
Dynamic Per-Sample Processing with WebAssembly

Charles Roberts
Worcester Polytechnic Institute
charlie@charlie-roberts.com

ABSTRACT
While various audio libraries for the web have been com-

piled to WebAssembly from other languages, few have been
written directly in WebAssembly itself. Writing DSP al-
gorithms directly in WebAssembly enables precise control
and opportunities for optimization that are perhaps diffi-
cult to achieve when a using a higher-level language cou-
pled with a compiler; conversely, higher-level languages are
often optimized for abstraction, readability, and speed of
development. Despite the advantages higher-level languages
provide, we hypothesized that writing a low-level signal pro-
cessing library directly in WebAssembly is both appropriate
to the capabilities of the language while also providing for
finer control over optimization.

Accordingly, we ported a low-level library we had previ-
ously developed in JavaScript, genish.js, to WebAssembly.
In our initial investigation we focused on entirely dynamic
audio graphs with per-sample processing; our prior work
also used per-sample processing but required recompila-
tion of the audio graph after any significant changes were
made. While our dynamic WebAssembly library possesses
a number of notable advantages over our prior work, we ul-
timately decided that it is too computationally inefficient
with larger audio graphs to be used for constructing higher-
level libraries and tools for music creation. Despite this,
we do feel it is appropriate for specific uses, such as live
coding and enabling end-user signal processing without re-
quiring compilation. To address the performance limitations
of our engine, we built a WebAssembly compiler that out-
puts optimized representations of larger, interconnected au-
dio graphs. Testing shows that compiling and optimizing
audio graphs created using this library yields highly perfor-
mant unit generators. We believe the combination of a fully
dynamic graph with precompiled higher-level signal process-
ing functions will work well for the future construction of
music creation tools.

1. INTRODUCTION
Over the last four years, audio developers have rapidly

adopted WebAssembly (WASM) as a target language

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2022, December 6–8, 2022, Cannes, France.

© 2022 Copyright held by the owner/author(s).

for projects that run in the browser. In many cases
WebAssembly can be more computationally efficient than
JavaScript, but perhaps more importantly for audio devel-
opers is its use of ahead-of-time compilation and low-level
control over memory usage.

In our prior research on developing audio synthesis li-
braries for the browser, we created a library, genish.js [11,
12], that enables developers to write synthesis algorithms us-
ing a standardized set of operations that are then compiled
to optimized JavaScript functions. We hypothesized that
by using WebAsssembly instead of compiling to JavaScript
we could obtain performance gains while also taking advan-
tage of ahead-of-time compilation, which would help avoid
potential audio dropouts during realtime signal process-
ing. We were also particularly interested in writing the
WebAssembly ourselves (by “hand”), both to better un-
derstand the underlying language features, and to explore
WebAssembly optimizations that can go missing in the com-
pilers of popular higher-level languages like Rust or C++.
In this paper we provide a short background of au-

dio libraries written for the browser that take advantage
of WebAssembly, describe our own experiments authoring
WASM bytecodes and compiled WebAssembly libraries, and
then discuss further optimizations needed before using the
WASM version to author high-level music creation tools.

2. BACKGROUND
WebAssembly is a binary format that has been adopted in

most modern browsers with the goal of providing a portable,
secure, and efficient runtime [5]. For browser-based mu-
sicians and audio developers, WebAssembly is important
as it can be used inside of AudioWorkletProcessor nodes,
which run in their own dedicated thread and are optimized
for realtime performance [3]. By using WebAssembly, de-
velopers can avoid problems commonly associated with us-
ing JavaScript for realtime digital signal processing, such as
non-deterministic garbage collection and the performance of
browsers’ just-in-time (JIT) compilation engines. In addi-
tion to the binary format used by browsers, there is also a
human-readable WebAssemblyText (WAT) format that can
be freely converted to binary; WASM binaries can also be
easily converted into WAT.

Audio developers have been exploring the potential of
WebAssembly coupled with AudioWorklets for a few years
now. Csound had initially begun moving to the web by
compiling to JavaScript [9] but now can also compile to
WebAssembly via Emscripten [15]. Maximillian [4] is a
C++ library that has since been compiled to WebAssembly

for use in the Sema live coding system [2]. Significant por-
tions of SuperCollider have also been ported to WASM1.
Glicol, a more recent computer music language, was au-
thored in Rust with the intention of using Emscripten to
compile to WASM for use in the browser [8]. Elementary
is a JavaScript library that uses the JUCE C++ library to
compile to WASM [13]. It features a functional, composable
API that is similar in some ways to the API found in genish.

All of these languages and environments use Emscripten
to compile the final WASM blob that browsers load for use.
However, Battagline notes that some WASM optimizations
can be performed by directly editing WebAssemblyText files
that elude compilers and optimizers [1]. As stated in the in-
troduction, part of our motivation for refactoring genish.js
in WebAssemblyText was to take advantage of such oppor-
tunities for optimization.

A notable precursor to this work is the FAUST compiler,
which can compile to WAT or directly toWebAssembly byte-
code, in addition to a number of other programming lan-
guages via an intermediate representation. The FAUST re-
search team has also compiled its compiler to WebAssembly,
so that it can be used directly within web pages [10]. Gen-
ish.js uses a simpler model than FAUST, with no intermedi-
ate representation used. Although we have considered tar-
geting other languages in similar fashion to FAUST, we are
encouraged by a variety of WASM runtimes—such as Was-
mer2 and Wasmtime3—that run WebAssembly embedded
in other languages. These runtimes mean that there is the
potential to run genish across a variety of platforms and
programming environments; while there is a performance
penalty for WebAssembly compared to natively compiled
applications, for many smaller functions WebAssembly can
perform within 10% of native code [7]. Signal processing
algorithms are an excellent use case for WebAssembly as
there are typically no calls outside of the WebAssembly vir-
tual machine while processing a block of samples; such calls
are a known performance bottleneck [6].

3. DYNAMIC IMPLEMENTATION
Genish was originally authored to be a loose port of the

Gen extension for Max/MSP [14]; many of the operators
in genish borrow their names from similar operators found
in Gen. Although operators in genish are low-level, they
can be combined into fairly complex virtual analog filters,
anti-aliased oscillators, and other more substantial DSP al-
gorithms. Many such algorithms have been implemented in
gibberish.js, a higher-level audio library that builds on top
of genish [11]. As a quick taste of the API, Listing 1 displays
code to generate a frequency-modulated sine oscillator.

1 cycle(
2 add(
3 440,
4 mul(
5 cycle (2) ,
6 30
7)
8)
9)

Listing 1: Basic FM in genish

1https://scsynth.org/t/webassembly-support/3037
2https://wasmer.io/
3https://wasmtime.dev

One problem with the previous version of genish is that it
compiles JavaScript functions at runtime which must then
be further optimized by the browser’s JIT compiler; this
additional optimization step can lead to unpredictable per-
formance and potential audio dropouts. A motivation for
porting the library to WebAssembly is to take advantage of
the ahead-of-time compilation that WebAssembly provides,
removing the potential for audio dropouts in realtime per-
formance that can occur while JIT compilation is taking
place. Although the backend for the new version of genish
is rewritten from scratch, the API has remained virtually
identical between versions.

Our new version of genish requires no compilation of end-
user audio graphs; instead, all graphs are run using a custom
WASM bytecode where each audio node consists of a block
of memory, a pointer to a WASM function to process the
memory, and a small amount of JavaScript code to make it
easy for developers using the library to link nodes together
and manipulate their associated memory. The library pri-
marily consists of two files. The first is a WAT file, which
contains the signal processing routines for all the various
genish nodes. After compiling the WAT to WASM and op-
timizing, the resulting WASM file is ∼10 KB in size. The
second file is a JavaScript file that performs memory allo-
cation for newly constructed nodes; it also contains utility
functions for loading audio files, creating useful wavetables,
and starting up AudioWorkletProcessor nodes running gen-
ish. It is 20 KB in size, which means that, taken together,
only 30 KB (uncompressed) are needed to download and be-
gin using the new version of genish, while the original version
is 485 KB in size.

The WASM and end-user JavaScript representations of
signal processing nodes are linked via memory stored in a
SharedArrayBuffer; this memory can be accessed from both
the main thread and the audio thread.

3.1 WebAssemblyText
The WAT portion of the library consists of one file con-

taining approximately 175 functions. Each function accepts
the memory location of data it should process as its sole ar-
gument. This data can contain static parameters that are
not expected to change at sample rate as well as dynamic
parameters, which are usually the outputs of other genish
functions computed on a per-sample basis. For each opera-
tor in genish, functions are defined for every combination of
static or dynamic parameters that might be required. For
example, the add operator, which requires two values to com-
pute a result, has four underlying versions that cover every
combination of adding static and dynamic numbers:

• add static static

• add static dynamic

• add dynamic static

• add dynamic dynamic

While requiring multiple versions of functions makes it
cumbersome to author operators requiring a large number of
potentially dynamic parameters, it saves the WASM engine
from having to check to see whether or not each number used
needs to be dynamically calculated on a per-sample basis; in
our initial version of the library we performed these checks at

Offset Purpose

0 Function index
4 Per-sample increment (node location or number)
8 Reset trigger (node location or number)

12 Minimum value (number)
16 Maximum value (number)
20 Phase (number)

Table 1: Memory layout for the accum operator.

runtime and found them to incur a significant computational
cost.

Both static and dynamic parameters reference a single
memory location. For static parameters this location con-
tains the desired value. For dynamic parameters, a pointer
to another address in memory is provided where all informa-
tion needed to compute a dynamic parameter is stored, in-
cluding the index of the processing function associated with
the node (all exported functions in WebAssembly are stored
in a table and referred to by index) and any other data re-
quired for computation. With this information dynamic pa-
rameters can then be calculated by calling WebAssembly’s
call_indirect function, which calls a function via its table
index (similar to a function pointer in C).

To take one commonly-used operator as an example, Ta-
ble 1 shows the memory layout for an accum operator. Each
accumulator has an increment and a reset parameter; these
can either be static numbers or the output of other gen-
ish nodes. Accum also uses memory to store its range and
its current value; these can only be represented with 32-bit
floats4.

While the various genish operators form the bulk of the
WASM used, there are two additional important functions:
render and renderStereo. These accept a graph of op-
erators (or pair of graphs for renderStereo and call the
function at the head of the graph to fill a block of samples
of a user-defined size. They also increment a global clock
variable that is used for various purposes in genish, such as
memoization.

3.2 JavaScript
As previously noted, the JavaScript required for the li-

brary is minimal. It is responsible for the following:

1. Load WASM and initialize an AudioWorkletProcessor
node.

2. Initialize memory for each instantiated node in a
SharedArrayBuffer that is also accessed by the WASM
bytecode.

3. Provide meta-programming enabling a reasonable end-
user API for manipulating nodes via JavaScript. This
typically consists of using property setters to directly
assign values to memory locations in the SharedArray-
Buffer, but there are additional abstractions that are
more complex (described below).

4. Various utility functions to load samples, generate use-
ful wavetables etc.

4The counter ugen can accept other operators for its min/-
max values, but incurs a greater overall computational cost
compared to accum.

The meta-programming is perhaps the most interesting
aspect of the JavaScript portion of the library. In order
to manipulate parameters of genish nodes, we have to keep
in mind that if a user changes a parameter from a static
number to a dynamic value (for example, assigning a pha-
sor to modulate the frequency of a sine oscillator) then we
need to change the function we call to its dynamic version.
In our current bytecode, all this requires is incrementing
the function pointer associated with the node in the shared
memory buffer; this is all handled behind the scenes via
meta-programming. This illustrates that it is perhaps bet-
ter to think of a given node as a chunk of memory instead of
associating it with a particular function, because the func-
tion that is applied to a node’s memory is freely change-
able, potentially even at sample rate 5. For complex nodes
with multiple parameters, a bit-mask is used to keep track
of which parameters are dynamic. When the mask changes,
the function pointer associated with the operator is similarly
updated.

The commented section of the genish WAT file in Listing
2 includes both the static and the dynamic version of round
for comparison.

4. EVALUATION, ITERATION, AND DIS-
CUSSION

We ran a rendering test comparing our new engine to the
prior version of genish.js as well as the native nodes of the
Web Audio API. In our test, we rendered 100 sine oscilla-
tors for a minute using OfflineAudioContexts running in
Chrome, version 100. Our test computer was a 2018 Mac-
book Pro with a 2.6 Ghz i7 Processor, running Big Sur as its
operating system. In this test, the Web Audio API took a
mean time of 1614 ms over 50 runs, while the prior version
of genish.js took 1678 ms. Our new WASM library took
3765 ms; the Web Audio API performs about 2.33x more
efficiently.

These results are interesting and show the relative
strengths and weaknesses of the various approaches. For
example, it is perhaps suprising that the original version of
genish.js, where all DSP was written in JavaScript, can com-
pete in this test with the native C++ nodes that make up the
Web Audio API. But it’s important to note that this earlier
version of genish compiles a single flat function to represent
the entire audio graph; any significant changes to the graph
require this function to be recompiled. The Web Audio API
is using a dynamic graph that can be freely modified. Then
again, genish.js is performing per-sample processing, which
enables a variety of techniques the Web Audio API is not
capable of using its built-in nodes; enabling the exploration
of per-sample processing techniques were one of the primary
motivations for genish.js.

In the new version of genish.js, we have a completely dy-
namic graph capable of per-sample processing, but incur
a significant performance penalty by dynamically resolv-
ing function pointers at runtime. However, when compared
with the prior version of genish.js, we also get the bene-
fits of ahead-of-time compilation, which helps ensure audio
dropouts will not occur during JIT compilation. Our prior

5While the function applied to a chunk of data can be
changed at will, it will typically be important to ensure that
a given function expects the same memory layout as the data
it will operate on.

1 ;; accepts one argument , a location in memory , and returns a Float32
2 (func $round_s (export " round_s ") (param $loc i32) (result f32)
3 local.get $loc ;; read the location of the memory for this operator
4 i32.const 4 ;; the value the operator affects has an offset of 4 bytes
5 i32.add ;; add the offset to the memory location
6 f32.load ;; load the value from the location on the stack
7

8 f32. nearest ;; round the value , last value is returned automatically
9)

10

11 (func $round_d (export " round_d ") (param $round_data_loc i32) (result f32)
12 ;; declare variable to hold location of data assocated with input parameter
13 (local $parameter_data_location i32)
14 ;; load data location , which is offset by four bytes from operator location
15 (i32.load (i32.add (local.get $round_data_loc) (i32.const 4)))
16 ;; store data location in variable
17 local.set $parameter_data_location
18 ;; call a function accepting an integer and returning a float
19 (call_indirect (type $sig −i32 −−f32)
20 ;; pass data location
21 (local.get $parameter_data_location)
22 ;; this loads the function pointer to call , stored as a
23 ;; 32− bit integer index
24 (i32.load (local.get $parameter_data_location))
25)
26

27 f32. nearest ;; round the result and return
28)

Listing 2: The WebAssembly Text code for the round function in genish.js

version relied heavily on JIT compilation, and while this was
suitable for many applications where the graph was known
ahead of time and only needed to be compiled once, it made
it less suitable for applications like live coding, where the
audio graph is constantly in flux. The JIT compiler was
also unable to compile very large audio graphs; for example,
on the same 2018 Macbook Pro used in the other tests dis-
cussed in this section, the prior version of genish.js was only
capable of rendering about 200 sine oscillators concurrently.
This wasn’t due to computational efficiency (those 200 os-
cillators only took 8% of one core), but rather solely due to
the size (number of lines) of the generated function, which
the JIT was unable to optimize. The new version of the
library can handle 1500 oscillators on the testing computer
while using about 85% of a single core.

Initially, we were satisfied with these results and began
making plans to use the new version of genish as the basis
for gibberish.js, our higher-level library for musical synthe-
sis. However, we discovered that as the complexity of our
graphs increased, performance decreased much quicker than
we expected. The problem is that the nodes in genish are
very low-level; a complex instrument might be a graph con-
taining dozens of operators. Calling any function incurs a
certain amount of overhead, but calling a function using a
function pointer (such as the tables used in WebAssembly)
introduces an additional cost. With relatively flat graphs
(such as hundreds of sine oscillators feeding a single output)
these costs are hidden, but with more complex graphs the
costs of the dynamism genish provides quickly become more
apparent.

After considering various approaches to solving this prob-
lem, we decided on a hybrid approach. We began extend-
ing genish so that instruments with complex graphs can be
compiled ahead-of-time into single WebAssembly functions;

meanwhile, we plan to keep the current dynamic engine for
executing user-defined audio graphs and live coding modu-
lations. While this work is still underway, many operators
have already been extended to support this, and we are ex-
cited by our preliminary results. For example, a precompiled
WebAssembly function running 3000 sine oscillators creat-
ing using the newest version of genish.js takes around 40%
of a single core; in effect, we can run twice as many oscil-
lators for half the processing power as the dynamic engine.
We’re confident this hybrid approach will support author-
ing higher-level libraries for music and look forward to using
genish in our future work in this way. In the meantime, the
WASM version of genish.js provides the advantage of com-
pletely dynamic audio graphs and a very small download.

Genish.js is open-source software. The main repository
can be found at https://github.com/charlieroberts/genish.
js, with a coding playground and accompanying demos at
https://charlieroberts.github.io/genish.js/playground. For
those interested in exploring the dynamic WASM engine de-
scribed in this paper, a separate experimental playground
can be found at https://gibber.cc/genish.

5. REFERENCES
[1] R. Battagline. The Art of WebAssembly. No Starch

Press, 2021.

[2] F. Bernardo, C. Kiefer, and T. Magnusson. An
AudioWorklet-based Signal Engine for a Live Coding
Language Ecosystem. In Web Audio Conference
(WAC 2019), pages 77–82, 2019.

[3] H. Choi. AudioWorklet: The Future of Web Audio. In
International Computer Music Conference, 2018.

[4] M. Grierson and C. Kiefer. Maximillian: An Easy to
Use, Cross Platform C++Toolkit for Interactive Audio
and Synthesis Applications. In Proceedings of the

https://github.com/charlieroberts/genish.js
https://github.com/charlieroberts/genish.js
https://charlieroberts.github.io/genish.js/playground
https://gibber.cc/genish

International Computer Music Conference. Ann
Arbor, MI: Michigan Publishing, University of
Michigan Library, 2011.

[5] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer,
M. Holman, D. Gohman, L. Wagner, A. Zakai, and
J. Bastien. Bringing the Web Up to Speed with
WebAssembly. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 185–200, 2017.

[6] D. Hockley and C. Williamson. Benchmarking
Runtime Scripting Performance in Wasmer. In
Companion of the 2022 International Conference on
Performance Engineering, 2022.

[7] A. Jangda, B. Powers, E. D. Berger, and A. Guha. Not
So Fast: Analyzing the Performance of WebAssembly
vs. Native Code. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 107–120, 2019.

[8] Q. Lan and A. R. Jensenius. Browser-based
Collaborative Live Coding with Glicol: A
Graph-oriented Live Coding Language Written in
Rust. In Proceedings of the Web Audio Conference,
2021.

[9] V. Lazzarini, E. Costello, S. Yi, et al. Csound on the
Web. In Proceedings of the 2014 Linux Audio
Conference, pages 77–84. University of Bath, 2014.

[10] S. Letz, Y. Orlarey, and D. Fober. FAUST Domain
Specific Audio DSP Language Compiled to
WebAssembly. In Companion Proceedings of the The
Web Conference 2018, WWW ’18, pages 701–709,
Republic and Canton of Geneva, Switzerland, 2018.
International World Wide Web Conferences Steering
Committee.

[11] C. Roberts. Strategies for Per-Sample Processing of
Audio Graphs in the Browser. In Proceedings of the
Web Audio Conference, 2017.

[12] C. Roberts. Metaprogramming Strategies for
AudioWorklets. In Proceedings of the Web Audio
Conference, 2018.

[13] N. Thompson. Elementary Audio.
http://precog.iiitd.edu.in/people/anupama. Last
accessed 6.25.2022.

[14] G. Wakefield. Real-Time Meta-Programming for
Interactive Computational Arts. PhD thesis,
University of California Santa Barbara, 2012.

[15] S. Yi, V. Lazzarini, and E. Costello. WebAssembly
Audioworklet Csound. In Proceedings of the Web
Audio Conference. TU Berlin, 2018.

http://precog.iiitd.edu.in/people/anupama

	Introduction
	Background
	Dynamic Implementation
	WebAssemblyText
	JavaScript

	Evaluation, Iteration, and Discussion
	References

