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Abstract 
For seventy years, plastic pollution of marine and terrestrial ecosystems has steadily grown, 

with widely documented detrimental effects on ecosystems(Windsor et al., 2019). Plastics 

accumulate in the environment due to the fact that they generally are not biodegradable. This 

is why the FAO calls for a wider use of biodegradable plastic(Assessment of agricultural plastics 

and their sustainability: A call for action, 2021) despite that the effects of biodegradable plastic 

on the environment are not yet know. This study looked at the fungi found on poly(butylene 

succinate-co-adipate)(PBSA) mulch using bioinformatic methods and assessing how well 

these methods perform. This study found Botrytis cinerea to be the most prominent fungi on 

the mulch opposed the expected result of Tetracladium. Whilst these different results are 

promising the current bioinformatic are not accurate enough yet to give definite proof. As 

Eukrep and Whokaryote were able to find equal amounts of fungal sequence in the samples 

but half of their sequences were unique to one and other. Resulting in their alignment only 

reaching 0.2% coverage of the Botrytis cinerea genome. Which is not high enough to give a 

conclusion on which fungi grow on biodegradable plastics in agricultural soil. 

Introduction 
Problems with plastic 
For seventy years, plastic pollution of marine and terrestrial ecosystems has steadily grown, 

with widely documented detrimental effects on ecosystems(Windsor et al., 2019). Leslie et al. 

(2022) demonstrated that plastic particles are bioavailable for uptake into the human 

bloodstream, thereby providing evidence that exposure to micro-plastics is not safe to 

humans. 

 Plastics accumulate in the environment due to the fact that they generally are not 

biodegradable. They only fall apart into smaller parts, by mechanical forces and weathering 

forming them into micro-plastic particles and releasing pollutants into the environment. The 

effects of these plastics and their pollutants on the environment and humans is not yet 

understood but they are found to have carcinogenic effects among other problems(Kumar et 

al., 2022). Still, plastics are widely used everywhere in the world. For example, plastic 

mulches are used in agriculture to improve crop quality and yield by reducing soil erosion, 

increasing water efficiency, regulating soil temperature, and exerting pathogen 

control(Pathan et al., 2020). Most plastics used for mulching are made of Polyvinyl 

Chloride(PVC )and low-density polystyrene due to their low cost. These plastics introduce 

polystyrenes and harmful additives like phthalates into the soil and the food chain.  

Alternative plastics 
These harmful additives, the carbon footprint and to limit accumulation of microplastics in the 

environment are reasons replace plastics with other compounds. One replacement of 

plastics in some applications is with biodegradable plastics. The FAO defines biodegradable 
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plastics as follows: “Biodegradable-plastics are broken down by naturally occurring 

microorganisms – such as bacteria and fungi – into water, biomass, and gases such as 

carbon dioxide and methane. The rate of biodegradation depends on environmental 

conditions such as temperature, humidity, the consortia of microorganisms present and the 

presence or absence of oxygen. Biodegradable plastics can be made from bio-based and 

fossil-based precursors, and sometimes a mixture of the two.” (Assessment of agricultural 

plastics and their sustainability: A call for action, 2021). However, for most biodegradable plastics 

and conditions, it is not known how the biodegradation happens outside of lab conditions. 

Besides this biodegradable plastic have a lower environmental risk, but do not see a lot of 

use yet due to their higher price. 

 In a recent study, poly(butylene succinate-co-adipate)(PBSA) film, biodegradable 

plastic mulch, was buried in agricultural soil at an agricultural experimental field station in 

Bad Lauchstädt, Central Germany (51°22′60′′ N, 11°50′60′′ E, 118 m a.s.l.) and the microbial 

community development and degradation rates were described(Purahong et al., 2021; 

Tanunchai et al., 2021). In this study, an rRNA gene/region amplicon sequencing approach 

was employed, which allows for an overview of the microbial community, but does not give a 

functional view on the community members. Using a subset of samples from a mulch after 

180 days of being buried in the soil, this study aims to functionally describe the microbial 

communities on the biodegradable-plastic samples, with a focus on the eukaryotes. After 180 

day two fungi were found to be most prevalent Dothideomycetes with 30% and Tetracladium 

with 35% (“ID 853344 - BioProject - NCBI,” 2022; Purahong et al., 2021). The fungal DNA 

was quantified using qPCR. So, these fungi or ones related to it are expected to be found in 

the samples. These fungi are not yet well described in the studied fields or as a potential 

degrader of biodegradable plastics. Literature suggests that Penicillium and Aspergillus 

species are the most commonly found plastic degraders(Moore-Kucera et al., 2014). 

However new research has found that between different types of plastic and even in between 

different types of degradable plastics mulches different microbial communities will establish 

themselves(Bandopadhyay et al., 2020). Bandopadhyay et al.(2020) found that the richness 

on biodegradable plastics is increased compared to normal plastics. On biodegradable 

plastics, they found Dothideomycetes, Sordariomycetes and Tremellomycetes to be the most 

dominant classes of fungi to establish themselves. 

Metagenomics 
This study aims to test whether a metagenomic approach to the analysis of these 

microbiomes can lead to new and unique insights regarding these microbiomes. The 

approach is to use different types of machine learning to determine if a sequence is 

prokaryotic or eukaryotic. Doing this in the lab is difficult so using machine learning to 

determine it after sequencing will be practical. The expectation is the larger part of the 

sequences will be prokaryotic due to the fact that prokaryotes are significantly smaller than 

eukaryotes but have nearly the same amount of DNA as micro-eukaryotes, such as uni-

cellular fungi. So, from equal volume of prokaryote and eukaryote sample one would expect 

to find several times more prokaryotic DNA. Acquiring high-quality gene predictions in 

eukaryotic DNA mixed with prokaryotic DNA is a challenge due to the fact that eukaryotes 

and prokaryotes differ greatly in the build-up of their sequences. Eukaryotes have more 

complex promotor regions, regulatory signals, and genes spliced into introns and exons, 

which also vary between species(West et al., 2018). This is why prokaryotic gene predictors 

will not always do well predicting eukaryotic gene sequences. On the other hand, the 

differences between eukaryotic and prokaryotic genome sequences can be employed to 

distinguish genomic sequences of the two. Which is doing this in the lab proves to be difficult 
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but using bioinformatics and machine learning it is possible. This should allow for their 

separation in metagenomics data and separate annotation of gene positions. 

This study aims to find what microbial communities live on biodegradable plastic with 

a focus on the fungi. The study also aims to test different bioinformatics methods to 

differentiate between prokaryotic and eukaryotic DNA. The expectation is that the different 

bioinformatics methods will all be capable of yielding results but that the more conventional 

programs will yield better results as they have more often proven to be successful. The fungi 

that are expected to be found are Tetracladium, Dothideomycetes, Penicillium and 

Asperigillus, based on previous data(Purahong et al., 2021; Tanunchai et al., 2021) and 

literature(Moore-Kucera et al., 2014). 

 

Method 
The data used in this study comes from two different plots (1-2A and 2-4F) of biodegradable 

plastic mulch incubated in the soil for 180 days (Figure 1). The 1-2A plot was under the 

ambient environment. The 2-4F plot was grown under the environment expected to be in the 

future so dryer and hotter.  After 180 days, this foil was dug up and DNA samples were 

taken. Using shotgun short-read (Illumina) sequencing, metagenomics was performed to  

reconstruct the functional repertoire of the bioplastic-degrading microbial community with a 

focus on the fungal community members. The steps that were performed started with the 

assembly followed by the classification then a taxonomic profile was created from the 

assembly and lastly an alignment was run in between the fungal DNA found in the assembly 

and the species selected from the taxonomic profile(Figure 2).  

Figure 1: Conventional farming treatment plots of the Global Change ExperimentalFacility39(GCEF) located at the field 
research station of the Helmholtz-Centre for Environmental Research in Bad Lauchstädt, Central Germany 
(51°22′60′′N,11°50′60′′E, 118 m a.s.l.). The fields in the red squares were held under a climate which the earth will have 
in the Future(F) the other fields are held at current climate(A). 
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Assembly 

First, the short and long reads were assembled using the IMP3 

pipeline (https://imp3.readthedocs.io/en/latest/, Narayanasamy et al., 

2016). The first step of the pipeline is preprocessing, which starts with 

trimming the samples using trimmomatic(Bolger et al., 2014). 

Trimming means removing the inaccurate bases at the beginnings 

and ends of the sequences, so only the reliable parts are left. Then 

reference filtering is done to remove the unwanted DNA in the sample 

using a Burrows-Wheeler aligner (BWA)(Narayanasamy et al., 2016). 

Unwanted DNA could include host or human genomes, but in this 

case, only the sequencing spike-in, the genome of phage PhiX174, is 

removed.  

Then the cleaned-up files were ready for step two in the IMP3 

pipeline: assembly. This is done using Megahit assembler 

(https://github.com/voutcn/megahit, Li et al., 2015). Megahit 

assembles the contigs using succinct de Bruijn Graphs(Bowe et al., 

2012). By using these succinct de Bruijn Graphs, Megahit is faster 

and uses less storage. This is because it uses a more efficient way of 

representing every part of the de Bruijn Graph in a succinct way. In a 4m 

+ o(m) bits method in which “m” is the number of strings or k-mers here, and “o”  is the size 

of the alphabet, in this case all types of nucleotides (4). The sequences that could not be 

mapped in the first run of Megahit were put through the megahit program a second time 

Following this, the overlapping contigs were merged together using Cap3. This results in 

longer contigs without reducing their quality. Lastly, the short metagenomic reads were 

mapped against the assembly using BWA.  

The length of the assembly is quantified using the N50. The N50 is the shortest contig 

length that needs to be included for the contigs to cover of 50% of the genome. Meaning the 

sum of all the contigs of length N50 or longer is 50% or more than the total genome 

sequence. This tells you how successful the assembly is in building larger contigs. Larger 

contigs are preferable because when they correspond with a marker or genome it gives more 

complete information about this marker or genome. 

Classifying the eukaryotes 
The second step is using and comparing classification programs, Kraken2, EUKrep and 

Whokaryote, to find the eukaryotic sequences in the assembly. The first program used to get 

a rough grasp of the dataset is Kraken2 (Wood et al., 2019). Kraken2 is a software that 

matches sequences to a database, in this case containing bacterial and eukaryotic genomes. 

Kraken2’s k-mer-based approach provides a fast taxonomic classification of metagenomic 

sequence data(https://github.com/DerrickWood/kraken2, Wood et al., 2019). A k-mer is a string 

of length k(Compeau and Pevzner, 2015). Kraken2 is fast due to the fact that it reduces the 

amount of memory necessary by using a compact hash table, which is a data structure that 

gives all the data a key referencing to the data point. So, it can work with the smaller memory 

key to test the data and not the full datapoint. By finding the lowest common ancestor (LCA) 

of the taxa that contain a k-mer, Kraken2 determines what taxa are in the assembly.  

In parallel, the specific programs EUKrep and Whokaryote were used to search for 

general hallmarks of eukaryotic genomes. EUKrep uses a k-mer-based approach for 

identification of assembled eukaryotic sequences in data sets from diverse environmental 

samples (West et al., 2018). With the use of k-mers, patterns in the sequences can be 

brought to light and using these patterns EUKrep can classify whether a sequence is 

Figure 2: Bioinformatic approach  

https://imp3.readthedocs.io/en/latest/
https://github.com/voutcn/megahit
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eukaryotic or prokaryotic. In EUKrep specifically, the frequencies of 5-mers are counted for 

the training and classification. This length compromises between speed and accuracy for 

classifying eukaryotic scaffolds(West et al., 2018). EUKrep was trained on a library of 

complete prokaryotic and eukaryotic genomes taken from NCBI. Then the contigs were split 

into 5kb chunks and only chunks larger then 3kb were used. The frequencies of the 5-mers 

for each contig were calculated(West et al., 2018). These 5-mer frequencies were used to 

train a linear support vector machine (linear-SVM). A linear-SVM is a model that draws 

hyperplanes, a plane in many dimensions, through a data set to most accurately divide the 

data set and create groups. The groups the model selected on are archaeal, bacterial, 

opisthokonta or protist origin. In classification, once the linear-SVM has classified the 5kb 

chunks they are stitched back together so the taxonomy of the complete contig can be 

determined. 

On the other hand, Whokaryotic is trained on random forest classifiers. The classifier 

uses intergenic distance, gene density and other 92 genomic features to predict whether a 

given metagenomic contig belongs to a eukaryote or a 93 prokaryote(Pronk and Medema, 

2021). Then it is improved by having it learn from the Tiara, a machine learning similar to 

EUKrep(Pronk and Medema, 2021).  

As Whokaryote is a recently developed program its use is not yet widely tested. To 

see how it holds up to the already established EUKrep will be worthwhile and their results 

together will give a more complete dataset. 

Taxonomic profiling 

For taxonomic profiling, Eukdetect will use the reads and Kraken2 the assembly to give a first 

estimation of what species can be found in a sample. Kraken2 utilizes spaced seeds in the 

storage and querying of minimizers to improve classification accuracy 

(https://github.com/DerrickWood/kraken2, Wood et al., 2019). Using this, Kraken2 is able to find 

all types of species in the assembly, including both prokaryotes and eukaryotes. It will relate 

every contig to somewhere in the taxonomic tree.  

 Eukdetect uses a database of 521,824 universal marker genes from 241 conserved 

gene families including 3,713 fungal species(https://github.com/allind/EukDetect, Lind and 

Pollard, 2021). The Eukdetect pipeline aligns reads to these markers and filters the alignment 

on mapping quality. This mapping quality needs to be greater than 30(Lind and Pollard, 

2021). The mapping quality entails the confidence of how the reads are mapped to the 

sequence. Eukdetect also uses a minimum alignment of 80% of the marker genes. Then the 

aligned reads to a marker are counted and their percent sequence identity is calculated. This 

percent sequence identity describes how much of the sequence is described by the reads 

per species.  

Together these two programs create a reference library with species expected to be 

found in the sample with which the classification programs run their alignment. Using the 

taxonomic profiles, the most likely species will be chosen in this paper for further analysis. 

For kraken2 profiles, only the contigs it can determine down to species level will be used. 

Their genome will be retrieved from National Centre for Biotechnology Information 

database(NCBI, https://www.ncbi.nlm.nih.gov/genome/). These species will be selected on 

the basis of literature, Eukdetect and previous results. 

 

https://www.ncbi.nlm.nih.gov/genome/
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Classification 

Then in third step the classification programs Nucmer aligner from 

Mummer4 (Marçais et al., 2018) and MiniMap2 (Li, 2021, 2018) were 

used to determine whether the classified fungal sequences closely 

resembled the reference genomes of organisms detected by the 

taxonomic profilers. Nucmer is the genome wide sequence aligner from 

the Mummer4 (https://github.com/mummer4/mummer) package. Nucmer 

uses a suffix array with a lock free first-in-first-out (FIFO) queue. The 

suffix array functions similarly to BWA, in that it orders all the parts of the 

string alphabetically with their corresponding part in the string as number 

with it. Following this, each worker thread computes the exact alignments, 

cluster them, and runs the banded Smith-Waterman alignment routine for 

its single query sequence(Marçais et al., 2018). The Smith-Waterman 

alignment is a basic dynamic programming algorithm that works as 

follows: it puts the two sequences that need to be compared in as the 

row- and column names of matrix: every time two nucleotides in the 

alignment are the same, the value is increased by +2 - when it is different 

the value is decreased by -1. The values in the matrix are not allowed to 

go below 0. In this way, the Smith-Waterman aligner will look at the route over the matrix in 

which it ends on the highest number on the matrix. This route will then be equal to the 

longest aligning part of the sequences. From this it can output how much your sequence 

aligned with sequences from the genome library. 

 MiniMap2(https://github.com/lh3/minimap2 Li, 2021) uses a seed-chain aligning 

procedure to align the sequences. This works by taking a seed, the k-mer query that is 

looked for and every time it overlaps with the sequence that it is aligned too it is chained to 

the previous one across the sequence giving it an alignment score(Compeau and Pevzner, 

2015). Additionally it uses a hash table to decrease the memory load of the alignment. 

Minimap2 also uses the Smith-Waterman aligner to determine how much the sampling 

sequence aligns with sequences form the genome library(Li, 2021). Then it pairs your 

sample data with the given genome library.  

 Together, Nucmer and Minimap2 show what species can be found on the PBSA 

mulch. Their comparison brings perspective to the reliability of the programs but also when 

species were found by both programs to be very apparent in the samples, resulting in a more 

trustworthy analysis. 

Results 
The following sections present the results from assembly, classification, taxonomic profiling, 

and comparison to known genomes. The aims are to evaluate the assembly to reconstruct 

metagenomes, to separate the eukaryotic and fungi from the assembly and analyse which 

eukaryotic taxa are found and which fraction of these known genomes of these organisms 

are detected. 

Figure 1: The Smith-Waterman 
alignment.(Razmyslovich et al., 2010) 

https://github.com/mummer4/mummer
https://github.com/lh3/minimap2
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Assembly 

 

Figure 3: The IMP3 pipeline shows how the number of sequencing reads is transformed during the pipeline. 
Starting with the pre-processing in red, followed by mapping to the assembly in blue and a taxonomic estimation 
in yellow and pink. A (left) and F (right) reference two samples. 

After the IMP3 pipeline ran to completion, most data was kept during the trimming step 

(trimmed pairs Figure 3). Around half the sequences could not be used in the making of the 

contigs (both partners map bar in Figure 3) and only a quarter of the reads could be 

classified (kraken classified reads bar in Figure 3). In more detail, the assembly by megahit 

of sample A used 38 million reads with 850 million base pairs forming 1.58 million contigs 

with an N50 of 596 base pairs and the longest contig being 50,265 base pairs long. The 

assembly by megahit of sample F used 39 million reads with 924 million base pairs forming 

1.81 million contigs with a N50 of 562 base pairs and the longest contig being 58,877 base 

pairs long. So, the total assembly reduced the total data volume by 20 fold and resulted in 

3.5 million contigs to be classified and to be analysed for a taxonomical profile by Eukdetect 

and Kraken2. 
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Classifiers 

The different classfiers, Kraken2, Eukrep and Whokaryote, will all isolate the eukaryotic 

sequences from the assembly. The amount of eukaryotic contigs are compared to assess the 

capabilities of the different programs and their reliability.  

 

The classifiers are assessed on their capability to recognise contigs of 800 base pairs or 

longer as eukaryotic. The minimum is set at 800 base pairs, due to the fact that this is the 

minimum length a contigs needs to be reliably classified. Shorter contigs also tend to have 

lower coverage, so the information loss in later steps is limited. 

 All classifiers found twice the amount of eukaryotic sequences in sample A in 

comparison to sample F(Figure 4). The general taxonomic classifier Kraken2 was found ten 

times less eukaryotic sequences in comparison to the eukaryotic sequence detection 

classifiers EUKrep and Whokaryote. EUKrep and Whokaryote had similar levels of 

recognised eukaryotic sequences in the assembly. The overlap in contigs found was quiet 

low, around half of the contigs found per sample were unique to the program (Table 1). In 

summary, they found around 20% of the base pairs in sample A were eukaryotic and around 

10% of the base pairs in sample F.  

Figure 2: This bar graph shows a comparison between the amount of eukaryotic sequences found by the different classifier 
programs. EUKrep and Whokaryote only looked at contigs larger then 800 base pairs. So, the bar graph only shows the contigs 
larger than 800bp. 
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Taxonomic profiling 
In this section Kraken2’s and Eukdetect’s estimates about the species of origin for each 

contig in the assembly are analysed. These estimates will be used to pick genomes to 

compare the assembly to, in order to see which species were found in the samples.  

Figure 3: Bar graph shows the amount of sequences found by Kraken2 to be belonging to fungal genomes in 
sample  A.  

 

 

 

 

 

 

 

 

Table 1: Unique and the same eukaryotic contigs found in the 
assembly by Eukrep and Whokaryote. 

Sample Program Unique contigs Overlapping contigs

A EUKrep 19343 16303

F EUKrep 11448 8516

A Whokaryote 8702 16303

F Whokaryote 8543 8516
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Figure 4: Bar graph shows the amount of sequences found by Kraken2 to be belonging to fungal genomes in 

sample F.  

Both Kraken2 and Eukdetect found numerous Fusarium species. Surprisingly, Kraken2 found 

in both sample A and sample F an overwhelming amount of sequences relating to Botrytis 

cinerea(Figure 5 and 6) whilst Eukdetect did not relate any sequence to Botrytis cinerea 

(Figure 7 and 8). Looking at all the species found by Kraken2 a literature search for known 

plastic- or bio-degradable plastic-inhabiting or degrading species was performed. Aspergillus 

oryzae and Fusarium oxysporum were chosen for further analysis, as they were shown to 

thrive near plastic(Spina et al., 2021).The plastic in that study was polyethylene (PE), which 

is a non-biodegradable plastic but they might also thrive near PBSA. Botrys cinerea and 

Aspergillus oryzae are also found to be able to degrade large carbons like crude oils 

(Olukunle and Oyegoke, 2016), which in essence are similar to biodegradable plastics. 

Pyricularia oryzae was found to be able to help with the degradation of difficult to degrade 

organic waste (Awais et al., 2021), which shows its promise as a degrader of biodegradable 

plastics.  

 The species selected from the Eukdetect results were the top 6 most prominent fungi 

in both samples that were not yet selected using Kraken2. The following fungi were selected 

(Figure 7 and 8): Alternaria alternata, Aureobasidium pullulans, Cladosporium 

sphaerosphermum, Filobasidium wieringae, Rhodotorula toruloides, and Stachybotrys 

chloromata.  

 Lastly, Tetracladium was added because this was a prominent fungus found in the 

dataset by the previous researchers(Purahong et al., 2021). 
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Figure 5: Bar graph with percentage of marker genes covered by the sequences found by Eukdetect in sample A. 

 

 

Figure 6: Bar graph with percentage of marker genes covered by the sequences found by Eukdetect in sample F. 
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In total the taxonomic profiling resulted in eleven different fungal species of interest (Table 2). 

Their genomes were downloaded from NCBI to form our reference library which will be 

aligned to the assembly. 

 

 

Alignment 
The alignment will show with which species out of the reference library(table 2) our assembly 

aligns. The alignment was done with the eukaryotic sequences found by Whokarote and 

EUKrep in sample A and F seperately using Mummer’s Nucmer and Minimap2, the average 

combined results are shown(Figure 9 and 10). Minimap2 is less 

strict than Nucmer. However, similar results were found with 

both methods (Figure 9 and 10). Minimap2 found 5 times more 

contigs per species in  comparison with Nucmer. But Minimap2 

did not align 5 times the amount of contigs. So Minimap2 was 

better able to align smaller contigs. Otherwise, both Nucmer 

and Minimap2 found the same ratio of  species, both aligning 

most sequences to Botritys cinerae(Figure 9 and 10). The 

highest coverage Nucmer reached on Botritys cineraa genome 

Figure 9: Bar graph showing the amount of base pairs aligning by 
using Nucmer to the most prominent species found by Kraken2 and 
Eukdetect. The average of the samples are presented.  

Figure 10: Bar graph showing the amount of base pairs aligning by 
using Minimap2 to the most prominent species found by Kraken2 
and Eukdetect. The average of the samples are presented. 

Species Method Motivation

Tetracladium ITS amplicon sequencing Previous results

Aspergillus oryzae Kraken2 Literature

Botritys cinerea Kraken2 Literature

Fusarium oxysporum Kraken2 Literature

Pyricularia oryzae Kraken2 Literature

Alternaria alternata Eukdetect Statistics

Aureobasidium pullulans Eukdetect Statistics

Cladosporium sphaerospermum Eukdetect Statistics

Filobasidium wieringae Eukdetect Statistics

Rhodotorula toruloides Eukdetect Statistics

Stachobotrys chloronata Eukdetect Statistics

Table 2: Species selected through taxonomic profiling and previous sequencing results. 

Table 3: Base pair coverage by aligners, 
Nucmer and Minimap2, of Botritys cinerae 
genome in percentage. 

Sample Nucmer (%) Minimap2 (%)

Who A 0,2175 0,2589

Who F 0,2272 0,1605

EUKr A 0,2634 0,3292

EUKr F 0,1959 0,1657
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was 0.26% (Table 3). For Minimap2 the highest coverage reached of the Botritys cinerae 

genome was 0.33% (Table 3). The other genomes had a lower coverage as they had less 

sequence aligned to them. Almost no sequences were aligned with Filobasidium wieringae, 

Rhodorula toruloides, and Tetracladium.   

Discussion 
This study successfully shows that it is possible for machine learning programs to 

differentiate in between prokaryotic and eukaryotic DNA and were able to give an estimation 

of which fungal species were in the samples. 

Assembly and classification 
The assembly of the reads for both samples ran successfully. Only a fragment of the reads 

ended up as singletons or were mapped without a partner. The partner-mapped contigs have 

higher information content than contigs without a partner, because they tend to be more 

contiguous/longer. The contigs were good enough for Kraken2 to discern fungal contigs 

(Figure 4).  

EUKrep and Whokaryote found an almost equal amount of eukaryotes in the sample. 

EUKrep the more widely program, had on average a better alignment of the genome and 

was able to do more with sample F. This was the dataset half the size of that of sample A. So 

Eukrep was able to give a better estimation. Whokaryote did out perform on sample A the 

larger sample. This due to the fact that it is less strict so is capable to do more with smaller 

sequences. Additionally Whokaryote gives broad diagnostics on how it performed with and 

without Tiara, giving a more broad insight in how the results were achieved. In the end 

EUKrep is the stronger programmer giving more trustworthy results with a similar alignment 

coverage. Whokaryote would only preferably be used over EUKrep when there is a large 

dataset with smaller sequences. 

EUKrep and Whokaryote both found twice the amount of fungi in sample A compared to 

sample F. So, either the futuristic circumstances in which sample F was different from 

sample A had a large impact on the amount of fungal growth on the biodegradable plastic 

mulch, but this does not seem to be the case(Purahong et al., 2021). Or there is a large 

variation between samples, either naturally or incurred by sampling. In which case sampling 

seems the most likely. As metagenomics and other bioinformatics methods scale better to 

larger datasets in comparison to in vitro methods that still rely heavily on the computational 

power of the human brain and manual labour, a larger dataset with more replicates or 

conditions would have benefited this project. The chance of finding species or having more 

confidence in the found species would have increased. Although the greater sampling and 

sequencing effort would have increased costs and lab work, this would only cost maximum of 

a day longer assembly time.  

Profiling 
The taxonomic profiles were surprising (Figure 5-8) as both Kraken2 and Eukdetect found 

mostly species not yet described in literature(Bandopadhyay et al., 2020; Moore-Kucera et 

al., 2014) as plastic degraders. The profilers also had vastly different results to one another. 

Kraken2 primarily found sequences for Botrys cinerea, which is a necrotrophic smut mold, 

primarily infecting grapes and other smaller fruit(Dean et al., 2012). It has also been found to 

be able to degrade crude oils(Olukunle and Oyegoke, 2016). In contrast, Kraken2 only found 

a couple of sequences aligning to Aspergillus, which was previously found to be a more 

prominent degrader of plastic(Moore-Kucera et al., 2014). Eukdetect did not find any 

sequences that aligned with Botrytis cinerea. Eukdetect’s results also did not detect one 
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dominating fungi, but mostly molds and yeast-like fungi. All were likely to be found in soil and 

none are described in literature as plastic degraders. 

Alignment 
The results of aligning contigs to the candidate taxa’s genomes found by the profilers were 

more comparable to the Kraken2 results than to the Eukdetect results. This was surprising, 

as Eukdetect was benchmarked as very reliable (Lind and Pollard, 2021). Eukdetect is also 

made to find these eukaryotes and Kraken2 has a more broader functionality(Wood et al., 

2019). Both Nucmer and Minimap2 found that most sequences aligned with Botrytis cinerea. 

Nucmer and Minimap2 had similar results with respect to the ratio of sequences aligning to 

the different reference genomes (Figure 9 and 10) and in coverage of the Botrytis cinerea 

genome(Table 3). Minimap2 was less strict than Nucmer and hence was able to align more 

sequences with the reference library(Table 2). The more stringent Nucmer was not able to 

align these sequences. Regarding whether to use Nucmer or Minimap2, Minimap2 was 

found to be able to align more sequences and its results are easier to handle. But Nucmer is 

more strict and gives a more full analysis of the alignment which makes interpretation of the 

results easier.  

Also, the species suggested by previous ITS region amplicon sequencing results, 

Tetracladium, was not found to be very prevalent in the samples. Several species out of the 

reference library got more alignments than Tetracladium. This means that our metagenomics 

method produced different results than the amplicon sequencing(Purahong et al., 2021; 

Tanunchai et al., 2021). 

Conclusion 
In conclusion, this bioinformatics pipeline gives new unique results with regards to the 

analysis of fungal species to be found on biodegradable plastics. As of right now it’s methods 

are not strong enough yet to give definite results. The research field could benefit from using 

this pipeline more or having all of their results assessed in a similar manner to find data on 

fungi that might be hidden behind the copious amounts of bacterial DNA and doing so 

bettering the functionality of this pipeline. No clear microbial communities can be concluded 

to live on this biodegradable mulch. This leaves a lot to be researched into the field of 

biodegradable plastics and its degradation in nature as its use becomes more widespread 

and the material and degradation products become more abundant in our ecosystems. 
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