMON activities only concern data analysis, and the partners will only access the aggregated data,
which does not contain personal information nor data with the potential to identify individuals. An
indicative set of data to be collected includes: (1) Up/down link volume; (2) Up/down link duration; (3)
Voice duration; (4) Number of connections; (5) Pedestrian / vehicular minutes of use; (6) Connection
drops; (7) Handover-related information; (8) Traffic volumes (in bytes), aggregated per minute, for each
antenna sector, ideally over multiple cities; (9) Traffic volumes disaggregated across service categories
(e.g., video streaming, social media, etc.) or individual services (e.g., YouTube, Tik Tok, etc.). The
aforementioned list is under consideration and will be revisited by the project partners.

3.3.3 Service-level traffic demand (D3)

This dataset was collected in the core network of a major European mobile operator, and made
available under a Non-disclosure Agreement (NDA) to IMDEA. The dataset describes the mobile traffic
generated by the whole subscriber base of the operator (which has a 34% average market share in the
target country) over the whole territory of a European country. The data covers three months in 2019. The
time frame of the data allows capturing a variety of mobile traffic dynamics.

A simplified representation of the operator 3G/4G mobile network architecture is portrayed in Figure 15.
The figure is limited to the 3G UTRAN and packet switched core, and to the 4G EUTRAN and EPC, as our
focus is on data traffic, and 5G was not yet operational in the target country by the time of the data
collection. The data was recorded by passive probes at the Gn and S5/S8 interfaces of the Gateway
GPRS Support Node (GGSN) and of the Packet Data Network Gateway (P-GW). The 3G and 4G
gateways were conveniently co-located in the operator infrastructure, which eased the probe
deployment, management and synchronization. The probes inspected IP traffic on the GPRS Tunneling

Deliverable 5.1

 H2020 – 101017109

31

Protocol user plane (GTP-U), and extracted information on the transport- and application-layer protocols
of each user session. The specific mobile service associated to each IP session was detected by the
mobile network operator via Deep Packet Inspection (DPI) and multiple proprietary fingerprinting
techniques, each tailored to a specific traffic type. These operations can classify 88% of the mobile traffic.

Figure 15. Simplified 3G/4G mobile network architecture.

Geo-referencing of the IP sessions, and of the corresponding mobile service usages, was performed by
examining the User Location Information (ULI) contained in the 3G Packet Data Protocol (PDP) Contexts
and 4G Evolved Packet System (EPS) Bearers. These data structures are transferred over the GPRS
Tunneling Protocol control plane (GTP-C), which also transits through Gn and S5/S8 interfaces, making
their inspection straightforward. User localization was further refined by mixing the data collected in the
core network with signaling information gathered at the radio access, and pinpointing the NodeB or
eNodeB each subscriber was associated to over time.

Ultimately, the dataset we use in the context of the DAEMON activities study consists of the daily volume
of data traffic served by individual NodeB or eNodeB. The level of spatiotemporal aggregation ensures
that no data subject can be re-identified, and that the data does not configure as personal data in the
acceptation of the General Data Protection Regulation (GDPR) [21]. Therefore, the dataset and research
do not involve risks for the mobile subscribers, while they provide new knowledge about the potential
existence of a second-level digital divide in France, which may benefit a more informed social policing.

The raw traffic measurements used to derive the dataset above were stored and aggregated in a secure
platform at the operator premises, in full compliance to article 89 of the GDPR, under the supervision of
the Data Protection Officer (DPO) of the operator, and upon authorization by the French National

Commission on Informatics and Liberty (CNIL). The raw measurements were deleted upon data
aggregation.

3.3.4 vRAN performance and power consumption (D4)

This dataset provides a set of measurements of the performance and power consumption of a vBS using
the srsRAN software in a local testbed (T5). The dataset was collected by configuring the vBS and UE in
order to fix the conditions in the uplink and the downlink in terms of traffic load, channel quality, MCS,
and airtime [22]. Then, we fix each configuration for one minute while the system takes measurements
that later are processed to obtain its statistics.

We assess the power behavior of the vBS by measuring the power consumption of its CPU and the whole
baseband unit (BBU), the achieved performance in terms of throughput and goodput, details about the
decoder at the vBS such as the subframe decoding time and the number of turbo decoder iterations
per subframe, and some MAC and PHY indicators such as the Buffer Status Report (BSR), Block Error Rate
(BSR), and the used modulation and coding scheme (MCS), and airtime. Moreover, we detect and
identify unfeasible configurations in the dataset. This mainly occurs when an MCS value is forced but the

channel quality is not good enough to decode its data.

3.3.5 Edge dataset (D5)

An Android application captures images through the mobile’s camera, performs JPEG encoding, and
transmits the compressed images to an edge server through a wireless 802.11ac Access Point. The
collected data documents “latency” and “cumulative confidence” measurements that were obtained
from this experiment. The records are obtained for different values of “image encoding rate” (i.e.,
compression) and “Neural Network input layer size” decisions. The delay is also provided with details on
different phases: transmitting the frame wirelessly, decoding and rotating at the server, and performing
object recognition with the state-of-the-art object recognition system YOLO on the server’s GPU. YOLO
accepts an image size that is a multiple of 32 and uses a number of potential object locations of different
sizes to output a probability of each class in the training set to appear in each one. The extensive COCO

Deliverable 5.1

 H2020 – 101017109

32

dataset is used, which covers a wide range of images and objects, and includes ground truth for each
image. Moreover, the achievable frame rate as a result of the total latency is documented.

An analysis of the data (Figure 16) shows the effect of the chosen decoding and neural network size on
the performance metrics we chose. Although these effects seem consistent in (a), (b), this is mainly due
to taking the average across all images. In (c), (d), the variability in these metrics across the same
configurations is demonstrated, motivating the necessity of tuning these parameters at run time.

Figure 16. (a)-(b): Cumulative Confidence (CC) and frame rate for various neural network sizes and
encoding rates; results are averaged across 32K images of the COCO dataset. (c)-(d): Distributions of
CC and frame rate for (neural network size, encoding rate) set to (256, 50%), (384, 100%).

To that end, this dataset includes 8 possible values for the NN size (128, 192, 256, 320, 384, 448, 512, 576)
and 4 for the encoding rate (25, 50, 75, 100). For each NN size/encoding rate combination, the response
of 1000 images -hence the dataset consists of 32000 records in total- from COCO dataset is tested and
the latency response in each part of the process is measured, as well as the confidence values that are
output from the DNN. The first 3 records of the dataset are presented in Table 6.

The first 2 columns of each record, are the “NN size” and “Encoding rate” respectively. They are followed
by columns “Encoding”, “Network”, “Decoding”, ”Rotating”, “YOLO”, and “Server”, which track the
amount of time spent in milliseconds for each of these tasks, where “Server” is the total time spent on
server processing including YOLO processing on the GPU. Column “Frame Rate” is simply the frame rate
achieved for the image’s end-to-end latency calculated by inverting the latter. The last 2 columns
measure recognition performance and are the “Confidence” and “Cumulative Confidence”.
Confidence is an array of values in [0, 1], denoting the inference confidence for each identified object
in the image. If no objects are recognized the array is empty. Cumulative Confidence is simply the sum
of the Confidence array.

Table 6. First 3 records of D5 dataset.

NN size
Enc.

Rate
Enc. Network Dec. Rotating YOLO Server

Frame

Rate
Conf.

Cum.

Conf.

128 25 3 3.8 1.3 0.1 9.3 11.2 43.478
[0.863,
0,896]

1.76

128 25 4 6.3 2.3 0.1 10.8 14.7 38.462 [0.526] 0.526

128 25 4 5.7 1.5 0.1 9.2 11.3 43.478 [] 0

3.3.6 Wireless interactions in multiple BSS using Channel Bonding (D6)

This dataset [23] was created using Komondor [24], an open source, event-driven simulator based on the
CompC++ COST library. Komondor is focused on fulfilling the need for assessing the novel features
introduced in recent and future Wi-Fi amendments, which may be endowed with applications driven by
techniques. The dataset was created in the context of the 2020 edition of the ITU AI/ML for 5G Challenge
[25]. This dataset includes simulated data from IEEE 802.11 WLAN deployments applying Dynamic
Channel Bonding (DCB). The dataset is divided into two parts, i.e., training and testing. In both cases,
enterprise-like scenarios containing a different number of Access Points (Aps) and stations (STAs) applying
DCB are generated, thus depicting multiple situations that could be used for training ML models. The
topology of these enterprise-like scenarios is composed of a building floor of a given size (e.g., map size),
which is divided in equal-sized offices. The Aps positioning is fixed, while the STAs are randomly placed
around the AP coverage area. Such a topology setting is typically adopted in the simulation scenarios
provided by IEEE 802.11 task groups [26]. The data set includes useful information about each
deployment, such as the obtained throughput, the RSSI, the airtime in each channel, the interference
among devices, or the SINR. In total, 600 deployments were simulated, containing 78,078 devices

(namely, 6000 Aps and 72,078 STAs). Table 7 summarizes the main characteristics of the entire data set.
Moreover, Table 8 details the simulation parameters used for generating the data sets.

Deliverable 5.1

 H2020 – 101017109

33

Table 7. Summary of the characteristic of the wireless interactions in multiple BSS dataset.

Dataset Name Map
Size

(m2)

Number of
Deployments

Total
Devices

Aps STAs AP
Throughput

[Mean, Std,

Min, Max]

STA
Throughput

[Mean, Std,

Min, Max]

Training/

Validation

1a 80x60 100 78,078:

6,000
Aps

72,078
STAs

12 [10-20] [83.29, 52.24,
0, 400] Mbps

[6.93, 6.99, 0,
88] Mbps

1b 70x50

1c 60x40

2a 60x40 8 [5-10]

2b 50x30

2c 40x20

Testing 1 80x60 50 9,831:

1,400

Aps

8,431
STAs

4 Random N/A N/A

2 6

3 8

4 10

Table 8. Simulation parameters used to generate the training and test datasets.

Parameter

Value

 Training Testing
Deployment Nº Aps {8,12} {4, 6, 8, 10}

Aps Location Fixed to the center of the cell

Nº STAs {5-10, 10-20} 5-10

STAs Location Uniform at random

Traffic profile Downlink UDP

Traffic load Full buffer mode

Channel Allocation Uniform at random

PHY Central frequency 5 GHz

Path-loss model See [27]

Bandwidth {20, 40, 80, 160} MHz

Nº Spatial streams 1

Allowed MCS indexes 1-12

MAC Contention Window 32 (fixed)

Data and ACK length 12000/32 bits

RTS and CTC length 160/112 bits

Max A-MPDU 1

DCB policy Dynamic (see [28])

Regarding the DCB configuration, each BSS can use up to N=8 basic non-overlapping channels of 20
MHz in the GHz band. Compliant with the 11ax amendment, a given transmitter can bond channels of
width 20-160 MHz, thus leading to channelization C={{1},{2},⋯,{8},{1−2},{3−4},⋯,{7−8},{1−4},{5−8},{1−8}}, for
basic channels indexed from 1 to 8. In each simulated deployment of the data set, both the primary and
the total channel width are selected randomly. As for the applied DCB policy, the maximum possible
channel width is dynamically used, provided that the involved channels were free during at least the
point coordination function interframe space (PIFS) period. For instance, let us assume that a given
transmitter has randomly allocated to channels {1−4}, with primary channel 1. Then, such a device would
perform carrier sensing in the primary channel (1) and, provided that the channel was sensed to be free
during the backoff, would assess whether the rest of the channels were also found to be free during the
PIFS interval. If only channels {1−2} are idle at the moment of starting a transmission, then the transmitter

proceeds to use both of them, leaving channels {3−4} for future transmissions.

The selected metric of performance is throughput, which is defined as the amount of successfully
transmitted data in a period of time. Higher throughput is an indicator of higher bandwidth capacity
(more bonded channels) but also interference-free communication. Nonetheless, Komondor can
generate extensive and detailed performance statistics such as delay, spectrum utilization, or collisions.
Moreover, the user can efficiently include as much as metrics as desired.

3.3.7 Intrusion Detection Evaluation Dataset (D7)

The Intrusion Detection Evaluation Dataset (CICIDS2017) is a validation dataset for anomaly-based
intrusion detection approaches. It is provided open-source by the University of Brunswick (Canada) [29].
This dataset is used to evaluate the performance of machine learning algorithms for traffic classification
implemented into the user plane. As one of the activity’s targets is to fast respond to anomalies.

Deliverable 5.1

 H2020 – 101017109

34

The CICIDS2017 dataset contains benign traffic and seven of the most up-to-date common attacks,
which resembles the true real-world data, in PCAP format. Along with such traces, the dataset includes
a list of all the flows labeled with time-stamp, source, and destination Ips, source and destination ports,
protocols and attack, in CSV format. The traffic data contains all common available protocols, such as
HTTP, HTTPS, FTP, SSH and email protocols. It also includes seven different types of attacks: brute force,
Heartbleed, Botnet, DoS, Ddos, Web, Infiltration.

The dataset has been generated by means of a testbed where two networks: attack-network and victim-
network. The former is a secure infrastructure with firewall, router, switches and a set of computers, running
major operating systems, accompanied by an agent that implement different benign behaviors. The
latter is a separated infrastructure with a router, a switch and a number of computers with public Ips that
perform attacks toward the victim-network. Twelve and four different machines have been used for the
victim-network and the attack-network respectively.

3.3.8 IPX Signaling Dataset for IoT (D8)

Figure 17. High level architecture of the IPX-P’s monitoring to build our dataset. We build our dataset
using a commercial software solution that processes the raw signaling traffic (SCCP, Diameter or GTP),
and that rebuilds the dialogues between the different core network elements. We build datasets for

2G/3G as well as 4G/LTE.

We monitor the IP eXchange Provider (IPX-P) infrastructure that supports three core functions – Signaling
Connection Control Part (SCCP) Signaling, Diameter Signaling, GTP signaling (for the corresponding radio
technologies) – that enable the data roaming service for IoT devices. We show in Figure 17 a schematic
view on the way we capture these corresponding datasets. We rely on a commercial software solution
for capturing and analyzing in real time the raw signaling traffic, which we mirror from the signaling routers
to a central collection point. In that central location, the commercial software re-builds the signaling
dialogues between different core network elements in the visited and the home MNOs. Table 9
summarizes the datasets we use to characterize the operations of an IPX provider with a large
international footprint.

Table 9. IPX-P Datasets for IoT.

Dataset Infrastructure Procedures Captured

SCCP

Signaling

4 Signaling Transfer Points (STPs)

(Miami, Puerto Rico, Frankfurt,
Madrid)

MAP traffic, location management,

authentication
and security

Diameter

Signaling

4 Diameter Routing Agents (DRAs)
(Miami, Boca Raton, Frankfurt,

Madrid)

Session Initiation Protocol (SIP) Registration, Voice
over IP (VoIP) Call, Diameter Transaction, Domain

Name Service (DNS) Query or RCS Session

Data Roaming GTP-C control data and GTP-U data

sessions.

Create/Delete Packet Data Protocol (PDP)

Context/ Session; Flow-level metrics for data
connections.

Ticketing

System

Internal ticketing system for
managing issues with the roaming

platform.

Tickets information that track how an issue was
handled by the operations team.

SCCP Signaling. This service provides the signaling capabilities for the second and third Generation
(2G/3G) technologies. The IPX provider monitors the Mobile Application Part (MAP) protocol and
specifically the traffic corresponding to the following procedures: i) location management (up-date

Deliverable 5.1

 H2020 – 101017109

35

location, update GPRS location, cancel location, purge mobile device); ii) authentication and security
(send authentication information); iii) fault recovery.

Diameter Signaling. This service provides signaling capabilities for 4G roaming. The IPX provider collects
traffic corresponding to events including Session Initiation Protocol (SIP) registration, Voice over IP (VoIP)
Call, Diameter Transaction, DNS Query or Rich Communication Services (RCS) Session.

Data Roaming. This service enables the data transport required for data roaming in 2G/3G and LTE. The
IPX collect traffic related to the creation and management of GTP tunnels between roaming partners to
transport data to and from end-users, as well as flow level metrics. Note that the service requires the use
of the signaling platform, either LTE Diameter or SCCP signaling.

Ticketing System. This service keeps track of the incidents handled by the operation teams. Tickets may
be generated by the operation teams, e.g., monitoring system alarms, or after an issue is reported by a
customer. Every ticket contains a description of the incident and impacted devices or customers.

3.3.9 YouTube file requests (D9)

The open YouTube file request dataset [30] is a collection of traces from a campus network measurement

on YouTube traffic. It contains trace data about user requests for specific YouTube content. The goal of

this analysis is, first of all, to examine the local (I.e., popularity among videos requested in a trace file) and

global (I.e., popularity information given from YouTube itself) popularity of YouTube video clips and

furthermore, to accumulate real information from the traces, in order to be used in future simulations.

A part of this dataset is used in Activity A17 (Auto scaling Virtualized RAN caches), so as to generate
traffic demand. The data utilized in our experiments is collected every 5 minutes for 7 days on a certain
university campus. It is comprised of individual IDs of each requested video, requested time and
destination/source IP addresses, video size, and transmission data rate. We also distinguish different
regions with different IP addresses.

The aforementioned results are depicted in Figure 18. From there, it can be seen that the number of file
requests have daily and weekday/weekend traffic patterns and more precisely, the traffic is high during
the day and the evening until around midnight and then decreases significantly in the early morning
hours. However, the traffic pattern is not similar even between two consecutive days, which makes the
prediction of demand difficult.

Figure 18. Total number of YouTube file requests in a certain university campus over time.

3.3.10 GEC case study (D10)

The GEC case study dataset is a collection of energy measurements taken from deploying a Generic
Edge Computing (GEC) application that we have designed to represent a regular IoT/Edge/Cloud
system [31]. We model the different elements of this deployment as a variability model with a large
configuration space, in Figure 19. A variability model is a formal specification of the things that can vary
in a system and how they depend on each other. Variability models are composed of features, which
are elements or properties that can be in the final system or not. Features are organized in tree structures,

so selecting a leaf for the final system depends on the selection of its ancestor features. In addition, it is
possible to define explicit constraints, also known as cross-tree constraints. Features can be divided into
35 oolean features, numerical features, and variability sub-tree (aka clonable). Boolean features
represent yes/no decisions or features that can appear in the final system or not. Numerical features are
features that require a value to be resolved. Variability sub-trees mean creating instances or clones and
providing per-instance resolution for features in its sub-tree. Cardinality features apply restrictions over the
number of children of a feature that can be chosen. The appearance of a feature in a selection can be
mandatory or optional. The GEC variability model comprises six main branches:

• Device: Edge computing hardware, as single-board and small appliances; in this evaluation, we
consider four.

• Architecture: The microprocessor running architecture –commonly x86 and x86 64.

Deliverable 5.1

 H2020 – 101017109

36

• Operating System (OS): The running OS in which the software will be executed, where, besides
the top 100 UNIX systems in use in 2021 yearly published by Distrowatch 4, Microsoft Windows is
considered. Please note that only the last available updated version and the default kernel were
considered. Additionally, cross-tree constraints were defined for unsupported Oss.

• Programming Language (PL): The PL in which the operation is coded; in our evaluation, just the
executed benchmarks are considered.

• Edge technology: Our available libraries and peripherals are considered, including wireless
communication, data storage, temperature sensors, remote controllers, etc.

• Edge Context: Three key branches are located at this level. Parameters contain numerical
features as natural numbers, usually input calculation parameters. Datatype represents the data
types used in a specific operation. We used bytes for cases where several types are used

simultaneously, like benchmarks. Operation contains the tasks performed in an IoT device;
besides the common ones, such as starting or shutting down a device, the Phoronix Test Suite
[32] operations are included in our evaluation. The suite ranges from battery power consumption
monitoring for mobile devices to multi-threaded ray-tracing benchmarks and spans the CPU,
graphics, system memory, disk storage, and motherboard components. While the suite
comprises 403 tests, not all of them suits every OS or device of the variability model, but, on
average, 100 are compatible for each system. As all the Oss, operations, and cross-tree
constraints in Figure 19 are not graphically friendly, the complete ClaferVM is available [33].

Figure 19. VM of the Generic Edge Computing (GEC) large case study.

Following the planning process for the energy-efficient software [69], we measured GEC energy
consumption rate in Watts, triple checking with three professional tools: Watts UpPro Portable Power
Meter, Multimeter Eversame C, and Eversame PowerMeter 2n1. The devices were highly cooled in a quiet
and isolated room to avoid external factors affecting the readings.

Clafer chocosolver reasoner generated the ∼5.3 ∗108 configurations of GEC in 36 hours for 552 Boolean
and two numerical features with parent-children and cross-tree constraints. To approximate the GEC
study to a real scenario, we performed 132500 different measurements, which account for 0.25% of the
total search space – hence partially measured. TL confident scores were previously populated with 1,000
runs with random parameters (e.g., strategy, number of samples) and variability model constraints.

3.3.11 IoT devices dataset (D11)

UNSW-IoT [67] is a classification use case based on measurement data for 28 Internet of Things (IoT)
devices, collected in a living lab emulating a smart environment. The objective is identifying the type of
IoT device generating each traffic flow by looking at statistical features of the data packets. We employ
20 days of data that are made available to the research community, train the models over the first 15
days and use the last 5 days for testing.

3.3.12 Applications and protocols dataset (D12)

UNIBS-2009 [68, 69] is a traffic classification task based on real-world traces collected on the edge router
of the University of Brescia campus network, capturing traffic from 20 workstations. The traces include
web traffic (HTTP/HTTPS), mail (POP3, IMAP4, SMTP), peer-to-peer applications (BitTorrent, Edonkey) and
other protocols (FTP, SSH). The goal is associating each traffic flow to one of 8 application or protocol
categories. We use one day of traffic for training and a second for testing.

Deliverable 5.1

 H2020 – 101017109

37

3.3.13 Malicious attacks dataset (D13)

NSL-KDD [70] is an anomaly detection case study that builds on 7 weeks of network traffic captured on
a testbed recreating normal and attack traffic behaviors, by exploiting real hosts, live attacks and
background traffic. The attacks fall in one of the following 4 categories: Denial of Service Attack (Dos),
User to Root Attack (U2R), Remote to Local Attack (R2L), Probing Attack. The goal is again separating
malicious and regular traffic. We consider the full data with the default training and test separation.

3.3.14 Malicious packets dataset (D14)

NSW-NB15 [71, 72] is an anomaly detection task employing a mix of real-world normal traffic and
concurrent synthetic attack behaviors, produced in the Cyber Range Lab of UNSW Canberra. The
measurements sum up to 100 GB of raw traffic with nine different types of attacks: Analysis, Backdoors,
DoS, Exploits, Fuzzers, Generic, Reconnaissance, Shellcode, and Worms. Our goal, aligned with that of

previous studies targeting this task, is once more to identify all malicious packets. In our experiments, we
use 10 GB of data from the second day, and use 5 GB for model training and 5 GB for testing.

Deliverable 5.1

 H2020 – 101017109

38

4 Results
As anticipated in Section 1, the results achieved by the project to date are organized into a set of specific

activities, which jointly contribute to progressing in each planned evaluation. Overall, the project carried

out 23 activities to date. In the following subsections, we present the results for each evaluation E1-E7,

and detail the outcome of each associated activity.

At the start of each subsection we also summarize in a table the activities performed, also reporting the
tools from Section 3 employed by each activity, the target and collected KPIs, the target Technology
Readiness Level (TRL) and either the activity is planned or not for the PoC demo. Finally, the last column
of summary tables provides an indicative figure of the current progress towards the completion of the
activity. We also report in the same tables the main innovations entailed by each activity.

We remark that neither all evaluations have the same volume of activities, nor all activities have the same

level of progress. This was planned since the beginning, and it is due to the fact that (i) evaluations target
network functionalities with diverse levels of maturity and complexity, hence requiring a more or less
intense effort by the project, and (ii) activities employs very diverse NI models and tools, whose
development over time cannot be uniform or perfectly aligned. In all cases, all evaluations have
achieved some preliminary results to date: in some cases, those consist in the development of the
platform needed to run experiments, in some other in a data-driven assessment of the problem, and in
others yet in a first assessment of actual NI-assisted solutions. We expect all evaluations and activities to
better align during the second iteration of the project, in the sense that they will all produce early or
consolidated results about the performance of the NI-assisted solutions. This will be captured in the
following deliverable of WP5.

4.1 NI for sustainable virtualized RANs

Evaluation E1 focuses on real-time control and non-real-time orchestration of vRAN services & resources.
The DAEMON consortium performed assessments of challenges and solutions related to E1 via activities
A1-A5. Table 10 summarizes the tools, KPIs, TRL, PoC plans, approximate progress and main innovations
of such activities.

Table 10. List of activities for E1.

ID Name Evaluation Tool
Planned

KPIs

Collected

KPIs

Target

TRL

Planned

for PoC

demo

Progress

A1
Reliable RAN
virtualization

E1 T1
K1, K2,
K4, K5

K2, K4, K5 4 Yes 30%

Main innovation: 1) Reliable DU design suitable for Virtualization; 2) Centralized real-time control of radio
and computing resources

A2
AI-driven O-
Cloud

E1 T1
K1, K2,
K4, K5

K2, K4 4 Yes 30%

 Main innovation: Centralized real-time control of radio and computing resources

A3
Application
aware radio
scheduling

E1 S2 K9 K9 3 TBD 30%

 Main innovation: Traffic classifier to steer scheduler settings

A4

AI-aided
energy-driven
RAN

orchestration

E1 T5 K1, K4 K1 4 Yes 50%

 Main innovation: Energy-driven O-RAN orchestration (non-real-time RIC)

A5
AI-aided
RAN/edge
orchestration

E1 T5 K1, K4 K1 4 Yes 50%

 Main innovation: Joint Energy-driven O-RAN orchestration (non-real-time RIC) and AI service

Deliverable 5.1

 H2020 – 101017109

39

Overall, the preliminary results of these activities already led to a number of observations on the use of
NI for virtualized RANs in next-generation mobile systems, as follows.

• We identify gaps in the current implementations of vRANs, in terms of usage of shared resources

across pools of Distributed Units (DU). This occurs both due to (i) the lack of guarantees of a timely
completion of DU jobs when the processing times are non-deterministic, and (ii) substantial
economic and energy costs of hardware accelerators (Has) used in such shared resources.

These issues are explored in A1 and A2 below. Our results call for (i) a re-design of the DU pipeline,
and (ii) NI-driven approaches for operating vRANs so as to limit the need for Has to a minimum,
which will be designed and implemented during the second iteration within the project, and
whose performance assessment will be presented in the next deliverable of WP5.

• We implement and compare different strategies to address the currently open problem of traffic

classification in vRAN, using local information about the channel bearer and radio link buffer. In

A3, we show that a simple heuristic and a complex deep learning models perform similarly in this
task, and can thus inform solutions for traffic-aware radio scheduling. As there is still space for
improvement in the absolute performance of these classifiers, the second iteration of the activity
will focus on further refining the solutions, and results will appear in the next deliverable of WP5.

• We reveal that power consumption of virtualized Base Stations (vBS) in vRANs is in practice much

more complicate than what assumed in the literature, and that it is linked to end-user QoS in

introcated ways. Our results are obtained via experiments in A4 and A5, using a dedicated real-
world platform, and show tangled relationships of traffic, SNR, MCS and airtime, with non-linear
and non-monotonic relations between system configurations and power usage or attained
throughput. Similarly complex relations exist with application-level performance metrics such has
the latency and throughout. While all these results clearly hinder the derivation of general
consumption models and the use of simple decision models to drive resources, we plan to devise
NI algorithms that can cope with such complexity in the second iteration of the project.

4.1.1 Reliable distributed unit for virtualization (A1)

As discussed in Section 4.1 of [34], achieving very high reliability for virtualized RAN on a shared cloud
platform is one of the challenges of next generation mobile networks. In this Section, we provide some
evidence of the fact that the current architecture of the mobile network u-plane pipeline is not optimized
for its usage in a cloud computing environment.

Figure 20. LTE and New Radio (NR) DU pipeline: DU job 𝑛.

4.1.1.1 Reliability of the baseline pipeline

The design of the baseline pipeline, described in section 4.1.1.2 of [34] and shown in Figure 20, is not
suited for non-deterministic computing platforms such as shared clouds. Namely, existing solutions
implementing the above baseline pipeline cannot guarantee the timely execution of individual jobs
without the assistance of dedicated hardware acceleration or aggressive over-dimensioning [35], which
compromise flexibility and cost-efficiency [36].

4.1.1.2 Timing Constraints

3GPP defines several timing constraints [37]. Relevant to this discussion are C3 (the latency between
ACK/NACK reception in Uplink (UL) UCI and the corresponding Downling (DL) re-transmission in PDSCH),
and C4 (latency between PUSCH reception and delivery of HARQ feedback). In LTE, C4 = 3 ms, which
implies M=4. Though these timings are more flexible in NR, they are set at longer timescales by the CU,
however keeping the same choice [38]. As a consequence, there is a hard deadline to process each
DU job within M-1 ms, as shown at the bottom of Figure 20. Violating this deadline prevents timely delivery
of DL SFs and, as a result, loss of synchronization and connectivity between the DU and its users, as shown
by the baseline performance in the experiment of Figure 21.

4.1.1.3 Inter-task dependencies

Regardless of individual processing optimizations [39], different DU tasks within a job have strong
dependencies as shown by the blue arrows in Figure 20. DL grants must be computed before PDSCH
because they carry information required to encode and modulate DL TBs. As a result, known

Deliverable 5.1

 H2020 – 101017109

40

implementations (e.g., Samsung’s vDU [40], srsRAN and OpenAirInterface) perform each DU job in a
single thread pipeline (Figure 20), or in a multi-thread pipeline where each thread has to wait and be
executed in a precise order [41], which boils down to Figure 20 again. Although solutions like Agora and
FlexRAN help to accelerate the processing of individual DU tasks, the aforementioned dependencies
prevent running different DU tasks in a job in parallel to expedite the pipeline of Figure 20.

Figure 21. Throughput measured for two vDUs competing for resources.

Figure 22. Throughput performance for both uplink and downlink (top). CPU time required by different
PHY layer functions (bottom). Different uplink/downlink load (relative to the maximum) and channel

conditions (SNR).

4.1.1.4 Non-deterministic tasks

As hinted in our toy experiment shown in Figure 21, the computing time required by DU tasks highly
depends on the instantaneous availability of computing resources. We note moreover that the most
compute-intensive tasks also depend on the context, that is, on the data load (rate of TBs to
decode/encode) and on the mobility patterns of the users (signal quality) [42], which can induce very
quick fluctuations in the demand for computing resources. To illustrate this, we deploy the baseline vDU,
implemented in srsRAN, processing downlink and uplink traffic over one Intel i7 core in a 10-MHz band.
Figure 22 depicts the achieved throughput in both the uplink and downlink (top subplots), and the
median time incurred by the CPU to perform DU tasks (bottom subplots). We take these measurements
for different load intensities (relative to the capacity in UL and DL, respectively) and average signal-to-
noise ratios (SNR) indicating the channel quality for both UL and DL, and adapt the MCS to minimize the
workload issued by the decoder, differently to our results. The results yield two observations. First,
processing PDSCH and (especially) PUSCH are the two tasks that consume CPU time the most, which is
not surprising as it has been observed before [43, 44]. Second, while the CPU time of the rest of tasks (and
others not shown in the figure to reduce clutter) remains practically constant, the time required to
process PDSCH and PUSCH highly depends on the context; that is, on the SNR—and so on the mobility
patterns of the users, and on the load—and hence on the users behavior. Note that even if shared pools
of hardware accelerators are used à la cloud to reduce the processing time of some of these tasks,
queueing in the abstraction layer brokering access to the accelerators across multiple vDUs incur in
similar issues [45].

4.1.1.5 Conclusion and outlook

Because of the above, baseline solutions cannot guarantee the timely completion of DU jobs when
facing computing fluctuations, which cause unreliability in scenarios such as that of Figure 20. We hence
claim that a re-design of the DU pipeline is required for non-deterministic computing platforms such as
shared clouds, which we will fully describe in the next version of the WP5 deliverable.

Deliverable 5.1

 H2020 – 101017109

41

4.1.2 AI-driven O-Cloud (A2)

vRAN solutions in the market today resort to offloading compute-intensive tasks, usually FEC operations,
into dedicated hardware accelerators (HAs). HAs are GPUs, FPGAs, or even CPUs that are programmed
to perform one single task. Because they are programmable and can carry out FEC LDPC work very fast,
GPUs (NVIDIA Aerial) and FPGAs (Intel FlexRAN3) are the most popular HAs for 5G vRANs. For instance,
Figure 23 shows that a 10x latency reduction can be achieved when offloading LDPC workload into a
GPU. In line with the industry, we focus on FEC offloading in this activity.

Figure 23. Mean latency and energy consumption to decode an LDPC-encoded transport block.

4.1.2.1 Limits of hardware accelerators for vRAN

However, as acknowledged by top executives in the business, this approach is doomed to fail. The root
cause is the strong dependency on HAs, which are more expensive and energy-inefficient than ASICs
(see Figure 24) yet are dedicated to individual DUs. Notably, the energy toll of a GPU-based LDPC
decoder has an average consumption of 8.25 nJ per bit per decoding iteration. In marked contrast,
ASIC-based decoders consume as low as ~3 pJ/bit/iteration.

This is a waste because (i) HA resources are highly underutilized most of the time, and (ii) less-performing
yet low-cost processors are not sufficiently exploited to bear this workload. Note in Figure 23 (right) that
CPUs can process FEC operations with a 6x lower energy toll.

Figure 24. Comparison of HAs. Approximated figures.

4.1.2.2 Conclusions and outlook

Our current measurements reveal that HAs are not necessarily the silver bullet for vRAN functionality
operation, due to the substantial capital expenditure and energy footprint they entail. This motivates the
need for NI-assisted solutions that can take these costs in the equation, and take vRAN operation
decisions (e.g., allocating bandwith to users associated to specific base stations) that optimize the
utilization of (limited) HA resources, thus limiting the need for deployed HA capacity. We will explore these
challenges and propose solutions in the next WP5 deliverable.

4.1.3 Application aware radio scheduling (A3)

With the simulator S2, described in Section 3.2.2, we generated data to assess the performance of the
classification algorithm described in Section 4.3 of Deliverable D3.1 [34]. Typically, we let a number of
mobile users, say 8, consume4 data under the form of a large file transfer, streaming video, web browsing
or Internet radio and observe the air interface. Specifically, we observe the (downlink and uplink)
throughput on the bearer and the (downlink and uplink) evolution of the RLC (radio link control) buffer.
A typical example of a case where mobile 1 and 2 consume Youtube video, mobile 3 and 4 are web-
browsing, mobile 5 and 6 are consuming Internet radio and mobile 7 and 8 are downloading a large file,
is shown in Figure 25. Note that the granularity of the RLC buffer occupancy, which has a granularity of
10ms, is 100 times finer than that of the throughput, which has a granularity of 1 sec.

3 Intel FlexRAN provides both FPGA drivers and CPU libraries (exploiting Intel AVX-512 instruction sets) for FEC
acceleration.
4 For now, we consider only applications that mainly download information, but later we may consider applications

that produce information as well.

Deliverable 5.1

 H2020 – 101017109

42

Based on such traces acquired in various conditions with various types of mixtures, we construct labeled
data as follows. Each trace (for which we know the nature of the traffic that is being generated) is split
in chunks of a finite size (say 20 sec) and that chunk inherits the label of the trace is belongs to. In that
way we build up a data base of labeled chunks with which we can train, validate and test any
classification algorithm that we care to investigate. We split the data set (randomly) in a training set that
comprises 75% of the labelled data and a test set that consists of the remaining 25%.

To illustrate the performance of the classification algorithms we show the confusion matrix calculated on
the test set, i.e., entry 𝑐𝑚[𝑘, 𝑙] of the confusion matrix is the fraction of cases of class 𝑘 that we classified
as class 𝑙. Ideally, we want the diagonal entries of the confusion matrix to be close to 1. Notice that each
row of the confusion matrix sums to 1.

Here we discuss in more details two of the three classification algorithms introduced in Section 4.3 of
Deliverable D3.1 [34] that take 20sec (i.e., 2000 samples) of the RLC buffer occupancy as input vector

and produce an application category as output. There are four categories: file transfer, video, web
browsing and internet radio, and from the traces we extracted 20880 vectors of the file transfer category,
9180 vectors of the video category, 6869 vectors of the web browsing category and 6964 vectors of the
Internet radio category.

Figure 25. Downstream throughput (left) and RLC buffer (right) evoluation in a typical experiment.

4.1.3.1 K nearest neighbors algorithm

When an input vector is presented to this algorithm, it determines the 𝐾 closest neighbors in the training
set, then it determines the labels that are associated to these neighbors and takes a weighted majority
vote to determine the class associated to this input vector. In the results below, we choose Euclidean

distance as distance metric, 𝐾 = 4 and the weights are the inverse of the distance.

Table 11 shows the confusion matrix of this classifier. File transfer and video can be easily identified.
However, web is often misclassified as video and vice versa, while radio is misclassified very often, most
of the time as video. Since radio does not consume too much bit rate this is not a major problem.

Deliverable 5.1

 H2020 – 101017109

43

Table 11. Confusion matrix of K nearest neighbors.

 Classified as:

 File transfer Video Web Radio

G
ro

u
n

d

tr
u

th

File transfer 0.964 0.027 0.003 0.007

Video 0.013 0.837 0.149 0.001

Web 0.013 0.22 0.766 0.001

Radio 0.002 0.112 0.591 0.295

4.1.3.2 Feed forward neural network

We chose a neural network with an input layer of 2000 neurons and an output layer of as many neurons
as there are traffic classes. We considered 3 hidden layers with 40 neurons each. The activation function

for all neurons, except the output layer, is ReLu, where 𝑅𝑒𝐿(𝑥) = 𝑥 if 𝑥 > 0 and 0 otherwise. The output layer
has softmax, where 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑘) = exp (𝑥𝑘) ∑ exp (𝑥𝑖)𝑖⁄ , as its activation function and can be interpreted
as the probability that the presented input vector belongs to class 𝑘. As loss function we used categorical
cross entropy and we used ADAM as training algorithm. Of the training set, we set 20% of the data aside
for validation. We trained, with a batch size of 32 samples, as long as the loss on the validation set
substantially decreases, i.e., as long as it does not increase 10 epochs in a row, as illustrated in Figure 26.

Figure 26. Evolution of the loss function and classification accuracy on the training and validation set.

Table 12. Confusion matrix for the neural network classifier.

 Classified as:

 File transfer Video Web Radio

G
ro

u
n

d

tr
u

th

File transfer 0.992 0.006 0.002 0.000

Video 0.017 0.890 0.091 0.001

Web 0.001 0.364 0.631 0.004

Radio 0.008 0.003 0.020 0.969

Table 12 shows the confusion matrix for this classifier. Again, file transfer is easily identified. Video is
confused with web more often with this classifier than with the K nearest neighbors classifier, while on the
contrary web traffic is classified better. Radio is nearly always classified correctly.

4.1.3.3 Conclusions

The two classifiers perform similarly. Classification based on a chunk of 20 sec in a heterogeneous
environment is not trivial. Since the length of the chunk is also the (minimal) response time of the classifier,
it cannot be taken it much longer. In future work we will investigate if a post-processing step, where we
take into account how chunks that immediately precede the chunk to be classified are classified, can
help. Such an analysis will be the focus of the second iteration of the activity, and its results will be
reported in the next deliverable of WP5.

4.1.4 AI-aided energy-driven RAN orchestration (A4)

This NI-solution is outlined in Section 3.2.1 of Deliverable 4.1 [46]. We used testbed T5 to perform our
evaluation. In this section we summarize the most important findings.

4.1.4.1 BBU/CPU Power Cost & Impact of Platform

The first important finding is that the power consumption associated with BBU processing is comparable
to the RFR chain’s transmission power. This result is consistent with previous studies. Figure 27 dissects the
power consumption of a vBS deployed over a Small Factor (SF) PC into the share responsible by (𝑖) the
BBU´s CPUs5, (𝑖𝑖) the BBU´s cloud platform except the CPUs, and (𝑖𝑖𝑖) the actual RU deployed over a

Software Defined Radio (SDR) transceiver from National Instruments. We measure the power

5 We use the Intel’s Running Average Power Limit (RAPL) functionality integrated into the Linux kernel to measure the
CPU consumed power.

Deliverable 5.1

 H2020 – 101017109

44

consumption for four scenarios: (𝑖) the vBS is not deployed (baseline), (𝑖𝑖) the vBS is deployed with an idle
user attached (vBS idle), (𝑖𝑖𝑖) the vBS is transmitting 20Mbps of DL traffic, and (𝑖𝑣) the user is transmitting
20Mbps of UL traffic to vBS.

Excluding the baseline scenario, the CPU power cost alone is, on average, 29% larger than that of the
RU, while the overall BBU power exceeds it by 175%, on average (208% over full UL load). Interestingly,
these numbers depend on the platform, which hosts the BBU. Namely, Figure 28 shows the BBU
consumption over the baseline for different platforms.6 We compare the power consumed by the BBU in
idle state and operating at full UL/DL buffer and subtract the baseline power. Indeed, the power cost
changes significantly, and is affected also by the vBS bandwidth.

Figure 27. Comparison of power
consumption at: the BBU (Intel NUC i7-

8559U@2.70GHz), the BBU’s CPU, and the RU
(an USRP SDR), with 20Mbps DL and UL traffic.

Figure 28. Consumed power over the baseline
for different radio bandwidths and hardware

platforms. SF PC 1: Intel NUC i7-8559U@2.70GHz;
SF PC 2: Intel NUC i7-8650U@1.90GHz; Server 1:
Dell XPS 8900 i7-6700@3.40GHz; Server 2: Dell

Aurora R5 i7-9700@3.00GHz.

4.1.4.2 Impact of SNR & MCS

The second finding is that the SNR of the wireless channel and the MCS in UL affect the BBU computing
load, and hence, its power consumption in a non-linear fashion. This is because the decoder needs more
iterations when the received signal becomes noisier. Thus, the decoding time per subframe increases,
e.g., by 52% between 20 and 15 dBs for MCS 23, see Figure 29; and this induces a commensurate increase
in power consumption, see Figure 30. Besides, Figure 30 shows that, even for a given decoding time,
higher MCS values induce more power consumption, which is attributed to their more intricate
demodulation. Importantly, excessive decoding delays can induce throughput loss since they lead to

violations of vBS deadlines [47]. Hence, maximizing throughput does not only have an unpredictable
effect on power, but it is indeed highly non-trivial.

Figure 29. vBS over SF PC 1 at full UL buffer. UL
decoding time as a function of SNR and different

MCS values.

Figure 30. vBS over SF PC 1 at full UL buffer.
Power consumption as a function of the

decoder performance (high correlation).

6 The small factor PCs consume less power than the servers, which however can host more vBSs hence are expected
to consume less power per user.

Deliverable 5.1

 H2020 – 101017109

45

4.1.4.3 Configuration Options & Impact of Scheduler

The above vBS control challenges are exacerbated by the plenitude of configuration options. Figure 31,
for instance, presents combinations of MCS and airtime values (percentage of used subframes)
achieving the same UL throughput. Configurations with higher MCSs (and therefore lower airtime) reduce
power by 38%. However, this relation is non-monotonic, as we have also measured higher power when
the MCS increases and SNR is relatively low; this is due to the fast increase of computing load (see Figure
30). On the other hand, configurations 6 to 8 have the same power consumption, but still differ since
configuration 8 involves lower airtime and thus can serve more users, while configuration 6 is more resilient
to noise. These decisions are made by the vBS radio scheduler which based on the SNR selects the MCS
and airtime. Figure 32 shows the power consumption as a function of MCS and airtime for UL transmissions.
We observe that both parameters have a smooth impact on power, but in practice this characterization
is not available and needs to be learned.

Figure 31. 8x combinations of normalized
MCS and airtime providing 2.6Mbps in UL,

and its associated power (idle mode
power is subtracted).

Figure 32. Normalized power consumption at
the BBU over baseline for full buffer UL

transmissions and high SNR, as a function of MCS
and airtime.

4.1.4.4 Conclusions

Characterizing the vBS power consumption is intricate as it depends on traffic, SNR, MCS and airtime.
There are many DL and UL configurations and some of them present non-linear and non-monotonic
relations with power and throughput. Moreover, the power consumption depends on the BBU platform

and radio scheduler. This hinders the derivation of general consumption models.

4.1.5 AI-aided RAN/edge orchestration (A5)

This experimental activity targets the performance assessment of the solution for NI-assisted RAN/edge
orchestration reported in D4.1, Section 3.3.1 [46]. Here, we summarize the main findings of the evaluation.

4.1.5.1 GPU-enabled Edge server for mobile video analytics

We have built a fully-fledged prototype system with a software-defined BS (using srsRAN suite) and a
GPU-enabled edge server that offers a Mobile Video Analytics (MVA) service to mobile users. We
measure the joint impact that resource control policies at the user device (frame size), the BS (radio
configuration) and the server (GPU speed) have on the service accuracy and end-to-end latency (QoS),
and on power consumption (cost). Our experiments show that, unlike other services, performance is
highly volatile and depends on the underlying hardware, the AI service configuration, and even the
actual user data. Furthermore, these services include a wide range of configuration options, e.g.,
selecting different architectures of neural networks, different processing equipment, or even adjusting
the data sources. All these parameters affect in an unknown way the latency and accuracy, which in
turn renders traditional resource orchestration techniques ineffective for this problem.

We have performed an exhaustive set of experiments using a testbed. In a nutshell, the testbed is
comprised of a 3GPP R10-compliant LTE BS, a UE generating service requests via the BS to a well-known
object recognition service, and an off-the-shelf server with an NVIDIA GPU running the service. Each
request consists of an image with a variable number of objects from the COCO dataset7. The images are
sent to the service via the uplink channel of the LTE interface, and the service returns to the user a
bounding box and a classification label for each identified object in the image. This information is sent
via the downlink channel of the LTE interface. Each measurement shown as a dot in the figures of this

section is an average of 150 images. The dataset collecting all the measurements shown in this section is

7 https://cocodataset.org/

Deliverable 5.1

 H2020 – 101017109

46

available online8 to enable reproducibility and to facilitate further research in this area. In the following,
we analyze the trade-offs between different configuration policies and performance indicators that are
relevant to the system stakeholders: (𝑖) quality of service experienced by the end-users, (𝑖𝑖) the cost
associated with the service provider, and (𝑖𝑖𝑖) the cost associated with the MNO.

4.1.5.2 Latency and precision

We start off by analyzing two metrics of interest for the user’s quality of service: the service’s performance
to recognize objects and the service delay, formally introduced in Performance Indicator 1 (Service
Delay) and 2 (Mean Average Precision), respectively. According to our measurements, the most relevant
feature that affects the mAP is the image resolution, defined in Policy 1.

We illustrate this in Figure 33, which shows the trade-off between service delay and mAP for the COCO
images dataset encoded with different resolutions. The remaining configuration policies (described later)
are fixed so the service delay is minimum. The results are rather intuitive: (𝑖) Higher-resolution images carry

more pixels encoded in a larger amount of data. Therefore, higher-resolution images incur higher delay
due to longer transmission time over the radio interface. (𝑖𝑖) Lower-resolution images cause the service
to provide lower mAP performance because they carry less useful information for the object detection
engine. Specifically, in our experiments, a 72% improvement in service delay is associated with a
reduction of precision that goes between 10% to 50%.

Figure 33. Mean average precision (mAP) vs.service delay for images with different resolutions.

4.1.5.3 Including power consumption in the picture

There also exists a trade-off, which naturally appears in many resource control problems, between the
users’ QoS and the associated cost to the provider of such service. To explore this trade-off, we introduce

a policy that governs the allocation of radio resources, defined as Policy 2, and an additional metric that
assesses part of the aforementioned cost: the server’s power consumption, defined as Performance
Indicator 3.

Figure 34. Service delay vs. server’s power consumption for images with different resolutions and radio

policies.

Figure 34 depicts the service delay versus the server power consumption, for different airtime radio
policies and image resolutions. Similarly, as before, higher resolution images increase service delay due
to the longer transmission time of the requests. We now observe that this occurs irrespective of the radio
policy configuration. However, the selected radio policy has an important impact on service delay as
well, which is intuitive as lower airtime implies lower usage of radio resources, which further increase the
transmission time of the requests at the radio interface. Specifically, our experiments show that an 80%
increase of the airtime produces improves the delay between 65% and 80%. Concerning the server’s
power consumption, lower resolution images and lower radio resource allocations increase this cost for

8 https://github.com/jaayala/

Deliverable 5.1

 H2020 – 101017109

47

the service provider. Specifically, there is a 56% increase in power consumption for an 80% increase in
spectrum time resource; a similar increase attained when there is a 75% increase in image resolution. This
is explained because larger amounts of radio resources allow the user to send a higher rate of requests
in a similar way than lower resolution images do, which ultimately increase the amount of work assigned
to the service’s resources (the GPU in this case).

4.1.5.4 Conclusions

The relationships between key performance indicators in the context of MVA in a GPU-enabled Edge
server are entangled and offers a number of trade-offs. Note that additional trade-offs to those above
are also detailed in D4.1 [46], Section 3.3.1. Clearly, simple decision-making models cannot capture such
complex relations, which paves the road to the development of dedicated date-driven NI algorithms
that can effectively learn such intricated correlations. This will be the objective of the activity during the
second iteration of the project.

4.2 NI for VNF placement and control

Evaluation E2 focuses on NI solutions that support network slice management & orchestration operations.
The DAEMON consortium performed assessments of challenges and solutions related to E2 via activities
A6-A8. Table 13 summarizes the tools, KPIs, TRL, PoC plans, approximate progress and main innovations
of such activities.

Table 13. List of activities for E2.

ID Name Evaluation Tool
Planned

KPIs

Collected

KPIs

Target

TRL

Planned

for PoC

demo

Progress

A6

Energy-aware
deployment of
VNFs for
genenric Edge
computing

E2 D10 K1 K1 3 TBD 10%

 Main innovation: Optimization of edge computing system deployments exploiting variability

A7

Combining

VNFs at the
edge

E2 None9 K1, K2 K1, K2 3 TBD 10%

 Main innovation: Adaptation of VNFs resource requirements to the available Edge resources

A8
AI Enhanced
MANO

E2 T8 K3, K8 K3 5 Yes 30%

 Main innovation: Automated resource reallocation for supporting critical services

Overall, the preliminary results of these activities already led to a number of observations on the
management and orchestration of network slices in next-generation mobile systems, as follows.

• We contribute to the challenging endeavor of making VNF placement and control more energy

friendly in complex mobile Edge settings, where the configuration space is extremely large and
network services developers can measure the energy consumption of only a subset of these

configurations. Specifcally, activities A6 and A7 tackle this problem by (i) developing an
interactive and statistical approach to provide energy consumption insights based on a small
subset of directly accessible measurements, and (ii) discovering and adapting Edge resources

to the VNFs requirements in an energy-aware fashion, respectively.

• We developed a complete framework for NI-assisted MANO. By engineering together a number

of components, in activity A8 we deployed an experimental platform that will support, in the rest
of the project lifetime, real-world tests of NI instances that can automate MANO operations in
next-generation mobile networks. The actual implementation and integration of such instances
will be carried out during the second iteration of the project, with results presented in the next
deliverable of WP5.

9 Activities A7 makes use of randomly generated data to validate the solution.

Deliverable 5.1

 H2020 – 101017109

48

4.2.1 Energy-aware deployment of VNFs for genenric Edge computing (A6)

In this Section we report the results of the evaluation of the SAVRUS (Smart Analyser of Variability
Requirements of Unknown Spaces) approach presented in Section 5.3.2 of deliverable D3.1 [34]. The
main objective of SAVRUS is to guide in the optimization of Edge computing system deployments by
identifying the specific features with a high probability to improve the energy consumption if they are
replaced by their alternatives.

We have performed a proof of concept of SAVRUS using an Edge computing case study. In addition, we
have evaluated and compared the two implementations of our approach, using the product sampling
techniques Diversified Distance-based Sampling (DDbS) and Statistical Recursive Search (SRS). The results
are shown in Table 14 and discussed below. Our evaluation is based on variability models and the dataset
D10 presented in Section 3.3.10.

Table 14. Details of the quality measured numerical variability models (NVM) used to validate SAVRUS.

NVM Description #Boolean #Numericals Space QA #Measurements

Dune Muti-grid solver 11 3 2,304

Equation

solving time

2,304

HSMGP Stencil-grid solver 14 3 3,456 3,456

HiPAcc
Image processing
framework

33 2 13,485 13,485

Trimesh Triangle mesh library 13 4 239,360 239,360

GEC
Generic edge
computing

552 2 ~ 5.3 * 108
Energy
Consumption

132,500

4.2.1.1 Generic Edge computing case study

Firstly, we tested SAVRUS with a Generic Edge Computing (GEC) case study – a variability model with a
large configuration space that we have designed to represent a regular IoT/Edge/Cloud system for VNFs
(described in Section 3.3.10). Its main details are shown at the bottom of Table 14. The clafer chocosolver
reasoner10 was used to generate the ∼ 5.3 ∗ 108 configurations of GEC in 36 hours for 552 Boolean and
two numerical features with parent-children and cross-tree constraints. GEC search space details are
also specified in the last row of Table 14, being the largest space considered to evaluate this work. To
approximate GEC study to a real scenario, we performed 132,500 different measurements, which
account for 0.25% of the total search space – hence partially measured. We found interesting feature
interactions and optimization insights, where the hosting Operating System, the running Device, and the
network interface were the main culprits of the system's energy consumption for whatever configuration.

4.2.1.2 Comparative analysis

Then, we evaluated and compared the two implementations of our approach (i.e., DDbS and SRS). To
prove that SAVRUS results are correct, we required completely measured variability models for a well-
known quality attributes. Consequently, we opted to test the accuracy of SAVRUS for quality attributes
atruntime as the results are aligned with the quality attribute energy consumption. The variability models,
detailed in Table 14, are: Dune, HSMGP, HiPAcc [48] and Trimesh [49]. To emulate our issues, we purposely
removed random chunks of measurements mimicking the issues of large variability models modelling
energy-aware VNFs systems (i.e., randomly spread measurements). To obtain domain unknown
configuration spaces with scattered measures, we degrade the data by randomly erasing parts of the
variability models measured space. For scalability testing, we increased the number of samples from 25
to 6,400.

We validated SAVRUS effectiveness regarding: (i) the quality of the features insights; (ii) the size of the
sample sets with respect to the space size; and, (iii) the analyses times. SAVRUS generated a correct
ranking of noteworthy features and interactions 80% of the times for every incompletely quality attribute
measured model. Regarding SAVRUS performance, the current prototype has a base runtime of 1

minute, taking less than 3 minutes for comprehensible cases and scenarios. Between the two sampling
implementations, DDbS was the most balanced alternative due to its speed, accuracy, and scalability,
especially for large and complex systems. Anyhow, if the analysis time is not an issue for a developer, SRS
is the most accurate alternative.

4.2.1.3 Conclusions and future work

Currently, we have developed a SAVRUS prototype and proved its usefulness with a large case study
from the domain of Edge computing systems, comprising 554 features and a total of 108 legal
configurations. This case study didn´t consider the variability of VNFs. We plan to apply our approach to
reason about the energy consumption of highly variable VNFs required in the context of Augmented
Reality applications. Specifically, with an offline SAVRUS analysis, we will create a learned energy model

10 https://github.com/gsdlab/clafer.

https://github.com/gsdlab/clafer

Deliverable 5.1

 H2020 – 101017109

49

that transfers the knowledge to real-time algorithms acting on predictors or heuristics. If the network,
functions, services or devices are updated, the energy model will evolve with an extra offline adjustment
executing SAVRUS again. We expect to improve the speed and accuracy of real-time and dynamic
algorithms in the second iteration of the project. This solution will impact mainly KPI K1, and its results will
be presented in the next deliverable of WP5.

4.2.2 Combining VNFs at the edge (A7)

In this Section, we present the results of the evaluation of the algorithms present in Section 5.3.3 of
deliverable D3.1 [34]. These two algorithms are the Application Variability Adaptor (AVA) and the New
Devices Finder (NDF); they target the configuration of VNF requirements and edge-based infrastructure
capabilities for a better the estimation of energy consumption.

4.2.2.1 Campus-wide cyber physical system use case

By now, we have applied the AVA and NDF to a real case of an academic campus where several
devices, those typical of cyber physical systems (CPSs), are geographically distributed serving different
applications. The campus infrastructure includes sensing units, IoT gateways, computers, cloudlets, and
dedicated cloud servers, scattered across the campus. These devices are not using all their computation
and communication capacities (or even are suspended most of the time). All of them are located at the
far edge of the Internet, connected to the campus institutional access network. Both algorithms were
able to obtain an optimal solution for their given problems in the case study.

The time needed by our modules to provide a solution varies according to the size of the problem [50].
For this reason, we have evaluated the execution time for different problem sizes. With this purpose, we
have developed a Benchmark version of the algorithms, which allows setting the number of features and
devices in case of the AVA and the number of services and devices for the NDF. Each experiment is
performed 30 times on one thread of an AMD Ryzen 7 1700X processor.

In all the experiments the infrastructure considered is formed by 30 different devices with arbitrary
characteristics (set on each experiment). These random characteristics involve software and hardware
components, as well as the location. Table 15 shows the results.

Table 15. AVA and NDF algorithms execution time.

Problem size:

AVA: (D/F)

NDF: (D/S)

30/10 30/20 30/30 30/40 30/50 30/60 30/70 30/80 30/90 30/100

AVA Mean (s) 0.07 0.14 0.24 0.41 0.60 0.88 1.39 1.99 2.95 4.23

Std 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.04 0.03

NDF Mean (s) 0.12 0.50 1.09 1.97 3.03 4.49 6.03 7.94 10.11 12.21

Std 0.00 0.01 0.01 0.02 0.03 0.07 0.06 0.06 0.16 0.30

D: Devices. F: Features. S: Services.

4.2.2.2 Algorithm performance

For the first algorithm (AVA) the number of features has been incremented up to 100. Experiments show
that the AVA returns a solution almost instantaneously in most cases, requiring around 4.2 seconds in the
worst case of a very big application formed by 100 heterogeneous features.

Regarding the experiments of the NDF, the number of services has been incremented from 10 to 100.
Services characteristics such as computational load, data to transmit, location requirements, type of
device, peripherals, sensing units, operating system and interaction ways have been randomly set for
each experiment. Results show that, for an application formed by 10 different services, the NDF needs
around 0.12 seconds to return a solution, being 12.2 seconds in the worst case of an application formed

by 100 different services.

4.2.2.3 Conclusions

The utility of the AVA and NDF is shown by applying them to manage the evolution of an application and
the infrastructure of a real IoT scenario [51]. The execution time of our algorithms for different problem
sizes has been also evaluated using a Benchmark, and the conclusion is that they return a solution in a
reasonable amount of time. These solutions will have an impact on both KPIs K1 and K2.

4.2.3 AI-enhanced MANO (A8)

This activity targets the development and experimental assessment of a platform for AI-supported MANO.
Currently, the work has focused on the integration of the components of the platform towards deploying
a comprehensive and flexible architecture that will enable structured MANO tests in presence of NI.

Deliverable 5.1

 H2020 – 101017109

50

4.2.3.1 Platform components

The AI-enhanced MANO solution is deployed on a set of servers on which the OSM and OpenStack are
deployed. To enable the intelligence at the orchestration and management level, multiple interfaces
with different components are used. Specifically, the connection with Open-Source MANO has been
enabled through the OSM’s Northbound API featuring ETSI NFV SOL005. Communication with OpenStack
has been done through its provided API with a RESTful web service endpoint to access, provision, allocate
and automate the resources. Data and logs are retrieved directly from Elasticsearch REST API, that is also
used in cases of configuration and access to other Elasticsearch features. Additionally, custom APIs have
been designed and developed for enabling the acquisition of information from VNFs, applications and
infrastructure with the use of exporters that send specific metrics to the Elasticsearch and Diagnostic
components. Finally, the connection with Verticals has been performed with a custom API that directly
connects the AI-enhanced MANO with the Verticals retrieving in this way all requirements or specific SLAs.

4.2.3.2 Plartform architectural design

The architecture of the AI-component is shown in Figure 35 and its connections and functions are
explained below.

1. Direct Verticals info (i.e., Metrics/KPIs) of the Network Service (NS) that will be deployed acquired
from AI-enhanced MANO or by utilizing the 5G EVE APIs.

2. Internally an API SERVER gets the request and triggers the AI component to evaluate the optimal
deployment of the VNFs based on Vertical requirements and KPIs.

3. The API SERVER gets the VNF’s info from the OSM (OSM NB API) and historical data from db.

4. The API SERVER retrieves the metrics exported from the MEC platform and the MEC’s VNF in-
stances, to evaluate the metrics in real time.

5. The AI component acquires all information in real time (MEC’s metrics, VNF IDs, and VNF re-
quirements) from the API SERVER and uses old data and previous decisions. The AI finds the op-
timal deployments and migrations for the NSs in MECs.

6. The AI component triggers the OSM (OSM NB API), through API SERVER, for any migration or
reallocation of resources.

Figure 35. AI-enhanced MANO solutions.

4.2.3.3 Summary and future work

With the platform deployed, the activity will focus on integrating NI instances for MANO therein. Thus, in
the second iteration of the project, we will work towards designing and plugging into the AI block in
Figure 35 smart algorithms for improved MANO. The results of such integration, in terms of engineering
work and possibly of performance evaluation results, will be reported in the next deliverable of WP5.

4.3 NI for real-time anomaly detection

Evaluation E3 focuses on NI solutions that support anomaly detection in real-time in both controlled
environments and in a production core network. The DAEMON consortium performed assessments of

challenges and solutions related to E3 via activity A9. Table 16 summarizes the tools, KPIs, TRL, PoC plans,
approximate progress and main innovations of such activities.

Deliverable 5.1

 H2020 – 101017109

51

Table 16. List of activities for E3.

ID Name Evaluation Tool
Planned

KPIs

Collected

KPIs

Target

TRL

Planned

for PoC
demo

Progress

A9

Federated
Learning-
based
Anomaly
Detection

E3 T8 K3, K7 K3 4 Yes 40%

 Main innovation: Use federated learning for improving the efficiency of Anomaly Detection

A single activity A9 is targeting E3, by investigating Federated Learning-based anomaly detection. Details
on A9 are provided next. Note that the consortium is considering the option of merging this evaluation
with E5, given the proximity of the two evaluations and the fact that only one activity was carried out in
E3 and two in E5 to date. We will assess the advantages of this option, and possibly consolidate E3 and
E4 during the second iteration of the project.

4.3.1 Federated Learning-based Anomaly Detection (A9)

B5G/6G infrastructures are deployed to serve diverse verticals. These verticals will be requesting a set of
services, which can generate diverse traffic profiles. For instance, a utility can generate traffic from
sensors, from video streams, or even audio; these streams can vary in requirements, for instance in terms
delay and reliability. All these aspects (demands and system organization) can appear organized in the
form of a set of slices that are concurrently supported by the infrastructure. Bypassing the aspects of
whether slicing is used, and by adopting a more general perspective, it can be assumed that the network
will be asked to serve a sheer amount of traffic sources. These traffic sources should exhibit a behavior
within a certain framework. In parallel, the system should provide a certain (agreed) service to each
traffic source, and to the aggregation of sources, per geographical area and time zone.

4.3.1.1 Anomaly detection in presence of shared sources

However, things do not always operate as they should, or as agreed. Therefore, systems should be
prepared to handle situations that exhibit a behavior beyond what is “ordinary”, agreed, etc. This is
important for preserving the services of all verticals served by a network segment. The reason for the
unordinary behavior can be due to malevolent reasons or to something else, e.g., some device
malfunctioning, extraordinary requirements from the vertical, underestimation (or overestimation) of
resources, etc. In other words, anomalies can be security incidents or may indicate faulty sensors, or may
be related to aspects of interest to the vertical domain (i.e., the concern is on the data and on the
control plane).

In light of the above, a key problem that needs to be solved can be generally stated as follows: “Given
(a) an area / network segment, (b) the verticals / services supported in the area and their anticipated /
agreed behavior in time and space, and (c) the network configuration set up for supporting the services,
find the sources that exhibit and unordinary behavior”.

The problem above can fall in the class of problems that is generally called “anomaly detection”. The
problem has attracted attention in various domains and for various solution approaches. Our main
approach will be to rely on unsupervised learning and pattern recognition. This are representative
solutions that enable the experimentation with diverse levels of data availability.

4.3.1.2 An architecture of FL anomaly detection

Our architecture will follow the Federated Learning (FL) approach [52], for reasons of scalability and data
protection. Scalability is important in our case since we consider an environment with numerous traffic
sources. Likewise, the aspect of keeping data locally is important. Therefore, our work will experiment with

the FL approach for the realization of the anomaly detection mechanisms.

Figure 36 gives an overview of our approach. In high level terms, the inputs, outputs and algorithm are
indicated. A knowledge base is highlighted. It will contain local information regarding the performance
of the model. Certain information is communicated to a controller of the FL model. Likewise, the controller
will be tuning the algorithm in accordance with the FL paradigm.

Deliverable 5.1

 H2020 – 101017109

52

Figure 36. FL-based architecture for anomaly detection.

Figure 37. Dashboard.

4.3.1.3 Summary and future steps

The activity has currently focused on the implementation of the FL-based architecture, including the
coding of a graphic user interface, a sample of which is shown in Figure 37. Therefore, no experiment has
been run to date. Based on the scoping so far, the next steps concern the development of models, the
realization of validation activities (result collection and analysis), and the support of dissemination and
demonstration activities. These will be carried out during the second iteration of the project and the
results will be presented in the next deliverable of WP5.

4.4 NI for Edge orchestration

Evaluation E4 targets NI solutions for service orchestration and resource allocation algorithms in the Edge
micro-domain. The DAEMON consortium performed assessments of challenges and solutions related to
E4 via activity A10-A17. Table 17 summarizes the tools, KPIs, TRL, PoC plans, approximate progress and
main innovations of such activities.

Table 17. List of activities for E4.

ID Name Evaluation Tool
Planned

KPIs

Collected

KPIs

Target

TRL

Planned

for PoC
demo

Progress

A10

Video analytics
with
edge
computing

E4 D5 K2 K2 3 TBD 70%

 Main innovation: Compute-aware scheduling for analytics VNF

A11
Multi-timescale
edge
orchestration

E4 T4 K2, K5, K8 K8 4 Yes 50%

 Main innovation: Multi-timescale management and orchestration of edge services and resources

A12

WLAN
performance

prediction for
spectrum
management

E4 D6 K5, K8 None 3 No 10%

 Main innovation: Enabling fast WLAN performance prediction for spectrum optimization

A13
Data-driven
resource
orchestration

E4 D1 K5, K8, K9 K5, K8, K9 4 No 30%

 Main innovation: Clustering of device population to extract resource requirement profiles

Deliverable 5.1

 H2020 – 101017109

53

A14
Multi-timescale
network slice
reservation

E4 None11 K4 K4 2 No 60%

 Main innovation: Slice reservation policies for optimal resource employment based on OCO

A15
Testing
EnergyEdgeCl

oudSim
E4 S4

K1, K2,

K3, K4
K1, K2 3 TBD 10%

 Main innovation: Enery-aware VNF orchestration

A16
Towards
autonomous
VNF scaling

E4 S1 K4 K4 3 No 50%

 Main innovation: General-purpose NI solution for autonomous VNF auto-scaling at edge

A17
Auto scaling
Virtualized RAN
caches

E4 D9 K3, K4 K3, K4 2 No 30%

Main innovation: Jointly optimize dynamic cache rental, content placement, and request-cache
association in wireless scenarios

Overall, the preliminary results of these activities already led to a number of key observations on the
orchestration of services and allocation of resources in the Edge micro-domain, as follows.

• A first line of activities target an improved, flexible and automated management & orchestration

of Edge resources based on NI solutions. Here, the proejct activities A10, A11, A15, A16 and A17
have demonstrated NI algorithms that span across multiple aspects of the problem. Specifically,
these aspects include: (i) how to dynamically instantiate and auto-scale Edge instances and the
VNFs they run, so as to best serve mobile devices and reduce the energy footprint of the mobile
Edge; (ii) how to best offload computational tasks from mobile devices to such deployed Edge
instances; and, (iii) how to cache contents at the Edge instances so as to maximize the QoE.

• A second line of activities for this evaluation aimed at investigating NI solutions in sliced Edge

environments, by studying the impact of NI solutions on the management of specific mobile

services. More precisely, the project carried out activities A13 and A14 that studied (i) algorithms

for managing pricing of the service provider market in network slicing settings at the Edge, and
(ii) a characterization of the current 5G deployments towards supporting service-specific M-IoT
(i..e, multimedia IoT) requirements.

• Finally, we carried out comprehensive comparative assessments of different types of NI models,

including based on statistical, control and machine learning tools, for Edge orchestration. These

activities were performed in A12 and A16, and showed that there is no one-size-fits-all approach,
and the most appropriate model must be picked based on the specific Edge orchestration task.
For instance, our results prove that a Graph Neural Network (GNN) grants substantial gains in
performance with respect to simpler models for Edge prediction problems; however, Deep Q
Learning (DQL) incurs into substantial operational costs that make simpler threshold-based
solutions preferable for Edge instance autoscaling.

4.4.1 Video analytics with edge computing (A10)

This activity assesses the performance of solutions for the offloading of tasks from mobile devices to the
mobile edge, using algorithms presented in Section 4.4 of deliverable D4.1 [46]. The goal is improving end
users’ Quality of Experience (QoE) by taking scheduling decisions (i.e., dynamically adapting the
offloading parameters) in an efficient manner.

4.4.1.1 Video frame recognition at the mobile edge

We consider object recognition in video frames as the analytics task, where a mobile device capturing
a video aims to recognize the object in those videos with the maximum accuracy possible and minimum
latency. To this end, mobile devices can offload computationl expensive operations to an edge server.
To this end, the NI must decide on (i) how to set the compression ratio for each device, (ii) the time slice
dedicated for processing the device data at the edge facility, and (iii) the input size to the neural network
deployed on the edge facility to process such data. Details are in Section 4.4 of Deliverable D4.1 [46].

11 At this level of the development, activity A14 has been validated by using simple Python scripts.

Deliverable 5.1

 H2020 – 101017109

54

4.4.1.2 Overall performance

First, we consider two users with minimum frame-rate requirements of λ = 10 and 20, and we plot the
average regret with time in Figure 38 (left), together with a light blue shaded area indicating the 1-std
area over 100 evaluations. The figure confirms that the policy (i.e., online decisions) is zero-regret. In Figure
38 (right), we see the performance in terms of cumulative confidence and frame rate simultaneously (on
different axis). Initially, the images are over-compressed, leading to a smaller data size and lower latency.
Thus, we observe the high frame-rate, but an unsatisfactory performance in terms of cumulative
confidence. However, as time progresses the policy is more balanced and does achieve high
confidence while respecting the required frame-rates.

Figure 38. (Left) Average regret of the proposed method. (Right) Cumulative confidence & frame rate.

To evaluate the scalability of the approach presented in Section 4.4 of deliverable D4.1 [46], we measure
its average iteration delay. Figure 39 (left)depicts this delay as a fraction of slot duration Δ for different
number of users N. We observe that for the first 30 slots (expansion stage), the delay increases both with
the slot t (matrix inversions of size t) and users N (more configurations), but when safe set has been fixed
and posteriors do not require updates, it drops substantially. After that, the iteration delay starts increasing
again with t for the same reason as before, but is kept low until the algorithm converges to an acceptable
solution. We consider more users in Figure 39 (right) where we set a low frame rate requirement λ = 2. In
the top graph, we show the maximum value of the iteration delay within a 200 slots evaluation and in
the lower graph, we show the slot in which (on average) the stopping of our algorithm occurs for different
values of N. For the former, we can see that the delay gets much bigger than the slot duration for N ≥ 12
and for the later, that the differences are insignificant and that we can always stop the algorithm in fewer
than 200 slots.

Figure 39. (Left) Algorithm mean iteration delay. (Right) Maximum iteration delay & convergence time.

Figure 40. Reward of (a) preassigned users, (b) user-to-GPU assignment, (c) AP-to-GPU assignment.

Deliverable 5.1

 H2020 – 101017109

55

4.4.1.3 Generalization to additional settings

To demonstrate the generality of the proposed solution framework, we additionally evaluate the
framework for three different settings: (i) Multiple GPUs (i.e., each user can configure the neural network
size differently), (ii) the number of users N is higher than the number of GPUs, and (iii) the users can be
served J Access points. Specifically, we set N = 4;K = 2; J = 1 for Scenario (ii), and N = 4;K = 2;J = 2 for
Scenario (iii). From Figure 40, it can be seen that the reward (sum of confidences) keeps improving
towards the optimal one. The observed performance is within 6%, 4% and 5% of the optimal in each
Scenario, after 200 slots.

4.4.1.4 Conclusions

We developed and evaluated a compute-aware online framework that allows configuring mobile edge
resources and models so as to best accommodate offloaded operations from mobile devices, and
maximize the end users’ QoE. The results show how the proposed approach can firstly identify feasible

networking and learning parameters, and then deduce online actions that provably reach those that
are the best ones in hindsight.

4.4.2 Multi-timescale edge orchestration (A11)

To cope with the challenges of manual NFV MANO operations, which are a reactive approach that
causes delayed operations, there is a need to switch to proactive one that is characterized by
automation and intelligence in operations of orchestrating services and resources. The need for
automated and more optimized orchestrations becomes critical for the services with stringent
requirements for latency and capacity, such as those that belong to vehicular system. Thus, in this activity,
we utilized the real-life testbeds, Smart Highway (T4) and Virtual Wall, to create a PoC for pursuing realistic
experimentation and validation of the impact that AI/ML models have on the edge orchestration.

4.4.2.1 Collecting and analyzing training data

To collect training data (response time measured at client side), we created a scenario in which we
utilized the PoC described in Section 3.1.4, and we gradually stressed the edge V2X deployment on the
RSU 3 by using stress tool Locust. If we observe the average response time presented in Figure 41, we can
see how much communication and computational delays are contributing to the overall edge service
response time. Samples indicate 20 batches of successive measurements, where each of the
measurements lasted for 5 minutes, and is represented by the mean value. The stress test in our scenario
caused an increase in average response time, and as we can see in Figure 41, communication latency
remains stable despite the stress test, thus, the computational latency on the edge node is affected.

In Figure 41 (b) we show the average values of CPU load, RAM load, and power consumption, in the
Kubernetes cluster on the Edge node 1, i.e., RSU 3. Samples of measurements correspond to the samples

of edge service response time in Figure 41 (a). Given that the scenario indicates a gradual stress test from
sample 1 to sample 20, in Figure 41 (b) we can see an increasing trend in CPU load, and the goal is to
explore the dependency of service quality experienced by users (i.e., vehicle) on infrastructure metrics,
such as CPU load. We further exploit this dependency to improve the service quality experienced by user
(i.e., vehicle), while other collected metrics are used by the MCDM algorithm to improve the final decision
on service relocation (e.g., avoiding using an edge node with high power consumption). In this
experimentation setup, we used python to apply two types of Support Vector Regression (SVR)
depending on the kernel, i.e., Radial Basis Function (RBF) and Linear. Finally, we created two datasets,
one for training (gradually applying stress test), and another for testing (randomly applying stress test).

4.4.2.2 Performance results and discussion

Figure 42 (a) shows the prediction of an average response time based on the training data, while Figure
42 (b) presents the prediction based on the testing data. As we notice that SVR with RBF kernel produces
larger R-squared value (better fits the input to output), and lower Mean-Squared Error (MSE) (determines
the accuracy of our model), this model is further used and applied in our algorithm for selecting the edge
deployment.

The SVR model achieves a high value of R-squared, i.e., 0.9979 (cf. Table 18), and produces an MSE of
2.64471, which can be considered as a satisfactory level of prediction accuracy, given that average
difference between predicted and measured data is less than 1ms (0.6651ms) with standard deviation
of 1.484ms. For the type of V2X use cases where notifications/warnings are generated and collected
from edge services, to extend the contextual perception of a vehicle, the result we obtained can be
considered as satisfactory due to the following reasons. In case a vehicle is moving with an average
speed of 80km/h, 15ms can be considered as a tolerable latency for retrieving important warnings, as a
vehicle moves only for 0.33m until it gets a new notification. This of course needs to be studied with a

more prominent attention in case of autonomous driving, or teleoperation of a vehicle. Finally, Figure 42
(c) shows the result of the gain in average service response time that can be achieved by performing
edge V2X service relocation in a proactive and automated way. As the cloud orchestrator is constantly
monitoring CPU data from different edge domains, it applies SVR model to predict the average response
time for a particular type of edge V2X application. If predicted values of average response time in the

Deliverable 5.1

 H2020 – 101017109

56

upcoming sample (lower than 5min) are larger than the threshold, which we consider as 15ms for a used
type of service, then the cloud orchestrator applies the MCDM, and potentially requests an application
relocation to Edge 2 (RSU 5) from Edge 1 (RSU 3). In Figure 42 (c), this happens in the sample 17, where
the decision for application relocation is applied by edge orchestrators, and vehicle client starts
consuming edge V2X service deployed on the RSU 5.

Figure 41. (a) Latency, (b) Training data

Figure 42. Results: (a) Prediction based on training data, (b) Prediction based on testing data, (c) Gain

achieved by service relocation.

We can clearly see the benefit of applying proactive relocation and re-attaching the user from one

edge to another, as from sample 17 onward, clients would experience an increased average response
time if no relocation happens (no relocation from Edge 1). Hence, our model improves NFV MANO
operation making a quality-aware decision to proactively instantiate instance in the target edge
domain, and to re-attach vehicle client from one edge to another. This is particularly visible in sample 29,
in which the average response time decreases for 92.3% if the relocation happened. On the other hand,
a simple rule-based algorithm that compares a single predicted value of latency with a predefined
threshold might be inefficient, as they might lead to frequent requests for service relocation that need to
be handled by edge orchestrators.

Table 18. Results of multi-timescale edge orchestration (Average is an average difference between
measured and predicted data).

Model R-squared Mean Squared

Error (MSE)
Average Standard

deviation

SVR (RBF Kernel) 0.9979 2.64471 0.6651ms 1.484ms

SVR (Linear Kernel) 0.8277 221.8706 9.985ms 11.7372ms

4.4.2.3 Conclusions

We utilized the real-life testbeds, Smart Highway (T4) and Virtual Wall, to create a PoC for pursuing realistic
experimentation and validation of the impact that AI/ML models have on the edge orchestration. We
presented our progress on improving MANO operation of service relocation towards achieving service
continuity and required service quality, by applying an ML-based quality-aware concept that automates
service relocation and minimizes average vertical service response time. In the second iteration of the
project, we will work towards refining the NI design and performing more complete assessment of their
quality in our target real-world scenario. Results will be presented in the following WP5 deliverable.

Deliverable 5.1

 H2020 – 101017109

57

4.4.3 WLAN performance prediction for spectrum management (A12)

In this activity, using the dataset D6, described in Section 3.3.6, we trained and evaluated four state-of-
the-art ML models to predict the throughput of all devices in an enterprise-like scenario containing a
different number of APs and STAs applying DCB. The ML models were described in deliverable D3.1 [34].
Two deep learning based models, a CNN and an FNN, and a Gradient Boost (GB)-based model were
designed to predict the throughput in IEEE 802.11 WLANs that support DCB. To complement the models,
a Graph Neural Network (GNN) architecture was also designed. Details are provided next.

4.4.3.1 ML models comparison

As a baseline for all ML approaches, we use a random guesser. We assume that the throughput can be
obtained from a normal distribution with the mean and standard deviation found during data analysis to
build this random guesser. Given that the throughput in STAs varies between 0 and 88 Mbps (cf. Table 7),
we use a truncated normal distribution between those values. This random approach represents a naive

and cheap way to generate predictions in this particular problem.

The models were trained on the corresponding data set with a fixed split (80% for training and 20% for
validation). Every model uses the Root Mean-Squared Error (RMSE) as a loss function. The error was
obtained across the predictions (𝑥𝑖) compared to the actual results (𝑥𝑖), where 𝑁 is the number of devices
in the batch. We trained the models using different combinations of all available features (cf. Table 19)
to quantify how they affect the prediction accuracy. This procedure was performed ten times per
experiment to observe each model’s convergence.

Table 19. Features available for training.

Feature Definition Feature Definition

Node Type Wireless node type, AP = 0, STA = 1 Distance Euclidean distance between AP and
STAs

x(m) x-coordinate of the wireless node Bandwidth Maximum channel bandwidth

y(m) y-coordinate of the wireless node RSSI Received Signal Strength Indicator

Channel

Configuration

Combination of Primary, minimum and
maximum channel

Interference Inter-AP interference sensed from every
AP (mean)

SINR Signal to Interference plus Noise Ratio Airtime Percentage of time each AP occupies
each of the assigned channels (mean)

The trained models were used to predict the throughput of all devices in the test data set. Figure 43 shows
the mean RMSE across all test scenarios’ deployments in a given experiment for all the generated models

and its standard deviation. As can be seen from the figure, GNN outperforms all other approaches in all
defined experiments. The random approach performs the same, independent of the features used.
However, learning from data represents at least a 20% improvement regarding this random approach,
using all trainable features (Exp 1). Focused on Exp 1, i.e., the experiment with all features, GNN can
obtain up to 64%, 56%, 55%, and 54% when comparing it against the random approach, the CNN, the
FNN, and the GB, respectively. Surprisingly, GB performs slightly better in several experiments when
compared to the CNN and the FNN. Despite its complexity, the CNN does not perform better than the
FNN and the GB. This poor performance might be due to data representation. CNNs outperform other
ML approaches when dealing with high-dimensional data (e.g., images, time-series). Even though the
wireless environment is too complex to be modeled, the provided data do not include an extra
dimension (e.g., time) that CNN can benefit from.

Figure 43. Mean and standard deviation of the obtained RMSE by all models on the test data set.

Deliverable 5.1

 H2020 – 101017109

58

In some experiments (e.g., Exp 5, Exp 6, Exp 8, Exp 13, Exp 14, and Exp 15), the random guesser performs
better than some ML approaches since the combination of input features does not benefit from the
learning process. In fact, the Gaussian assumption works well in some cases, and it is widely adopted in
many communications aspects. Moreover, the random guesser performs the same, independent of the
input features, while for some experiments, the ML approaches benefit from certain features (e.g., Exp 1,
Exp 2). This random guesser includes some basic information and performs better than a best-effort
approach. It serves as an upper bound to the ML approaches, as it shows if the ML model is learning.

4.4.3.2 Feature relevance

In terms of feature relevance, including airtime, there is a strong improvement to the results of all ML
models. For instance, the only difference between Exp 1/Exp 7 and Exp 15/Exp 8 is that the latter does
not consider airtime while the former does. It can be seen that not considering airtime represents
between 85% and 87% decrease for the GNN, while other ML approaches perform even worse than the

random approach. Nonetheless, considering only airtime as an input feature does not ensure good
performance. For example, in Exp 16, GNN decreases its performance by more than 100% regarding Exp
1, except for other ML approaches, where using airtime as an input feature performs even better than
considering the rest of the features (see Exp 15).

Analyzing other features, RSSI and distance give more information about the throughput than SINR, node
type, and interference. For instance, in Exp 9 and Exp 10, all models improve their performance by
including RSSI: 48%, 5%, 10%, and 6% in the GNN, GB, CNN, and FNN, respectively. Similarly, in Exp 11 and
Exp 12, GNN obtains around 26% improvement, while CNN and GB obtain 2.4% and 7.5% improvement,
respectively, when considering the distance. Interestingly, the GNN is the only model in which features
such as node type (Exp 3 vs. Exp 4) and SINR (Exp 5 vs. Exp 6) are relevant and improve its performance.
Even when considering interference (Exp 13 vs. Exp 14), a factor that seems to decrease other ML models’
performance, GNN obtains a 5% improvement.

4.4.3.3 Conclusions

Network models and optimization algorithms are developed to offer a high degree of automation to
accelerate service delivery while meeting economical goals. By learning from data, Neuronal Networks
are able to build a function that abstract complex network behavior. Our comprehensive comparative
evaluation shows that GNN models are especially well suited to the WLAN performance prediction
problem, where information is also embedded in the topological representation.

4.4.4 Data driven resource orchestration in the MNO (A13)

This activity targets the development of novel algorithms and solutions based on new concepts of cellular
networks to support multimedia IoT (M-IoT) application requirements. As a starting point, to recognize the
demands of these applications, we have studied Connected Cars as a use case in this deliverable. Then,

we will focus on devising learning-based resource management techniques to meet these requirements.
Moreover, learning algorithms can be leveraged to predict near-future traffic patterns, and such
predictions enable proactive and accurate resource management decisions.

Relying on dataset D1, we explore the performance of the operational 5G network at the radio sector
level and capture the demand from the population of devices that the operator serves. With this, we
then work towards identifying fine-granular clusters of devices with similar requirements in terms of quality
of performance and network resources. Having these profiles is an important input for achieving efficient
resource orchestration.

Figure 44. Yearly trend of cell sites launch over
the past decade.

Figure 45. The number of radio sectors per cell
site over the last decade.

4.4.4.1 Network deployment evolution

We start with an analysis of the radio access network deployment evolution. Monitoring this information
together with the performance status of the network allows us to capture from the real-world dataset the
operator’s decisions in terms of deploying new cell sites and configuring new carriers at these sites. The
results we present in this section open the door for exploring network intelligence approaches for

Deliverable 5.1

 H2020 – 101017109

59

automatic and accurate generation of new carrier configuration parameter values using learning and
recommendation techniques. We first investigate the network deployment in terms of the new number
of cell sites that are deployed and activated for different technologies. In Figure 44 and Figure 45Error! R

eference source not found., we illustrate the number of cell sites and sectors per cell deployed annually
over the last decade. We note that while over 95% of the cell sites in recent years are 4G, they also are
equipped with 2G/3G. We see especially a sharp increase in 2019, which we believe is a response to the
substantial growth in the number of cellular devices (both new cellular IoT devices, and smartphones).

We turn our attention to 5G deployment and have a closer look into the network deployment during the
last two years, since commercial 5G support from the MNO started. In our dataset, we record radio
sectors that had radio signalling activities. We count the number of the active sectors on the first date of
every month from January 2020 to November 2021. The motivation behind counting the number of
sectors instead of cell sites is to show and accurate evolution in the available resources in the network.

Due to the operator confidentiality, we only present the delta variation over the first day of January 2020
in Figure 46. We observe that 5G capable devices started to connect to the 5G sectors in December
2020. Furthermore, over the last two years, the number of 5G active sectors has increased 90.3%, and
continues to present an overrising trend.

Figure 46. Delta variation of the number of
active sectors per radio access technology.

We employ as reference the first
measurement date on the x-axis.

Figure 47. Daily performance of 5G vs. 4G sectors in
the same locations (for a non-standalone 5G

deployment). Each plot indicates the median of the
metric we show in the title per geolocation.

4.4.4.2 5G network performance

We investigate the network performance metrics over all bearers corresponding to QoS class Identiters
(QCIs) of 5G sectors as compared to 4G sectors through two months (September-October) in 2021. By
taking median values over two months, we minimize the impact of abnormal traffic behaviour, special
events, or the differences between days of the week. We aggregate per sector hourly metrics per day
and per location and compare median of each performance metric of 4G and 5G sectors in the same
location. We begin our analysis with throughput performance (average DL/UL throughput over all users).

We show in Figure 47 that in 75% of locations 5G technology can increase the median of DL user
throughput at least 157% (i.e., median of 5G and 4G are 59Mbps and 17Mbps, respectively). While we
have been failed to see any 4G sectors with DL user throughput more than 34Mbps, more than 75% of
5G sectors gain at least DL user throughput of 36Mbps. We also compare it with the DL user Carrier-
aggregation (CA) throughput of 4G sectors and find on average 203% increase. On the other hand,
comparing UL user throughput of 5G and 4G sectors indicates only in 7% of locations 5G sectors provide
more UL user throughput. Plus, we observe a 90% drop when comparing median UL user throughput of

5G with 4G in the 25% of the locations.

However, considering small UL data volume, throughput may not be a good measurement to evaluate
performance. This is because most of the traffic may only use a single TTI, and may be excluded from the
data volume counters. We note total amount of DL data volume per5Gsector is still 50% lower than 4G

Deliverable 5.1

 H2020 – 101017109

60

sectors. Meanwhile, the total number of connected 5G users, and DL active users are 97% and 72% less
than 4G (comparing their median).

4.4.4.3 Conclusions

In this section we explored the performance of an operational cellular network, relying on dataset D1.
We first analyzed the evolution of 5G sites, showing that an increase of 90.3% in the number of sites have
been achieved. Second, we analyzed the 5G network performance in terms of throughput. The most
interesting results are a 157% increase in DL with respect to 4G and the total amount of 5G DL data
volume 50% lower than 4G while the number of DL active users is just 72% lower than 4G. These results
suggests network traffic growth by adoption of 5G in the following years. In the second iteraton of the
project, we will build on these insights to build a data-driven approach to develop, implement and
experiment with radio resource management algorithms.

4.4.5 Multi-timescale network slice reservation (A14)

In this activity, we carry out simulation experiments to evaluate the performance of the Online Learning
for Reservations (OLR) algorithm and its extensions, proposed in Section 5.5.1 of Deliverable 3.1 [34], in
different scenarios. Specifically, a slicing market with the following properties is considered: the Network
Operator (NO) manages B cellular base stations connected through a backhaul network of 100 paths to
N = 20 core nodes with data processing and storage capabilities. Thus, the Service Provider (SP) reserves
slices with the following four resources: wireless and backhaul bandwidth, storage, and CPU capacity.
The maximum slice size of D units is determined by the scarcest of these resources. Two cases are studied,

based on the distribution of the parameters of interest (i.e., user needs and price evolution): Case 1:
parameters are uniformly distributed and Case 2: parameters are drawn from non-stationary process. For
the evaluation, average regret over time and constraint violation over time are used as metrics.

4.4.5.1 Main performance evaluation results

Figure 48, delineates the convergence of algorithm OLR for the two aforementioned cases, for K = 5 slots.
We observe that the average regret converges to zero and the constraint violation remains consistently
below zero. In Figure 49 there is a comparison between OLR and OLR for Mixed-Time Scale (OLR-MTS)
algorithms for Case 1 and 2, for different number of slots K. In OLR-MTS, we allow the policy to change
the "slots" decisions within the same period, whereas in OLR, the slots decisions are committed at the
beginning of the period. OLR-MTS performs better in both cases, which is rather expected, since the SP
updates its decisions as new information becomes available.

Finally, Figure 50 and Figure 51 concern the OLR Slice Orchestration (OLR-SO) algorithm, where the
provider is responsible for the slice composition. More precisely, in Figure 50, the convergence of OLR-SO
is presented for K = 5, while in Figure 51, different values of K are taken into account. For the latter,
constraint violation approaches 0 for Case 1 and has very small values for Case 2, while K increases.

Figure 48. Regret and violation convergence of OLR with B=10 base stations and K=5 slots.

Figure 49. Regret and violations comparison of OLR and OLR-MTS, for different values of slots K.

Deliverable 5.1

 H2020 – 101017109

61

Figure 50. Regret and violation convergence of OLR-SO with B=10 base stations and K=5 slots.

Figure 51. Regret and violations comparison of OLR-SO, for different values of slots K.

4.4.5.2 Conclusions

In this section we evaluated the performance of the proposed algorithms, for slice reservation, OLR and
its variants OLR-MTS and OLR-SO. The results shows the convergence of OLR and OLR-SO in both cases
analyzed. Furthermore, OLR-MTS performs better than OLR.

4.4.6 Testing EnergyEdgeCloudSim (A15)

In this section, we evaluate to what extent we can reduce energy consumption with the algorithms that
we have developed for EnergyEdgeCloudSim, its impact on the number of failed requests and the
scalability of our approach (K1 and K2). We construct an IoT scenario using the EnergyEdgeCloudSim
simulator to evaluate our approach. To simulate the edge workload, we use the Shanghai Telcom
dataset [53]. It contains six months of mobile phone records accessing the Internet via base stations
distributed over Shanghai city. The data set contains more than 7.2 million records from 9481 mobile
devices and 3233 base stations.

We consider an infrastructure formed by 14 edge devices with randomized characteristics. Concretely,
their maximal energy consumption is between 20 and 300 Watts; the idle energy consumption (𝛼)
between 20 and 50%, 𝑃𝑇𝑥 and 𝑃𝑅𝑥 between 1-3 Watts; the sleep energy consumption (β) between 0.01
and 0.5; the deployment energy consumption between 0.5-1 Joules; the instructions per second of the
CPU between 100000 and 300000 million; 𝑒𝑤 is 1 in all cases; the disk’s capacity between 200-1000 Gb;
and their RAM’s capacity between 8-32 Gb (we can deactivate all nodes). This randomization considers
that the most computationally powerful nodes are more energy-intensive. We make this assumption
because the CPU frequency is directly related to the energy consumption. In the same way, we
randomized the applications’ requirements (CPU, RAM, disk, data to send and receive) and repeated
experiments 30 times.

4.4.6.1 Dynamic energy consumption

Sometimes, other applications and users share the nodes that form the edge infrastructure, so they must
always be active. Thus, this section focuses on the reduction obtained only through the new orchestrator
policy, presented in Section 3.2.4. We compare the energy consumption using the Green fit policy with
the energy obtained by Best fit, first fit, random fit and fastest fit policies. Best fit and First fit are included
by default in EdgeCloudSim, while we have implemented Random fit and Fastest fit. In this scenario, the
nodes remain active all the time, being the reduction in consumption obtained part of the dynamic
energy consumption of the nodes.

Figure 52 shows the results in terms of energy consumption for the three periods of time considered and
compares it with our orchestration policy (Green fit). In all cases, our policy obtains a minor energy
consumption. Specifically, in our experiments, we have got a 1.6% reduction in the worst case (Random
fit, 2nd hour) and up to 15.9% in the best case (14th hour) compared with Fastest-fit. As expected, the
reduction in the energy consumption is significant for the 12th and 14th hours (the ones with more
requests) since we focus on the dynamic energy consumption, and it is directly related to the workload.
Regarding the execution time, predictably Fastest fit obtains the lowest service time on average, having
Green fit and Random fit similar service times on average. Note that all the assignments accomplish the

Deliverable 5.1

 H2020 – 101017109

62

applications’ requirements in terms of QoS. The number of failed requests is 0 in all cases, as the
infrastructure has resources enough to allocate the user requests.

Figure 52. Energy consumption and percentage of failed requests for each orchestration policy.

4.4.6.2 Dynamic and idle energy consumption

We apply our auto-scaling approach for the same infrastructure, set of applications, and periods. We
have selected the auto-scaling interval in one minute, and the orchestration policy used is Green fit.

Some workload datasets and predictive models provide information about the number of expected
requests, not about the applications demanded–as is our case [54]. Given that the number of resources
needed to meet these requests will depend on the required applications, we have elaborated four
different resource reservation policies. Suppose we expect ten requests in the following period, and we
handle six applications with an equal probability of being demanded. By likelihood, each application
would be required 1.66 times, which is impossible. Considering that each application is demanded once,
there will be four uncertain requests. So, we apply random assignment (it assigns the four remaining
requests randomly), an oversizing (it considers that each application is demanded twice) and a most/lest
resource demanding assignment. Note that our algorithm gives a solution for the worst-case scenario, in
which the entire workload arrives at once right after performing the auto-scaling process.

Figure 53 shows the average energy consumption and percentage of failed requests obtained with the
different resource reservation policies and operation modes. Concerning OM1 (left side), the second
hour is the period with the most failed requests, with 1.5% in the best case (Most and Least resource-
demanding policies, respectively). Experiments show a 24.8% decrease in the failed requests between

using the Most resource-demanding policy compared with Oversizing. The least resource-demanding
policy has the highest number of failed requests–and better energy consumption. Nevertheless, in the
12th and 14th hours, the Least resource-demanding policy obtains an affordable 1,5% (12th hour) and
1.8% (14th hour) of failed requests, with a decrease in the energy consumption of 14% and 13%
respectively when compared with Random policy, which is the second-best in terms of energy
consumption. These results mean that this policy could be a good choice in some scenarios. Regarding
OM2 (right side of Figure 53), the percentage of failed requests is 0 or almost 0 in most cases, 3% in the
worst case (2nd hour and Least resource-demanding policy). The energy consumption increases 26% on
average in comparison with OM1

Figure 53. Energy consumption and percentage of failed requests applying our auto-scaling approach
for OM1 (left) and OM2 (right).

4.4.6.3 Conclusions

Regarding energy consumption in edge-based infrastructure (K1 and K2), when the infrastructure nodes
are shared with other applications and users and cannot be deactivated, we have achieved a 15.9%
reduction in energy consumption. In this scenario, the more requests received, the more energy saved
(compared with other policies). Applying our auto-scaling approach, we have reduced the energy

Deliverable 5.1

 H2020 – 101017109

63

consumption by about 44% in the worst case, and up to 91% (Fastest fit compared with OM1 and Most
resource-demanding policy (failed requests: 1,4%), 2nd hour) when applied to a randomized scenario.
The factors that influence the lower energy consumption are the time the nodes remain idle, the lower
the workload and the extended downtime.

Regarding which policy performs best, decreasing energy consumption and minimizing the number of
failed deployments, the most significant reduction in energy consumption has been obtained using OM1
and the Least resource-demanding policy. Although this policy has received a high percentage of failed
requests for one of the periods evaluated (2nd hour), it has an affordable 1,5% and 1.8% of failed requests
in the two other periods considered. When the service must have high availability, the ENI’s resource-
preservative operation mode (OM2) obtains 0 or almost 0 failed requests in most cases.

4.4.7 Towards autonomous VNF scaling (A16)

The auto-scaling problem was introduced in deliverable D4.1 [46]. To recapitulate, a network application
can be deployed over multiple VNFs. The workload of that application can be generated by users or
from other applications. This workload enters a load balancer that distributes it according to some
weights among the active VNFs. Each VNF has a First In, First Out (FIFO) queue for processing the assigned
workload. When the queue is empty, the workload is processed immediately. If the workload cannot be
processed, it waits in the FIFO queue until it can be processed. Additionally, a monitor constantly delivers
usage metrics to a decision-making agent, which determines the amount of VNF replicas in an automatic
way. The auto-scaling problem can be defined as dynamically adding or removing VNF instances to
serve a variable workload [55]. In this section, we show the comparison of three auto-scaling mechanisms
that do not require any information about the workload and yet can dynamically adapt the number of
VNF instances while keeping them at a reasonable level without over- nor under-dimensioning the
problem. The three proposed methods are a Deep Reinforcement Learning (DRL) agent based on Q-
Learning, a Proportional–Integral–Derivative (PID) agent and a Threshold (THD)-based as a reactive
scaler. The agent’s definition details are shown in [56]. The evaluations are obtained using the simulator
described in Section 3.2.1.

4.4.7.1 System scenario

A decision-making agent interacts with the simulator (i.e., environment) in regular time ticks (time steps).
In practice, the agent communicates its scaling decision every tick and then waits until the monitor
module generates a new report. Once a report is ready, the agent will receive it and evaluate the impact
of its decisions. Moreover, the traffic generator (workload module in Figure 10) follows a known pattern
in data centers, as shown in Figure 54. Generally, the traffic to a data center is low at night and peaks
during working hours. This pattern repeats more or less during the weekday. The traffic is generated using:

𝑊(𝑡) = max (0, 300 ∙ (0.9 + 0.1 cos(𝜋 ∙ 𝑇 10⁄))

∙ (4 + 1.2 sin(2𝜋 ∙ 𝑇) − 0.6 sin(6𝜋 ∙ 𝑇) + 0.02(sin(503𝜋 ∙ 𝑇) − sin(709𝜋 ∙ 𝑇)))) + 5𝑁(𝑡) + 𝐼(𝑡)

Where 𝑇 =
𝑡

86400
, which re-expresses the time 𝑡 expressed in ticks (i.e., seconds) in 𝑇 days, the term

sin(2𝜋 ∙ 𝑇) introduces a daily pattern and sin(6𝜋 ∙ 𝑇) an 8h pattern. The rest of the terms introduce some
randomness so that this pattern does not repeat itself every day. In particular, 𝑁(𝑡) is a zero-mean, unit-
variance Gaussian random variable and 𝐼(𝑡) introduces exponentially decaying impulses on average
every 10 000s of average height 200 jobs lasting about 500s.

Figure 54. Complete workload trace used in activity A16.

Deliverable 5.1

 H2020 – 101017109

64

4.4.7.2 Models implementation

We implemented our DQN agent using Stable-Baselines3 (SB3) [57], a framework that implements
popular RL algorithms in Pytorch12. In the definition of the DQN agent, we used the default values given
by the SB3 framework. During training, the agent tries to maximize a reward function, if the peak latency
or the CPU usage of the active VNFs are within a tolerance range, the agent is rewarded; otherwise, the
agent is not rewarded. Typically, the agent is more likely to take actions that produced a reward in the
past by taking the actions that led to that situation (exploitation). However, the agent must take random
and possibly new actions (exploration) to discover the actions that maximize its reward.

On the other hand, the PID agent tries to keep the peak latency around 𝑑𝑡𝑔𝑡 = 20𝑚𝑠. The optimal values

for its parameters 𝛼 and 𝛽 were determined by an exhaustive search. The parameter space ((𝛼, 𝛽) was
sampled by letting 𝛼 range over the values {0.125; 0.25; 0.5; 1; 2; 4; 8} and 𝛽 over {50; 100; 200; 400}. Then
it was determined for which of all these combinations the latency was the least amount of time above

the tolerated upper bound of (1 + 𝜖)𝑑𝑡𝑔𝑡, when the PID agent controls the first part of the workload trace,

i.e., the training set. It turns out that if the training set spans the first day, the optimal parameters are
(𝛼, 𝛽) = (16, 200), while if the training set spans the first two days, the optimal parameters are (𝛼, 𝛽) =
(0.25, 200). In both these cases, the minimum is broad: relatively small changes in 𝛼 and 𝛽 do not alter the
number of latency violations drastically so that the choice of 𝛼 and 𝛽 is not critical.

4.4.7.3 Main results

To test the agents’ behavior in unseen workload traces, they were tested using the last 172.8K workload
values. It is important to notice that the DQN (and THD-based) agent and the PID agent use different
information as input. The former uses the instant peak latency and CPU load, while the latter uses the
instant and previous peak latency. Also, the RL agent learns automatically, while the PID agent is
manually tuned. Both of these facts mean that care should be taken when comparing the performance
of these agents.

Table 20. Comparison results of DQN, THD and PID agents in terms of number of VNFs and peak latency.

Metric Approach Mean Std Min 25% 50% 75% Max

Number of
VNFs

DQN 4.87 0.84 1 5 5 5 8

THD 4.32 1.25 1 3 4 5 17

PID 4.06 1.09 1 3 4 5 10

Peak
Latency [s]

DQN 0.0095 0.0025 0.0058 0.0088 0.0090 0.0093 0.0785

THD 0.0153 0.007 0.0058 0.0099 0.0118 0.0195 0.1432

PID 0.0198 0.0048 0.0033 0.0163 0.0194 0.0228 0.0689

Table 20 gives a quantitative analysis of the behavior by showing the main statistical figures: mean,
standard deviation, minimum, maximum, and the most representative quartiles of the peak latency and
number of created VNFs. As can be seen, the DQN can maintain a more stable number of created VNFs
than the PID and the THD-based agents. However, this is more a secondary effect since all the agents
are not designed to optimize the number of replicas. Regarding the peak latency, most of the time, all
the agents can keep this metric under the upper bound (24ms). Nonetheless, as shown in Table 21, the
PID agent violates the upper bound 16.57% of the time while, the THD-based and the DQN are reducing
the violations to 12.2% and 0.69%, respectively.

Table 21. SLA Violations from the DQN, THD and PID agents.

Approach % SLA Violations

DQN 0.69%

THD 12.20%

PID 16.57%

4.4.7.4 Conclusions

We designed and evaluated three autonomous scaling agents using known techniques such as
heuristics, classic control and RL. We compared the three agents in terms of the peak latency, the
amount of created VNFs, and the amount of SLA violations. However, choosing the applicable agent is
a task beyond only performance evaluation. It also depends on both business- and operational-related
conditions. On the one hand, a multi-tier SLA between stakeholders might show different amounts of
marginal penalty among agreed objectives, e.g., a high penalty even when slightly violating the
maximum service latency; therefore, the auto-scaler agent may have a higher chance to disregard the

12 https://pytorch.org/

Deliverable 5.1

 H2020 – 101017109

65

number of created VNFs. On the other hand, from the operational point of view, an operator might not
have the required hardware to support ML solutions. Therefore, a DRL agent is ruled out due to its
requirement to explore new actions to improve the reward, leading to unpredictable behavior on lower-
end hardware.

4.4.8 Auto scaling Virtualized RAN caches (A17)

In this activity, we evaluation the elastic femtocaching algorithms proposed in Section 6.2.2 of D4.1 [46],
by assessing their performance in a series of experiments with real data traces (D9).

4.4.8.1 Elastic femtocaching evaluation

Firstly, for the topology of BSs, we considered two cases in the simulations: (1) linear BS topology with
manual parameters; (2) real BS topology of a mobile operator on the west side of the US for rural,
suburban and urban areas, as shown in Figure 55, with real parameters. In order to analyze the

performance of the proposed General Algorithm with Joint Cache Rental and File Caching (GA+JCC)
and with Joint Cache Rental, File Caching and Routing (GA+JGCA), sum delay utilities of all subareas
are employed. The aforementioned elastic algorithms are compared with four known static algorithms,
namely Fixed Cache Lease Budget (FCB), Fixed File Caching (FFC), Least Recently Used (LRU), multi-LRU
and q-LRU and Least Frequently Used (LFU).

Figure 55. Rural and Suburban Deployment of BSs used in evaluation of vRAN rescaling Algorithm.

To delineate the impact of different parameters (variance of delay, mean traffic arrival, and variance of

pricing) on the system performance, we first show the simulation results in the linear BS topology, under
two scenarios: non-overlapping SBSs and overlapping SBSs. In the former case, as can be viewed from
Figure 56, GA with JCC is an optimal algorithm since the subarea-SBS association and content caching
is uncoupled. At the same time, GA+JGCA algorithm achieves a similar performance with the optimal
and they both outperform the existing static cache leasing algorithms in the case that the network
environments and pricing drastically change (i.e, the variation of input parameters becomes higher and
mean traffic arrival increases). For the latter case, GA+JGCA is the optimal algorithm since the subarea-
SBS association and content caching are tightly coupled with each other. Similar to the previous
scenario, the elastic cache leasing policies (GA+JCC and GA+JGCA) are much better than the existing
static cache leasing policies (FCB, FFC, LFU, LRU, multi-LRU, q-LRU). Results are depicted in Figure 57.

Figure 56. Sum utilities in linear BS topology case and non-overlapping SBSs scenario.

Deliverable 5.1

 H2020 – 101017109

66

Figure 57. Sum utilities in linear BS topology case and overlapping SBSs scenario.

Lastly, in Figure 58 the performance gain (i.e., the gain of sum delay utilities) of the proposed GA+JGCA
algorithm over static FCB algorithm and the proposed GA+JCC algorithm which uncouples routing and
caching decision is shown, for the real BS topology. There, the delay profile of each user from each BS is
more heterogeneous. Hence, for denser BS topologies (urban area), the impact of the elastic cache
leasing policy (i.e., GA+JGCA) on the system performance increases. Finally, joint control of cache
leasing, file caching and routing becomes more important as BS topology becomes denser. This
interpretation can be driven from the fact that as BS topology gets denser (i.e., from rural area to urban
area), the gain from the routing-caching the uncoupled solution, i.e., GA+JCC to the joint solution, i.e.,
GA+JGCA becomes higher.

Figure 58. Performance gain of the proposed algorithms under real BS topologies and SBSs scenarios.

4.4.8.2 Conclusions

In this section we evaluated the performance of two elastic femotchaching algorithms, namely GA+JCC
and GA+JGCA, by means of a comparison with four different static algorithms. Our results shows that our

proposed algorithms perform better than the static ones, which are outperformed in case the network
environment and pricing drastically change. Furthermore, GA+JGCA shows a performance gain
increase, against static algorithms and GA+JCC, as the BS deployment increases.

4.5 NI for automated anomaly response

Evaluation E5 aims at evaluating NI solutions for anomaly response. The DAEMON consortium performed

assessments of challenges and solutions related to E5 via activity A18 and A19. Table 22 summarizes the
tools, KPIs, TRL, PoC plans, approximate progress and main innovations of such activities.

Table 22. List of activities for E5.

ID Name Evaluation Tool
Planned

KPIs
Collected

KPIs
Target

TRL

Planned

for PoC

demo

Progress

A18
In-backhaul
learning

E5 D7 K3 None13 2 TBD 5%

 Main innovation: Inference fully performed in the user plane, at line rate, via programmable switches

A19

Anomaly
detection for a
roaming
platform

E5 D8 K3, K7 K7 5 Yes 60%

 Main innovation: Device-level anomaly detection for IoT verticals

13 At this level of the development, we have not collected any KPI yet for A18.

Deliverable 5.1

 H2020 – 101017109

67

Overall, the preliminary results of these activities already led to key observations on potential approaches
to NI-assisted anomaly detection in future-generation mobile networks, as follows.

• We demonstrate that traditional Random Forest models perform as a well as more complex

neural networks in classification and anomaly detection tasks in highly constrained user-plane

environments. The results of A18 pave the road for future steps in the project towards developing
NI models that are suitable for integration in programmable user planes. We will build on these
insights to design and implement NI models for line-rate inference during the second iteration of
the project.

• We show that NI models based on deep learning approaches can identify anomalies in the

network signaling data for roaming operations, which are not reported by legacy systems. To
achieve this result, we developed a methodology of measurement data analysis and clustering,
which allowed testing NI models with unprecedented real-world ground-truth data. The activities

in A19 thus pave the road for NI-assisted generation of alarms that the operations team of the
mobile network can study in real-time. The deployment of such solutions in a pre-production
system will be at the core of the work during the second iteration of the project for this activity.

As anticipated in Section 4.3, the consortium will also consider the possibility of merging E3 and E5 during
the second iteration of the project. This will be reflected in the next deliverable of WP5 in case the option
concretizes.

4.5.1 In-backhaul learning (A18)

DAEMON’s architecture addresses the challenge of meeting the very stringent requirements of beyond
5G services, in terms of throughput and latency, at different levels of the edge to core continuum. In
particular, we bring intelligence at the Transport level, to achieve a 1-ms response time of the NI
algorithms, targeting KPI K3. In this section, we present our study and our initial implementation of the
inference phase of supervised classification directly into the user plane of programmable switches. Our
study and considerations on the challenges represented by such implementations, due to hardware
limitations of the programmable switches, are described in section 7.1 of Deliverable 3.1 [34].

Figure 59. Summary of the different approaches for in-backhaul inference.

4.5.1.1 In-backhaul inference approaches

Given the limitations of programmable switches and smartNICs, all existing approaches in scope of our
study assume that computationally expensive training is performed offline; the problem is then deploying

the trained model entirely in the user plane, so as to achieve line-rate operation. Figure 59 offers a
comprehensive view of the workflow adopted by different proposed approaches to address such a
problem. Common to all approaches is a second stage in the control plane, where the trained model is
encoded for operation in the user plane, e.g., by rendering it via a network programming language such
as P4. Where proposals vary is in the family of machine learning models considered, and in the nature
of the programmable hardware targeted. In the following, we describe 4 different approaches.

i. Decision tree-based models on switches: Decision tree (DT) or Random Forest (RF) models [58,
59, 62, 63], with a relatively low complexity, are deployed the complete ML in a single off-the-

shelf switch. Hence, as shown in Figure 59, solutions like Planter [59] or pForest [58] let P4-
programmed DT and RF models process packets at line-rate using solely the match-action
pipelines of the switch. The different approaches are told apart by the way they map tree
structures to match-action tables.

ii. Neural networks on Switches: more complex DNN models have also been considered for in-
switch implementation, with the sole example of N2Net [64]. N2Net uses Binarized Neural Network
(BNN) models, which rely on +1/−1 weights and sign activations, enjoying a much reduced
memory footprint, thus more suitable for in-switch implementation than regular DNNs. As

Deliverable 5.1

 H2020 – 101017109

68

illustrated in Figure 59, the workflow is the same of DT and RF models above. The difference is the
mapping of the model to the match-action tables, which is specific to BNN architectures. In fact,
it is important to stress that even BNNs are onerous to deploy in-switch: a basic BNN with two
layers of 64 and 32 neurons would exhaust completely the resources of a Tofino ASIC [64].

iii. Neural Networks on SmartNICs: BNNs are integrated on SmartNICs. N3IC [65] realizes the
integration using both the micro-C language (for Netronome system-on-chip NICs) and P4 (for

NetFPGAs NICs configured with a PISA architecture). Figure 59 highlights how N3IC maps the ML
model to a SmartNIC hardware located in a server. The SmartNIC environment offers a good
amount of computational resources and increased memory size, which allow to implement a 3-
layer BNN that operates at line-rate. Yet, SmartNICs are deployed at network appliances that
reside in a host within the network datacenter, thus granting inference at specific locations of
the network only, and not at any point of the transport domain as with in-switch solutions.

iv. Neural networks on custom switches: dedicated hardware is added to switches or smartNICs to
implement complex DNN models. Taurus [66] framework employs a custom accelerator to
implement DNNs via flexible MapReduce operations. Taurus-enhanced switches grant complete
freedom in the deployment of ML models in user planes. However, Taurus’ adoption at scale
would require revisiting the user plane design of network transport domains, deploying significant
custom hardware next to already expensive programmable switches and smartNICs.

4.5.1.2 Comparative evaluation of ML models

We compared the different studies presented and assessed the performance of the solutions they
propose with assorted use cases and diverse traffic datasets. We tested the performance of the DT, RF,
DNN and BNN models parametrized according to the indications in the original works.

To ensure maximum fairness of the evaluation, we produce results for all use cases (that are publicly
available) explored in the original works presenting each inference model. This results into two traffic
classification tasks and three anomaly detection tasks, which correspond to the datasets D7, D11, D12,
D13, D14 described in Section 3.3. The results are summarized in

Figure 60. Results of the comparative evaluation of machine learning models used for in-band inference.
The best result for each use case and metric is highlighted in bold, the second best in blue. and are quite
manifest, as the DT, RF and NN models achieve performance that can be considered satisfactory across
all use cases, with F1-scores typically in the 95 − 100 range, and consistently good in all other metrics as
well. BNNs lag instead behind with less consistent and lower accuracy. A second takeaway is that all
metrics show nearly identical values under full and early flows approaches: since computing features on
early flows grants anticipated classification of traffic or detection of anomalies, the second strategy is
largely preferable in all considered use cases. Thirdly, and most importantly, RF emerges as the overall
winner of our comparative evaluation. The model is often the best performing one, or is a close second
otherwise.

Figure 60. Results of the comparative evaluation of machine learning models used for in-band
inference. The best result for each use case and metric is highlighted in bold, the second best in blue.

4.5.1.3 Conclusion and outlook

Our comparative analysis shows that RF models based on early flows are a promising candidate for
deployment of machine learning in the user plane, assuming that they can be efficiently integrated in

off-the-shelf programmable hardware. Whether this is the case is an open question that we aim to dispel
in the second part of our verification study. We plan to implement RF models in P4 and evaluate their
performance in bmv2 software switches and on real hardware, by exploiting testbed T12, described in
Section 3.1.12, and to report such results in the next deliverables of WP5.

Deliverable 5.1

 H2020 – 101017109

69

4.5.2 Anomaly detection for a roaming platform (A19)

In this activity, using the dataset D8 we previously introduced, we aim to test the performance of the
anomaly detection models we introduced in deliverable D4.1 [46]. Given the heterogeneity of signaling
behavior corresponding to the IoT devices we monitor, our methodology includes a clustering step that
allows us to run the anomaly detection models on devices with similar behavior under non-anomalous
circumstances. We detail this step next.

4.5.2.1 Clustering devices

We run the clustering algorithm on the test set to identify to which cluster each device belongs, and train
and apply the anomaly detection algorithm on each cluster independently. For the December 1st, 2019
– January 12th, 2020 period, the clustering algorithm divides the devices of the customer in three groups
accounting for 79%, 17% and 4% of the total amount of active devices, respectively. We report on the
distribution of the signaling volume of each cluster in Figure 61, where we show the distribution of the

average amount of daily messages per device. We observe that the third cluster is the one with highest
signaling frequency (with about 2,000 daily messages generated per device on average), and that
devices belonging to cluster one and two generate 24 and 215 average daily messages, respectively.

Figure 61. Clusters of devices: We find three groups of devices containing different amount of signaling
traffic each. Groups are well defined as the upper and lower quartiles of the boxplots do not overlap

between them in the vertical axis.

For each cluster, we obtain a ranked list of anomalies from each model, where top-most devices
correspond to detected anomalies. In the GMM model, devices are ranked based on the probability of
pertaining to the Gaussian distribution (lower values first). A low probability means the device behaves
different from the rest, likely being an anomaly. Regarding VAE models we use the KL divergence, which

corresponds to the difference between the learned latent space and the normal distribution 𝑁(0,1).
Being zero if the compared distributions are identical, and greater than zero depending on how much
they differ. The higher the KL divergence score, the more probable of being an anomaly.

4.5.2.2 Models performance evaluation

To evaluate our models, we built a meaningful and representative ground truth dataset by collecting
trouble SIMs from the network ticketing system (incidences occurred during our testing period) and
compute the accuracy of detecting those SIMs by each of four models. Our goal is not only detecting
already known incidences but missed anomalies that were not registered in the alarm system, but
because somebody reported them.

Due to the manner in which we choose to run our clustering, and also represent our data, we are able
to capture SIMs with aggressive behavior in terms of signaling. Specifically, in Table 23 we show a few
examples of tickets that reported anomalies related to the behavior of several SIMs active in Belgium.
We note that our deep learning models were able to capture these anomalies by generating a high
value of the KLD metric.

Table 23. Examples of anomalies we collected from the ticketinig system of the IPX operations team.

Devices Tickets date Description

10 SIMs in Belgium 2020-02-10 Aggressive sim behaviour against Belgium radio network.

5 SIMs 2020-02-10
URGENT (Recurrent) Ticket: Data connection is blocked for the device,
cannot establish data communications because of a erroneous alarm
of high data consumption.

2 SIMs 2020-02-10
Aggressive behavior of devices against the radio network provider in
Belgium. One device stopped the aggressive signaling, while the other
continues.

1 SIM 2020-02-11
2020-02-23

Long PING delay reported as an anomaly by the Client, was actually
the normal behavior for M2M SIM card and roaming scenario and works
as expected.

Deliverable 5.1

 H2020 – 101017109

70

10 SIMs in Belgium 2020-02-23 Aggressive signaling behaviour of devices in Belgium.

1 SIM in Canada 2020-02-23
Client trying to test one device in Canada using the indicated SIM, but
the device is not coming online.

4.5.2.3 Conclusions and future directions

Overall, we notice that the DL models are able to capture the aggressive signaling behavior of the IoT
devices in our dataset. We especially mention that our tool was able to draw the attention of the
operations team to the aggressive behavior of device in Belgium. This type of anomalies are indeed very
harmful to the local operator in Belgium, and as well to the IPX operator. In fact, the devices that our
approach tagged as anomalous were to blame for compromising the partnership agreements between
the home network of the SIMs and the local operator in Belgium.

Our next effort goes towards validating with the platform operations team a set of anomalies that only
our anomaly detection approaches were able to capture. For this, we monitor the evolution of the KLD
anomaly score to generate alarms for the operations team to study.

4.6 NI for capacity forecasting and self-learning

Evaluation E6 focuses on the evaluation of NI solutions for long-timescale operations, i.e., MANO, VNF
placement and the associated resource allocation. The DAEMON consortium performed assessments of
challenges and solutions related to E6 via activity A20 and A22. Table 24 summarizes the tools, KPIs, TRL,

PoC plans, approximate progress and main innovations of such activities.

Table 24. List of activities for E6.

ID Name
Evaluatio

n
Tool

Planne

d KPIs

Collected

KPIs

Target

TRL

Planned

for PoC

demo

Progress

A20
Anticipatory
capacity
allocation

E6 D1 K2, K4 K2, K4 3 No 60%

Main innovation: Anticipatory provisioning of network resources to individual network slices so as to avoid

underprovisioning while minimizing the unnecessary allocation of resources

A21
Virtual
Machine
reservation

E6 D1 K2, K9 K2, K9 3 No 40%

Main innovation: Prediction of the number of VMs that need to be allocated in advance to each NSSI, so as
to run the VNFs required to serve the demand generated by the corresponding mobile service

A22

Minimization of
video

streaming slice
OPEX

E6 D1 K4, K9 K4, K9 3 No 40%

Main innovation: Minimization of the monetary OPerating EXpenses (OPEX) associated to running the video
streaming slices at the network Edge

Overall, the preliminary results of these activities already led to observations on the performance of NI
solutions that can anticipate the allocation of resources in future-generation mobile networks, as follows.

• We prove how hybrid NI design that combine statistical modelling and machine learning can

outperform pure deep learning approaches in traditional resource allocation tasks. The activities

carried out in A20 showcase this in practical settings and with large-scale measurement data,
hence supporting further investigations of such a NI design strategy during the second iteration.

• We demonstrate that automating the design of loss functions for deep learning models can

largely benefit anticipatory networking tasks. Extensive tests in realistic settings and against state-
of-the-art benchmarks demonstrate the viability of this concept, as well as the potential

performance gains it can unlock. Both activities A21 and A22 contribute to the evaluation of
such an original model, setting forth important contributions towards practical IBN systems. The
results of A21 and A22 thus pave the road to refinements and enhancements of the loss-learning
paradigm during the second iteration of the project, whose results are expected to be presented
in the next deliverable of WP5.

4.6.1 Anticipatory capacity allocation (A20)

This activity targets a capacity forecasting scenario where anticipatory NI is in charge of the allocation
of network (e.g., compute, transport, memory) resources to individual network slices. Here, it is critical

Deliverable 5.1

 H2020 – 101017109

71

that the capacity prediction avoids all underestimation (which causes allocation of insufficient capacity
to slices, hence disruption of the service experienced by the end user) while minimizing overprovisioning
(determining an unnecessary allocation of resources that will ultimately go wasted).

The NI solution developed by the project to address this problem is named TES-RNN, and is outlined in
Section 4.1 of Deliverable 4.1 [46], where formal definitions of the target system and problem are also
provided. Here, we detail the evaluation settings and performance results.

We set the capacity allocation use case in a network core Cloud scenario, where a single large
datacenter runs VNFs for the traffic generated in the whole target region by four traffic-intensive mobile
applications, i.e., Facebook, Instagram, Snapchat and YouTube. The traffic demands for each service
are derived from dataset D3 described in Section 3.3.3. We assume that each service above is assigned
a dedicated network slice, and that the NI responsible for capacity allocation at the datacenter must
reserve in advance enough resources to accommodate the future demand of single slices. Therefore,

this setup allows evaluating how forecasting models such as the one we propose can assist NI in a multi-
service and multi-slice environment. In the following, we compare our proposed TES-RNN model against
three relevant benchmarks, as indicated in Section 4.1 of Deliverable 4.1 [46].

4.6.1.1 Overall capacity forecasting performance

Figure 62. Additional capacity allocation cost caused by INFOCOM19, RNN, ES-RNN, and TES-RNN
prediction errors. Results refer to four slices assigned to specific services at a network core datacenter.

We start by comparing the total costs incurred by the operator when using the different forecasting
models to support capacity allocation, in Figure 62. Costs are expressed as the percent excess over a
baseline given by an oracle that makes a perfect prediction, telling apart the fraction of the cost resulting
from resource overprovisioning and SLA violations. The key observation is that TES-RNN consistently
outperforms the benchmarks, with gains over the second-best solution that range between 8% and 25%,
as well as very low SLA violation probabilities.

4.6.1.2 In-depth analysis of one prediction instance

Figure 63. Time series of the real traffic of the Facebook slice, and of the relative capacity predictions of
INFOCOM19, RNN, ES-RNN and TES-RNN. Left: weekly time serie. Center: view of the 3:00-6:00 interval of
Tuesday, with SLA violation periods of ES-RNN in red. Right: zview of the 11:00-14:00 interval of Wednesday.

To gain additional understanding on the behaviors of the forecasting models presented above, we detail

a representative case of capacity prediction in Figure 63. The plots show the time series of the real traffic
in the Facebook slice, as well as the corresponding capacity allocation foreseen by each predictor.

The left plot portrays the traffic dynamics over a full week, and underscores how all models follow well
the long-timescale fluctuations of the demands, such as low overnight traffic or different activity peaks
during daylight. Center and right plots present a close-in view of two specific 3-hour periods, which are
evidenced by vertical shades in the left plot. The zoom magnifies how TES-RNN and ES-RNN help
dimensioning a capacity that is closer to the real demand than that anticipated by INFOCOM19 and

RNN, especially in low traffic conditions.

Deliverable 5.1

 H2020 – 101017109

72

4.6.1.3 Control of SLA violations

Figure 64. Left: Additional capacity allocation cost of INFOCOM19, RNN, ES-RNN, TES-RNN prediction

errors, versus  and for the Facebook slice. Right: Limits in terms of SLA violations and overprovisioning
costs that can be attained by TES-RNN, and the chosen benchmarks for the Facebook slice.

The results presented before are for one specific value of the parameter  that controls the equilibrium
of overprovisioning and SLA violation risk in the considered loss function (see Section 4.1.1 of Deliverable
4.1 [46] for details). The left plot in Figure 64 illustrates the capability of each model to enforce the desired
control above, for the case of the Facebook slice. We observe that TES-RNN yields again the best
performance in all settings. More importantly, it keeps the overall cost low by progressively decreasing

the occurrence of SLA violations as α grows, which is exactly the desired behavior. INFOCOM19 and RNN
can also achieve this result, however at a cost in terms of overprovisioning that is almost twice that of our

hybrid model. ES-RNN is instead unable to modulate the SLA violation cost, which in fact grows with .

The right plot of Figure 64 gives a view of the operating points of each forecasting method. TES-RNN offers
the best options to the operator, as it allows choosing among configurations that simultaneously provide
less SLA violations and lower overprovisioning costs than the benchmarks.

4.6.1.4 Conclusions

By enhancing a recently proposed method for joint optimization of statistical models and neural network
architectures, a hybrid model such as TES-RNN offers significant performance gains in anticipatory
networking tasks. When confronted with a practical application use cases characterized by real-world
traffic volumes and dynamics, TES-RNN granted gains up to 25% over state-of-the-art predictors that were
specifically designed for the target problem. These results lay solid foundations to further research on
hybrid approaches to NI design, which will be explored during the second iteration of the project.

4.6.2 Virtual Machine reservation (A21)

This activity focuses on a capacity forecasting use case centered around a core network datacenter
setting. There, different video streaming services are assigned individual and dedicated Network Slice
Subnet Instances (NSSI). The Virtual Infrastructure Manager (VIM) responsible for controlling datacenter
resources must predict the number of VMs that need to be allocated in advance to each NSSI, so as to
run the VNFs required to serve the demand generated by the corresponding mobile service. Clearly,
every VM has an operating cost (e.g., due to power consumption) so it is desirable that only the strictly
necessary set of VMs is reserved for each NSSI. The problem consists in developing a suitable NI to
manage VM reservations to accommodate future demands for each NSSI or, equivalently, service.

In order to perform our experiments, we employ traffic demands for each video streaming service from
Dataset D3 described in Section 3.3.3. Also, we emulate the actual operating costs of the datacenter
and the local VM management strategies with a realistic expression 𝑓ℳ for the management objective.
Note that such an expression may not be (fully) known by the network operator a priori, in which case
the NI needs to learn 𝑓ℳ from experience, i.e., by observing how the system responds to VM reservations
over time. The solution we devise for the NI algorithm is the Loss Learning Predictor, or LossLeaP, whose
architecture is detailed in Section 4.2 of Deliverable 4.1 [46], where more information on the expression

𝑓ℳ used in the tests are also provided.

We assume that the VM orchestration takes place every 5 minutes, which is thus the forecast horizon of
the predictor. We feed LossLeaP with past traffic information, and let it (i) learn an approximation of 𝑓ℳ
and, jointly, (ii) learn to produce a forecast 𝑑𝑡 that minimizes such 𝑓ℳ. We consider two benchmarks for
comparison, as follows.

• An Oracle predictor, which has perfect knowledge of the future and always allocates the
optimal minimum number of VMs to serve the upcoming demand.

• A legacy recurrent neural network (RNN) forecasting model trained to minimize a Mean Square
Error (MSE) loss. A downstream decision-making block uses the forecast to make VM reservations.
Details on the decision-making block are in Section 4.2 of Deliverable 4.1 [46].

Deliverable 5.1

 H2020 – 101017109

73

4.6.2.1 Comparative performance summary

Figure 65. VM reservation for diverse slices. Left: reserved VMs. Right: fraction of
time when the slice demand cannot be served.

Figure 65 summarizes the performance of LossLeaP in the considered case study. Even when fine-tuned,
a decision-making policy based on a legacy prediction is substantially less efficient than LossLeaP. Our

model allocates around the same VMs as legacy, but with an extremely limited under-provisioning that
is one or two orders of magnitude lower than that of legacy.

4.6.2.2 In-depth analysis of model performance

Figure 66. Example of VM reservation for the Facebook NSSI.

The reason is illustrated in Figure 66, for one sample NSSI, i.e., the Facebook video streaming service:

LossLeaP anticipates a constant overdimensioning at all times; instead, the solution based on the Legacy
predictor tends to allocate excess VMs during the high-traffic daylight hours, and does not leave a wide
enough safety margin overnight, when it allocates less VMs than Oracle, hence not servicing part of the
demand. Instead, LossLeaP learns that a static overprovisioning factor is not a good strategy to cope
with the inherent forecast inaccuracy, and automatically identifies a better loss to minimize the
(unknown) expression of 𝑓ℳ. By doing so, our proposed NI performs in fact fairly close to the Oracle.

4.6.2.3 Conclusions

Automating the design of loss functions for anticipatory reservation of VMs allows achieving significant
gains, with a 4x to 20x reduction of SLA violations due to the underprovisioning of VMs in a network core
datacenter. Our results are obtained in realistic settings and against a state-of-the-art benchmark.
Building on the excellent results achieved in this use case, we plan to refine and make more robust the
design of loss-learning architectures for NI in the second iteration of the project.

4.6.3 Minimization of video streaming slice OPEX (A22)

This activity casts the capacity forecasting problem in a mobile Edge environment where computational

facilities serve a large number of individual radio access base stations located in their proximity, so as to
reduce latency in service provisioning. As in the case of A17 presented in Section 4.6.2, we assume that
each of four video streaming services has a dedicated NSSI at the Edge facilities, and we derive realistic
traffic demands for such services from Dataset D3 described in Section 3.3.3. Here, the management
goal is minimizing the monetary Operating Expenses (OPEX) associated to running the video streaming
slices at the network Edge. This maps to an objective of periodically and preemptively rescaling the
compute resources assigned to each NSSI in a facility, to smoothly run the needed VNFs.

The ground-truth OPEX is emulated via a complex numerical model that takes advantage of real-world
measurements from studies in the literature and that relates the OPEX to the system variables. It is worth
noting that also in this case the expression of the objective involved and typically not known to the
operator in practical cases, since, e.g., the OPEX depends on the QoE and MOS of end users in entangled

Deliverable 5.1

 H2020 – 101017109

74

ways. This makes LossLeaP a suitable forecasting model to support a NI for compute resource allocation
in the target scenario. Details on the system and OPEX models are in Section 4.3 of Deliverable 4.1 [46].

We compare the proposed LossLeaP solution against two benchmarks, as follows: (i) an Oracle predictor
that knows the future and OPEX model, and returns an optimal allocation; (ii) DeepCog, a state-of-the-
art capacity predictor [60] for capacity forecasting, whose manually designed loss function is configured
with prior knowledge of the OPEX model.

4.6.3.1 Comparative performance summary

Figure 67. OPEX performance in the Facebook Live slice case. Left:
overall cost. Right: loss function learned by LossLeaP.

For the sake of brevity, we only show results for the Facebook Live NSSI, in the left plot of Figure 67, yet
performances are homogeneous across services. All costs are relative to that of the minimum static
capacity allocation that always services the full demand, and are shown for different parametrizations
of the OPEX model (along the x axis). Despite the fact that we feed it with information about the true
parameters used in the OPEX model, DeepCog is still constrained by its unflexible and manually designed
loss function. Instead, LossLeaP can autonomously learn a much better loss, which results in a reduced
cost closer to the Oracle one.

4.6.3.2 In-depth analysis of the learned loss function

The right plot of Figure 67 offers a glance at the fairly complex loss function captured by the loss-learning
DNN of LossLeaP: even if full knowledge of the numerical OPEX models were available, manually devising
the shape in the plot would be an exacting task. Our proposed approach effectively automates such
design, which lays an important stone in the path to more efficient NI for capacity forecasting and

network management in beyond 5G systems.

4.6.3.3 Conclusions

Similarly to what observed in Section 4.6.2, loss-learning models can effectively support NI also in the case
of resource allocations that target the reduction of OPEX (expressed here as a combination of the costs
of end-user QoE disruption and SLA violations). Experiments with real-world measurement data prove the
significant advantage that a loss-learning approach yields over a state-of-the-art capacity predictor.
These results will also feed the improved design of loss-learning architectures during the second iteration
of the project.

4.7 NI to configure a Reconfigurable Intelligent Surface

Evaluation E7 targets on the assessment of NI solutions for the control of Reconfigurable Intelligent
Surfaces (RIS). The DAEMON consortium performed assessments of challenges and solutions related to E7

via activity A23. Table 25 summarizes the tools, KPIs, TRL, PoC plans, approximate progress and main
innovations of such activity.

Table 25. List of activities for E7.

ID Name Evaluation Tool
Planne

d KPIs

Collected

KPIs

Target

TRL

Planned
for PoC

demo

Progress

A23

Reconfigurabl
e Intelligent
Surfaces
Prototype

E7 T9 K5, K6 None 3 Yes 10%

 Main innovation: Increase spectrum capacity by using reconfigurable reflectors

Deliverable 5.1

 H2020 – 101017109

75

A single activity is devoted to the evaluation of NI for RIS control. This is due to the fact that this activity
was originally included in E1 in the DoA. However, the high specificity of the Beyond Edge domain that
RIS create is not aligned with the characteristics of the more traditional vRAN environments targeted in
E1: this pushed the introduction of a new and highly focused evaluation E7, dedicated to RIS control only.
Although the effort on E7 is expected to be much lower than on other evaluations of more mature
network technologies, isolating the activity of RIS allows for more correct and consistent separation of
the evaluations across network domains. The current progress of the single activity A23 is detailed next.

4.7.1 Reconfigurable Intelligent Surfaces Prototype (A23)

This activity involves experimental work for the control of RIS. At this stage, the activity has essentially
focused on developing testbed T9, which is described in detail in Section 3.1.9. Although no actual
evaluation has been carried out yet using T9, the experience matured by implementing the platform
itself has proven very useful to understand the characteristics of a real-world RIS system, which will be key

during the second iteration of the RIS-related work in the project. Experiment for RIS control will be carried
out during such a second iteration and will be reported in the next WP5 deliverable.

Deliverable 5.1

 H2020 – 101017109

76

5 Conclusion and outlook
In this document, we presented the preliminary results of WP5 work on the evaluation of the performance,
sustainability and reliability of the NI-solutions developed in WP3 and WP4. We validated such solutions
against 9 target KPIs, which have been measured and assessed by a comprehensive set of 7 evaluations
involving technical tools such experimental testbeds, simulators or emulators, and datasets.

In Evaluation E1, we focused on real-time control and non-real-time orchestration of vRAN services &
resources. We report three main observations: i) gaps are present in the usage of shared resources across
pools of DUs which calls for a redesign of the DU pipeline and for NI-driven approaches to limit the
employment of costly and energy-consuming hardware accelerators, which actual implementations will
be presented in the next WP5 deliverable; ii) there may be still space for improvement in the absolute
performance of the different strategies for traffic classification in the vRAN that we compared, which will

be eventually reported in the next WP5 deliverable; iii) specific NI algorithms need to be designed to
cope with the power consumption of vBSs, as it is much more complicated than what assumed in
literature and it is linked to end-user QoS in intricated ways.

In Evaluation E2, we focused on NI solutions to support network slice management & orchestration
operations. Our main contributions are two: i) the development of two solutions to tackle the challenging
problem of making VNF placement more energy friendly in complex mobile Edge settings; ii) the
development of a complete framework for NI-assisted MANO, putting together a number of components
that will be actually implemented and integrated during the second iteration of the project.

In Evaluation E3, we focused on NI solutions that support anomaly detection in real-time in both
controlled environments and in a production core network. As a single activity is targeting E3, and due
its proximity with Evaluation E5, the consortium is considering the option to merge this evaluation with E5
in the second iteration of the project. This decision will be reflected in the next deliverable of WP5.

In Evaluation E4, we targeted NI solutions for service orchestration and resource allocation algorithms in
the Edge micro-domain. Three are the main lines of activities that we report: i) improved, flexible and
automated management & orchestration of Edge resources based on NI solutions; ii) study of the impact
of NI solutions on the management of specific mobile services in sliced Edge environments; iii)
comprehensive comparative assessments of different types of NI models, including based on statistical,
control and machine learning tools, for Edge orchestration.

In Evaluation E5, we aimed at evaluating NI solutions for anomaly response. We report two main
achievements: i) we demonstrated that traditional Random Forest models perform as a well as more
complex neural networks in classification and anomaly detection tasks in highly constrained user-plane
environments, and we will build on such insights to implement NI models for line-rate inference in the
second iteration of the project; ii) we paved the way for NI-assisted alarm generation (whose integration

in a pre-production system will be at the core of the second iteration of the project) based on deep
learning approaches that can identify anomalies in the signaling data for roaming operations.

In Evaluation E6, we focused on the evaluation of NI solutions for long-timescale operations, i.e., MANO,
VNF placement and the associated resource allocation. We report two main achievements: i) we proved
that hybrid NI design combining statistical modelling and ML can outperform pure deep learning
approaches in resource allocation tasks; ii) we demonstrated that anticipatory networking tasks can
largely benefit from the automation of the design of loss functions for deep learning models.

In Evaluation E7, we targeted the assessment of NI solutions for the control of Reconfigurable Intelligent
Surfaces (RIS). Although no actual evaluation has been yet carried out in the only activity included in E7,
it has been possible to understand the characteristics of a real-world RIS system by implementing the
testbed T9. Experiments for RIS control will be carried out during the second iteration of the project.

Deliverable 5.1

 H2020 – 101017109

77

6 References

[1] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and X. Costa-Perez, ‘Optimising
5G infrastructure markets: The business of network slicing’, in IEEE INFOCOM 2017 - IEEE Conference
on Computer Communications, May 2017, pp. 1–9, doi: 10.1109/INFOCOM.2017.8057045.

[2] M. Masoudi et al., ‘Green Mobile Networks for 5G and Beyond’, IEEE Access, vol. 7, pp. 107270–
107299, 2019, doi: 10.1109/ACCESS.2019.2932777.

[3] E. Ahvar, A.-C. Orgerie, and A. Lébre, ‘Estimating Energy Consumption of Cloud, Fog and Edge
Computing Infrastructures’, IEEE Trans. Sustain. Comput., pp. 1–1, 2019, doi:
10.1109/TSUSC.2019.2905900.

[4] J.-M. Horcas, M. Pinto, and L. Fuentes, ‘Context-aware energy-efficient applications for cyber-
physical systems’, Ad Hoc Netw., vol. 82, pp. 15–30, Jan. 2019, doi: 10.1016/j.adhoc.2018.08.004.

[5] D. Bega, A. Banchs, M. Gramaglia, X. Costa-Perez, and P. Rost, ‘CARES: Computation-Aware
Scheduling in Virtualized Radio Access Networks’, IEEE Trans. Wirel. Commun., vol. 17, no. 12, pp.
7993–8006, Dec. 2018, doi: 10.1109/TWC.2018.2873324.

[6] J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez, A. Banchs, and J. J.
Alcaraz, ‘vrAIn: A Deep Learning Approach Tailoring Computing and Radio Resources in Virtualized
RANs’, in The 25th Annual International Conference on Mobile Computing and Networking, Los
Cabos, Mexico, Oct. 2019, pp. 1–16, doi: 10.1145/3300061.3345431.

[7] I. Yoo, M. F. Imani, T. Sleasman, H. D. Pfister, and D. R. Smith, ‘Enhancing Capacity of Spatial
Multiplexing Systems Using Reconfigurable Cavity-Backed Metasurface Antennas in Clustered

MIMO Channels’, IEEE Trans. Commun., vol. 67, no. 2, pp. 1070–1084, Feb. 2019, doi:
10.1109/TCOMM.2018.2876899.

[8] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, ‘DeepCog: Cognitive Network
Management in Sliced 5G Networks with Deep Learning’, Apr. 2019.

[9] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, ‘AZTEC: Anticipatory Capacity
Allocation for ZeroTouch Network Slicing’, presented at the IEEE INFOCOM 2020 - IEEE Conference
on Computer Communications, Apr. 2019.

[10] I. Yoo, M. F. Imani, T. Sleasman, H. D. Pfister, and D. R. Smith, ‘Enhancing Capacity of Spatial
Multiplexing Systems Using Reconfigurable Cavity-Backed Metasurface Antennas in Clustered
MIMO Channels’, IEEE Trans. Commun., vol. 67, no. 2, pp. 1070–1084, Feb. 2019, doi:
10.1109/TCOMM.2018.2876899.

[11] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, ‘GANomaly: Semi-Supervised Anomaly
Detection via Adversarial Training’, ArXiv180506725 Cs, Nov. 2018, Accessed: Jun. 09, 2020. [Online].
Available: http://arxiv.org/abs/1805.06725.

[12] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, ‘DeepCog: Optimizing Resource

Provisioning in Network Slicing With AI-Based Capacity Forecasting’, IEEE J. Sel. Areas Commun., vol.
38, no. 2, pp. 361–376, Feb. 2020, doi: 10.1109/JSAC.2019.2959245.

[13] Rodolphe Legouable. (2021). D2.3 Final 5G-EVE end to end facility description (1.0). Zenodo.
https://doi.org/10.5281/zenodo.5070253.

[14] Tsung-Yi Lin et al. 2015. Microsoft COCO: Common Objects in Context.
arXiv:1405.0312.

[15] P. Mursia, V. Sciancalepore, A. Garcia-Saavedra, L. Cottatellucci, X. C. Pérez and D. Gesbert,
"RISMA: Reconfigurable Intelligent Surfaces Enabling Beamforming for IoT Massive Access," in IEEE
Journal on Selected Areas in Communications, vol. 39, no. 4, pp. 1072-1085, April 2021, doi:
10.1109/JSAC.2020.3018829.

[16] T. Song et al., “Performance evaluation of integrated smart energy solutions through large-scale
simulations,” in 2011 IEEE International Conference on Smart Grid Communications
(SmartGridComm). IEEE, 2011, pp. 37–42 https://github.com/Olivier-Boudeville-EDF/Sim-Diasca.

[17] https://openairinterface.org/.
[18] https://p4.org/.
[19] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment for performance evaluation

of edge computing systems,” Transactions on Emerging Telecommunications Tech- nologies, vol.
29, no. 11, p. e3493. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3493.

[20] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation for multi-server mobile-edge
computing networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 856–868, Jan
2019.

[21] EuropeanUnion.2016.EUGeneralDataProtectionRegulation(GDPR):Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data ProtectionRegulation).
RetrievedOctober18,2021fromhttps://gdpr-info.eu/.

[22] J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez and G. Iosifidis, "Bayesian Online Learning
for Energy-Aware Resource Orchestration in Virtualized RANs," IEEE INFOCOM 2021 - IEEE Conference
on Computer Communications, 2021, pp. 1-10, doi: 10.1109/INFOCOM42981.2021.9488845.

http://arxiv.org/abs/1805.06725
https://doi.org/10.5281/zenodo.5070253
https://github.com/Olivier-Boudeville-EDF/Sim-Diasca
https://openairinterface.org/
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3493

Deliverable 5.1

 H2020 – 101017109

78

[23] Francesc Wilhelmi. (2020). [ITU-T AI Challenge] Input/Output of project "Improving the capacity of
IEEE 802.11 WLANs through Machine Learning" [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.4106127.

[24] Barrachina-Munoz, S., Wilhelmi, F., Selinis, I., & Bellalta, B. (2019, April). Komondor: A wireless network
simulator for next-generation high-density WLANs. In 2019 Wireless Days (WD) (pp. 1-8). IEEE.

[25] https://www.itu.int/en/ITU-T/AI/challenge/2020/Pages/default.aspx.
[26] IEEE. TGax Simulation Scenarios. Doc.: IEEE 802.11-14/0980r16. 2015. Available online:

https://mentor.ieee.org/802.11/dcn/14/11-14-0980-16-00ax-simulation-scenarios.docx.
[27] Adame, T., Carrascosa, M., Bellalta, B. The TMB path loss model for 5 GHz indoor WiFi scenarios: On

the empirical relationship between RSSI, MCS, and spatial streams. In Proceedings of the 2019
Wireless Days (WD), Manchester, UK, 24–26 April 2019; pp. 1–8.

[28] Barrachina-Muñoz, S.; Wilhelmi, F.; Bellalta, B. Dynamic Channel Bonding in Spatially Distributed High-
Density WLANs. IEEE Trans. Mob. Comput. 2020, 19, 821–835.

[29] I. Sharafaldin, A. Habibi Lashkari and Ali A. Ghorbani, “Toward Generating a New Intrusion Detection
Dataset and Intrusion Traffic Characterization”, 4th International Conference on Information
Systems Security and Privacy (ICISSP), Portugal, January 2018 .

[30] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube network traffic at a campus network
- Measurements, models, and implications,” Elsevier Comput. Netw., vol. 53, no. 4, pp. 501–514, Mar.
2009.

[31] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, X. Yang, A survey on the edge computing for the
internet of things, IEEE Access 6 (2018)6900–6919. doi:10.1109/ACCESS.2017.2778504.

[32] Phoronix Test Suite details: https://openbenchmarking.org/tests/pts.
[33] GEC Numerical variability model download as Clafer model:

https://hadas.caosd.lcc.uma.es/edgenvmfgcs.txt.
[34] M. Gramaglia et al., “Initial design of real-time control and VNF intelligence mechanisms”, DAEMON

deliverable D3.1.
[35] Samsung. 2019. Virtualized Radio Access Network: Architecture, Key technologies and Benefits.

Technical Report (2019).
[36] Rethink Technology Research. 2020. Special Report: Open Networks. Technical Report (2020).
[37] NGMN Alliance. 2019. 5G E2E Technology to Support Verticals URLLC Requirements.
[38] F. Kaltenberger, A. P. Silva, A. Gosain, L. Wang, and T. Nguyen. 2020. OpenAirInterface:

Democratizing innovation in the 5G Era. Computer Networks (2020), 107284.
[39] J. Ding, R. Doost-Mohammady, A. Kalia, and L. Zhong. 2020. Agora: Real-time massive MIMO

baseband processing in software. In Proceedings of ACM CoNEXT ’20. ACM.
[40] Samsung. 2019. Virtualized Radio Access Network: Architecture, Key technologies and Benefits.

Technical Report (2019).
[41] Wang Tsu Han and Raymond Knopp. 2018. OpenAirInterface: A pipeline structure for 5G. In 2018

IEEE 23rd International Conference on Digital Signal Processing (DSP). IEEE, 1–4.
[42] J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa Perez, A. Banchs, and J. J. Alcaraz.

2020. vrAIn: Deep Learning based Orchestration for Computing and Radio Resources in vRANs. IEEE
Transactions on Mobile Computing (2020), 1–1. https://doi.org/10.1109/TMC.2020.3043100.

[43] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano, C. Cano, and D. J Leith. 2016.
srsLTE: an open-source platform for LTE evolution and experimentation. In Proceedings of the Tenth
ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation, and
Characterization. 25–32.

[44] Y. Sun and J. R Cavallaro. 2011. A flexible LDPC/turbo decoder architecture. Journal of Signal
Processing Systems 64, 1 (2011), 1–16.

[45] O-RAN Alliance. 2020. Cloud Architecture and Deployment Scenarios for O-RAN Virtualized RAN
v02.01 (O-RAN.WG6.CAD-v02.01). Technical Report.

[46] D. De Vleeschauwer et al., "Initial design of intelligent orchestration and management
mechanisms", DAEMON deliverable D4.1.

[47] G. Garcia-Aviles, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez, P. Serrano, A. Banchs. Nuberu:
Reliable RAN Virtualization in Shared Platforms. In ACM MobiCom, 2021.

[48] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner. 2015. Performance-Influence Models for Highly
Configurable Systems. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Computing Machinery, New York, NY,
USA, 284–294. https://doi.org/10.1145/2786805.2786845.

[49] Martin Bauer. 2019. A Comparison of Six Constraint Solvers for Variability Analysis. Technical Report.
University of Passau.

[50] C. Sundermann, T. Thüm, I. Schaefer, Evaluating #sat solvers on industrial feature models, in:
Proceedings of the 14th Int. Conference on Variability Modelling of Software-Intensive Systems,
VAMOS ’20, ACM, New York, NY, USA, 2020.

[51] M. Amor and L. Fuentes, "Energy-efficient Deployment of IoT Applications in Edge-based
Infrastructures: A Software Product Line Approach," in IEEE Internet of Things Journal, doi:
10.1109/JIOT.2020.3030197.

https://doi.org/10.5281/zenodo.4106127
https://www.itu.int/en/ITU-T/AI/challenge/2020/Pages/default.aspx
https://mentor.ieee.org/802.11/dcn/14/11-14-0980-16-00ax-simulation-scenarios.docx
https://openbenchmarking.org/tests/pts
https://doi.org/10.1109/TMC.2020.3043100
http://agsaaved.github.io/publication/2021_ggarcia_mobicom_nuberu/
http://agsaaved.github.io/publication/2021_ggarcia_mobicom_nuberu/
https://doi.org/10.1145/2786805.2786845

Deliverable 5.1

 H2020 – 101017109

79

[52] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang and D. Niyato, "Federated Learning for 6G
Communications: Challenges, Methods, and Future Directions," China Communications, Special
Issue: “6G Mobile networks: Emerging technologies and applicaitons, September 2020.

[53] S. Telecom. (2018) The telecom dataset. [Online]. Available:
http://sguangwang.com/TelecomDataset.html.

[54] K. Djemame and A. Aljulayfi, “A machine learning based context-aware prediction framework for
edge computing environments,” pp. 143–150, April 2021. [Online]. Available:
https://eprints.whiterose.ac.uk/173188/.

[55] ETSI, “Network Functions Virtualisation (NFV); Management and Orchestration,” ETSI, Specification,
2014. [Online]. Available: https://www.etsi.org.

[56] P. Soto, D. De Vleeschauwer, M. Camelo, et. al., “Towards Autonomous VNF Auto-scaling using
Deep Reinforcement Learning,” 2021 Eight International Conference on Software Defined Systems
(SDS), to be published.

[57] A. Raffin et al., “Stable baselines3,” https://github.com/DLR-RM/stable-baselines3, 2019.
[58] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Vanbever. 2019. pForest: In-Network

Inference with Random Forests. CoRR abs/1909.05680 (2019). arXiv:1909.05680
http://arxiv.org/abs/1909.05680.

[59] C. Zheng and N. Zilberman. 2021. Planter: Seeding Trees within Switches. Association for Computing
Machinery, New York, NY, USA, 12–14. https://doi.org/10.1145/3472716.3472846.

[60] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “Deepcog: Cognitive network
management in sliced 5g networks with deep learning,” in IEEE INFOCOM 2019 - IEEE Conference
on Com- puter Communications, 2019, pp. 280–288.

[61] J. Marquez-Barja et al., “Smart Highway : ITS-G5 and C2VX based testbed for vehicular
communications in real environments enhanced by edge/cloud technologies,” in 2019 European
Conference on Networks and Communications (EuCNC), Abstracts, Valencia, Spain, 2019.

[62] Jong-Hyouk Lee and Kamal Preet Singh. 2020. SwitchTree: in-network computing and traffic
analyses with Random Forests. Neural Computing and Applications (2020), 1–12.

[63] Zhaoqi Xiong and Noa Zilberman. 2019. Do Switches Dream of Machine Learning? Toward In-
Network Classification. In Proceedings of the 18th ACM Workshop on Hot Topics in Networks
(Princeton, NJ, USA) (HotNets ’19). Association for Computing Machinery, New York, NY, USA, 25–33.
https://doi.org/10.1145/3365609.3365864.

[64] Giuseppe Siracusano and Roberto Bifulco. 2018. In-network Neural Networks. CoRR abs/1801.05731
(2018). arXiv:1801.05731 http://arxiv. org/abs/1801.05731.

[65] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh, Hamed Haddadi,
Gianni Antichi, and Roberto Bifulco. 2022. Re-architecting Traffic Analysis with Neural Network
Interface Cards. In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI
22). USENIX Association, Renton, WA. https:

//www.usenix.org/conference/nsdi22/presentation/siracusano.
[66] Muhammad Shahbaz Ishan Gaur Tushar Swamy, Alexander Rucker and Kunle Olukotun. 2022.

Taurus: A Data Plane Architecture for Per-Packet ML. Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems (2022).

[67] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Rad ford, Chamith Wijenayake,
Arun Vishwanath, and Vijay Sivaraman. 2019. Classifying IoT Devices in Smart Environments Using
Network Traffic Characteristics. IEEE Transactions on Mobile Computing 18, 8 (2019), 1745–1759.
https://doi.org/10.1109/TMC.2018.2866249.

[68] Maurizio Dusi, Manuel Crotti, Francesco Gringoli, and Luca Salgarelli. 2008. Detection of Encrypted
Tunnels Across Network Boundaries. 2008 IEEE International Conference on Communications (2008),
1738– 1744. http://netweb.ing.unibs.it/~ntw/tools/traces/.

[69] Alice Este, Francesco Gringoli, and Luca Salgarelli. 2011. On-line SVM traffic classification. In 2011
7th International Wireless Communications and Mobile Computing Conference. 1778–1783.
https://doi.org/10.1109/ IWCMC.2011.5982804.

[70] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. 2009. A detailed analysis of the
KDD CUP 99 data set. In 2009 IEEE Symposium on Computational Intelligence for Security and

Defense Applications. 1–6. https://doi.org/10.1109/CISDA.2009.5356528.
[71] Nour Moustafa and Jill Slay. 2015. UNSW-NB15: a comprehensive data set for network intrusion

detection systems (UNSW-NB15 network data set). In 2015 Military Communications and Information
Systems Conference (MilCIS). 1–6. https://doi.org/10.1109/MilCIS.2015.7348942.

[72] Nour Moustafa and Jill Slay. 2016. The Evaluation of Network Anomaly Detection Systems: Statistical
Analysis of the UNSW-NB15 Data Set and the Comparison with the KDD99 Data Set. Inf. Sec. J.: A
Global Perspective 25, 1–3 (apr 2016), 18–31. https://doi.org/10.1080/19393555. 2015.1125974.

http://sguangwang.com/TelecomDataset.html
https://eprints.whiterose.ac.uk/173188/
https://www.etsi.org/
http://arxiv.org/abs/1909.05680
https://doi.org/10.1145/3472716.3472846
https://doi.org/10.1145/3365609.3365864
http://netweb.ing.unibs.it/~ntw/tools/traces/
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1109/MilCIS.2015.7348942

	1 Introduction
	2 Target KPIs and evaluations
	2.1 Target KPIs
	2.2 Evaluations

	3 Technical tools
	3.1 Experimental testbed sites
	3.1.1 Virtualised radio stack (T1)
	3.1.2 5Tonic (T2)
	3.1.3 Multi-site 5G radio testbed (T3)
	3.1.4 Smart highway (T4)
	3.1.5 Software-Defined Radio (SDR) testbed with power meter (T5)
	3.1.6 Cloud-native mobile network emulators (T6)
	3.1.7 VNF deployment and Edge Infrastructure (T7)
	3.1.8 Virtualized platform, OSM and open stack (T8)
	3.1.9 Reconfigurable Intelligent Surfaces (T9)
	3.1.10 Eclipse Zenoh testbed (T10)
	3.1.11 Network capabilities and cloud resources testbed (T11)
	3.1.12 P4 programmable testbed for in-backhaul NI (T12)

	3.2 Simulators and emulators
	3.2.1 Edge/Cloud simulator (S1)
	3.2.2 P4 programmable RAN (S2)
	3.2.3 System-level simulator (S3)
	3.2.4 EnergyEdgeCloudSim (S4)

	3.3 Datasets
	3.3.1 MNO radio performance (D1)
	3.3.2 End-user performance (D2)
	3.3.3 Service-level traffic demand (D3)
	3.3.4 vRAN performance and power consumption (D4)
	3.3.5 Edge dataset (D5)
	3.3.6 Wireless interactions in multiple BSS using Channel Bonding (D6)
	3.3.7 Intrusion Detection Evaluation Dataset (D7)
	3.3.8 IPX Signaling Dataset for IoT (D8)
	3.3.9 YouTube file requests (D9)
	3.3.10 GEC case study (D10)
	3.3.11 IoT devices dataset (D11)
	3.3.12 Applications and protocols dataset (D12)
	3.3.13 Malicious attacks dataset (D13)
	3.3.14 Malicious packets dataset (D14)

	4 Results
	4.1 NI for sustainable virtualized RANs
	4.1.1 Reliable distributed unit for virtualization (A1)
	4.1.1.1 Reliability of the baseline pipeline
	4.1.1.2 Timing Constraints
	4.1.1.3 Inter-task dependencies
	4.1.1.4 Non-deterministic tasks
	4.1.1.5 Conclusion and outlook

	4.1.2 AI-driven O-Cloud (A2)
	4.1.2.1 Limits of hardware accelerators for vRAN
	4.1.2.2 Conclusions and outlook

	4.1.3 Application aware radio scheduling (A3)
	4.1.3.1 K nearest neighbors algorithm
	4.1.3.2 Feed forward neural network
	4.1.3.3 Conclusions

	4.1.4 AI-aided energy-driven RAN orchestration (A4)
	4.1.4.1 BBU/CPU Power Cost & Impact of Platform
	4.1.4.2 Impact of SNR & MCS
	4.1.4.3 Configuration Options & Impact of Scheduler
	4.1.4.4 Conclusions

	4.1.5 AI-aided RAN/edge orchestration (A5)
	4.1.5.1 GPU-enabled Edge server for mobile video analytics
	4.1.5.2 Latency and precision
	4.1.5.3 Including power consumption in the picture
	4.1.5.4 Conclusions

	4.2 NI for VNF placement and control
	4.2.1 Energy-aware deployment of VNFs for genenric Edge computing (A6)
	4.2.1.1 Generic Edge computing case study
	4.2.1.2 Comparative analysis
	4.2.1.3 Conclusions and future work

	4.2.2 Combining VNFs at the edge (A7)
	4.2.2.1 Campus-wide cyber physical system use case
	4.2.2.2 Algorithm performance
	4.2.2.3 Conclusions

	4.2.3 AI-enhanced MANO (A8)
	4.2.3.1 Platform components
	4.2.3.2 Plartform architectural design
	4.2.3.3 Summary and future work

	4.3 NI for real-time anomaly detection
	4.3.1 Federated Learning-based Anomaly Detection (A9)
	4.3.1.1 Anomaly detection in presence of shared sources
	4.3.1.2 An architecture of FL anomaly detection
	4.3.1.3 Summary and future steps

	4.4 NI for Edge orchestration
	4.4.1 Video analytics with edge computing (A10)
	4.4.1.1 Video frame recognition at the mobile edge
	4.4.1.2 Overall performance
	4.4.1.3 Generalization to additional settings
	4.4.1.4 Conclusions

	4.4.2 Multi-timescale edge orchestration (A11)
	4.4.2.1 Collecting and analyzing training data
	4.4.2.2 Performance results and discussion
	4.4.2.3 Conclusions

	4.4.3 WLAN performance prediction for spectrum management (A12)
	4.4.3.1 ML models comparison
	4.4.3.2 Feature relevance
	4.4.3.3 Conclusions

	4.4.4 Data driven resource orchestration in the MNO (A13)
	4.4.4.1 Network deployment evolution
	4.4.4.2 5G network performance
	4.4.4.3 Conclusions

	4.4.5 Multi-timescale network slice reservation (A14)
	4.4.5.1 Main performance evaluation results
	4.4.5.2 Conclusions

	4.4.6 Testing EnergyEdgeCloudSim (A15)
	4.4.6.1 Dynamic energy consumption
	4.4.6.2 Dynamic and idle energy consumption
	4.4.6.3 Conclusions

	4.4.7 Towards autonomous VNF scaling (A16)
	4.4.7.1 System scenario
	4.4.7.2 Models implementation
	4.4.7.3 Main results
	4.4.7.4 Conclusions

	4.4.8 Auto scaling Virtualized RAN caches (A17)
	4.4.8.1 Elastic femtocaching evaluation
	4.4.8.2 Conclusions

	4.5 NI for automated anomaly response
	4.5.1 In-backhaul learning (A18)
	4.5.1.1 In-backhaul inference approaches
	4.5.1.2 Comparative evaluation of ML models
	4.5.1.3 Conclusion and outlook

	4.5.2 Anomaly detection for a roaming platform (A19)
	4.5.2.1 Clustering devices
	4.5.2.2 Models performance evaluation
	4.5.2.3 Conclusions and future directions

	4.6 NI for capacity forecasting and self-learning
	4.6.1 Anticipatory capacity allocation (A20)
	4.6.1.1 Overall capacity forecasting performance
	4.6.1.2 In-depth analysis of one prediction instance
	4.6.1.3 Control of SLA violations
	4.6.1.4 Conclusions

	4.6.2 Virtual Machine reservation (A21)
	4.6.2.1 Comparative performance summary
	4.6.2.2 In-depth analysis of model performance
	4.6.2.3 Conclusions

	4.6.3 Minimization of video streaming slice OPEX (A22)
	4.6.3.1 Comparative performance summary
	4.6.3.2 In-depth analysis of the learned loss function
	4.6.3.3 Conclusions

	4.7 NI to configure a Reconfigurable Intelligent Surface
	4.7.1 Reconfigurable Intelligent Surfaces Prototype (A23)

	5 Conclusion and outlook
	6 References

