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SUMMARY

With seismic catalogues becoming progressively larger, extracting information becomes chal-
lenging and calls upon using sophisticated statistical analysis. Data are typically clustered by
machine learning algorithms to find patterns or identify regions of interest that require further
exploration. Here, we investigate two density-based clustering algorithms, DBSCAN and OP-
TICS, for their capability to analyse the spatial distribution of seismicity and their effectiveness
in discovering highly active seismic volumes of arbitrary shapes in large data sets. In particu-
lar, we study the influence of varying input parameters on the cluster solutions. By exploring
the parameter space, we identify a crossover region with optimal solutions in between two
phases with opposite behaviours (i.e. only clustered and only unclustered data points). Using a
synthetic case with various geometric structures, we find that solutions in the crossover region
consistently have the largest clusters and best represent the individual structures. For iden-
tifying strong anisotropic structures, we illustrate the usefulness of data rescaling. Applying
the clustering algorithms to seismic catalogues of recent earthquake sequences (2016 Central
Italy and 2016 Kumamoto) confirms that cluster solutions in the crossover region are the
best candidates to identify 3-D features of tectonic structures that were activated in a seismic
sequence. Finally, we propose a list of recipes that generalizes our analyses to obtain such
solutions for other seismic sequences.

Key words: Machine learning; Statistical methods; Seismicity and tectonics; Statistical seis-

mology.

1 INTRODUCTION

In recent years, machine learning algorithms have been increas-
ingly used in many different research fields due to the availability
of large data sets and new software tools. Clustering is a type of
unsupervised machine learning (Mehta ez al. 2019; Bhattacharya
2021; Zhang et al. 2022) that groups data by means of a sim-
ilarity measure. In the last decades, many clustering algorithms
based on different similarity measures have been proposed (Kauf-
man & Rousseeuw 1990; Jain et al. 1999) and applied to a vari-
ety of scientific problems (Aggarwal & Reddy 2013; Lyra et al.
2014; Lindsey et al. 2018; Karpatne et al. 2019; Abdideh & Ameri
2020) with the aim of identifying hidden patterns in data. Regard-
ing applications to seismicity, a fuzzy clustering algorithm was
used to partition earthquake epicentres of Iranian seismic catalogues
(Ansari et al. 2009), while approaches based on k-means (Ouillon
et al. 2008), Gaussian Mixture models (Ouillon & Sornette 2011)
and more recently agglomerative hierarchical clustering (Kamer
et al. 2020) have been proposed for fault network reconstruction.
Furthermore, Konstantaras et al. (2012), Schoenball & Ellsworth
(2017) and Fan & Xu (2019) have applied the density-based (DB)
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algorithm DBSCAN for cluster analyses of earthquake epicentres,
while Cesca et al. (2014), Cesca (2020) and Petersen et al. (2021)
have developed a software tool based on DBSCAN for implement-
ing multidimensional clustering that accounts for other properties
(such as origin, times, focal mechanisms, moment tensors and
waveform similarity).

The choice of the most appropriate clustering algorithm depends
on the application at hand and is related to the definition of a clus-
ter. Clusters are commonly identified either as groups of data that
minimize the intracluster distance (and maximize intercluster dis-
tance) or as dense data regions separated by sparse regions. Here,
we are interested in discovering spatial features of seismicity by
density rather than distances between data points. This decision
is crucial to identify clusters of arbitrary shapes and anisotropic
structures in a 3-D space. Partitioning algorithms like k-means or
Gaussian Mixture models instead minimize the distances between
data points, which generally leads to identify convex (i.e. spherical)
regions around denser groups of data points. Instead, DB connec-
tions among data points allow recognizing preferential alignments
of anisotropic structures and provide information about their size
(Ester et al. 1996). Another advantage of DB algorithms is their

2073

220z aunr g|. uo Jasn fjodeN Ip eysionun A 009 1859/€202/€/0€Z/a101HENIB/WOoo"dno"o1wapeoe//:sdiy oy papeojumoq


https://orcid.org/0000-0002-1538-1606
https://orcid.org/0000-0002-2342-1970
https://orcid.org/0000-0002-9114-1516
mailto:Piegari ester.piegari@unina.it

2074  E. Piegari et al.

efficiency on large data sets compared to hierarchical clustering al-
gorithms. Furthermore, DB clustering does not require every data
point to be part of a cluster, which makes it possible to account for
noise in data.

In the following, we will explore the two most popular DB clus-
tering algorithms, DBSCAN (Ester ez al. 1996) and its extension
OPTICS (Ankerst et al. 1999). They are based on a simple set of
instructions and require only two input parameters. The problem is
that depending on the spatial distribution of earthquakes, even small
changes of these parameters can lead to very different cluster solu-
tions, ranging from many small to very few large clusters. For this
reason, we explore the challenges in the calibration of these proce-
dures to obtain stable cluster solutions. We deal with this sensitivity
aspect by first exploring the whole parameter space and then dis-
cussing DB cluster solutions for different catalogues. Specifically,
we perform cluster analyses of earthquake catalogues of the 2016
Kumamoto and 2016 Central Italy sequence and identify their main
spatial features. Finally, on the basis of the findings from clustering,
a tentative recipe with instructions to explore a seismic sequence
and identify its main spatial features through DB algorithms is pro-
posed. Then, an application to better characterize the region of the
2016 Kumamoto sequence where the main shocks occurred is il-
lustrated. All the numerical analyses have been performed by using
software packages available in the Statistics and Machine Learning
Toolbox of MATLAB R2021a.

2 DB ALGORITHMS

2.1 DBSCAN

DBSCAN stands for Density Based Spatial Clustering of Applica-
tion with Noise and was introduced by Ester ef al. (1996) with the
aim to discover clusters of arbitrary shapes in large spatial databases
with noise. The algorithm is based on only two input parameters
(see Fig. 1a): g, the neighbourhood distance around a given point;
and Z, the minimum number of points in a neighbourhood. Once
the values of ¢ and Z are assigned, DBSCAN classifies data points,
p, into three categories as follows:

(1)A a core point, if the number of points in its e-neighbourhood,
N:(p), is greater than or equal to Z, that is N.(p) > Z.

(2)As a boundary point, if two conditions are satisfied: (i) the num-
ber of points in its neighbourhood is less than Z, that is N,(p) < Z,
(i1) p is in the e-neighbourhood of a core point.

(3)As a noise point, if it is neither a core point nor a boundary point,
that is N, (p) < Z.

Initially, DBSCAN searches for core points, assigns them a clus-
ter index (hereafter called ‘colour’), and gives the same colour to
all core points that are in the e-neighbourhood of each other. These
points are called density connected core points (see Fig. la) and
their spatial distribution determines the shape and the number of
clusters. Boundary points take the colour of the nearest core point,
while noise points are discarded. We notice that setting the values of
¢ and Z is equivalent to introducing a density threshold to influence
which points become clustered. Thus, varying ¢ and Z corresponds
to increase or decrease this threshold, that means clustering smaller
or larger groups of points. Looking at the distribution of points in
Fig. 1(a), for example, if Z = 3, all points belong to the same cluster
except for one noise point; instead if Z = 5, the algorithm does
not find any cluster because all points are noise points. One of the
most striking features of this algorithm is that the cluster geometry

is not predefined and clusters of any shape can be identified just
grouping paths of density connected points. This is particular use-
ful for cluster analyses of 3-D spatial distribution of earthquakes
as it might be of help in discovering complex networks of fault
systems.

Finally, we note that the number of clusters retrieved by DB-
SCAN does not depend on the order in which the data points
are processed. Instead, boundary points might belong to adjacent
clusters and the algorithm assigns them to the first discovered
cluster.

2.2 OPTICS

OPTICS stands for Ordering Points To Identify Clustering Struc-
ture and is an extension of DBSCAN proposed by Ankerst ef al.
(1999). Actually, it is not a clustering algorithm but an ordering
algorithm introduced to overcome the main drawback of DBSCAN,
that is, not being able to distinguish regions with different densities.
The basic idea is that for a given Z, denser clusters may be com-
pletely contained in clusters of lower density. Therefore, if higher
density points are processed first, a clustering order can be obtained,
which contains information about hierarchically nested clustering
structures.

To identify the clustering structure, the algorithm computes for
each point, p, two additional quantities called core distance, dc, and
reachability distance, dg, as follows (see also Fig. 1b):

undefined if N, (p) < Z
=min(e) | No(p) = Z.

undefined if N, (p) < Z
max (¢’, dist(p, q)) otherwise.

de (s £,7) =1,

dr (p,q; &, Z) ={

In other words, for a given Z, dc is the minimum neighbourhood
distance (i.e. minimum ¢) to make the point p a core point, whereas
dg between q and p is defined only if p is a core point, in which case
dy equals the maximum of d¢ and the Euclidean distance between
p and q. It is worth noting that the algorithm does not necessarily
need the parameter ¢ because the search radius can span all possible
values between zero and infinity, that is exploring all possible values
for dc. Practically, to save computation time, ¢ is set to a reasonably
large value that serves as the maximum distance to consider.

The algorithm starts similar to DBSCAN with finding core points,
but then explores new points in the order of lowest to highest d.
The result is a reachability plot that represents dr of each point as a
function of the cluster-ordered list of points and provides informa-
tion about the clustering structure. An example reachability plot is
shown in Fig. 2 for a data set with 300 data points and five clusters.
Such a graph can be considered as a special type of dendrogram
(Sander et al. 2003), since the obtained clustering structure is hier-
archical and indicates the existence of nested clusters. In Fig. 2(b),
the points belonging to clusters have very low dr (<1.5), and cor-
respond to apparent ‘valleys’; the smaller dg, the denser are the
corresponding clusters. The peaks represent points with larger dx
and separate individual clusters. The higher are the peaks, the more
separated are the clusters. Clusters can be extracted from the reach-
ability plot by selecting a threshold value of ¢, that is drawing a
horizontal line in Fig. 2(b). The number of valleys below such a
threshold results in the exact same cluster solution as DBSCAN for
the same ¢ and Z.
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Figure 1. Graphical representation of (a) DBSCAN classification of data points basic concept and (b) OPTICS definitions of core and reachability distances.
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Figure 2. Example data set (a) and the corresponding reachability plot for Z = 6 (b).
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Figure 3. Spatial distribution of the synthetic data set consisting of five manually defined structures. The structures (coloured dots) and background activity
in the whole volume (grey dots) are represented by uniformly distributed random points of varying density, totalling 3280 points.

3 APPLICATION TO A SYNTHETIC
DATA SET

To illustrate how DB algorithms operate, we apply them to a syn-
thetic data set of hypocentres. This analysis has multiple purposes
summarized as follows:

(1) Hlustrating how DB clustering works in principle by using an
example with simple structures of known geometry.
(i1) Visualizing cluster solutions as function of the parameters.

(iii) Demonstrating that rescaling the data can help to recog-
nize the largest structural features in presence of highly anisotropic
structures.

3.1 Data set presentation

Fig. 3 shows the synthetic data set consisting of five manually de-
fined large structures represented by uniformly distributed random
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Figure 4. Exploring the influence of input parameters on DBSCAN solutions: (a) Number of points belonging to the biggest cluster, Cy, as a function of ¢ for
Z = 1; (b) Number of clusters, N, as function of input parameters ¢ and Z; (c¢) DBSCAN solution for ¢ = 1.4 km and Z = 15; (d) DBSCAN solution for ¢ =
3.4 km and Z = 15. Dark blue points in (c) and (d) represent noise points and do not belong to any cluster.

points of varying density (2480 points in total). In addition, a uni-
form noise consisting of 800 uniformly distributed random points
(about 25 per cent of the total points) was added to the whole volume
(40 km x 100 km x 7 km) to represent background activity.

In particular, the synthetic geometric structures are polygonal re-
gions representing (i) two planar structures at ~6 km depth (black
and green in Fig. 3, slightly shifted in depth), which extend up to
40 km and 60 km horizontally, respectively and about 1 km verti-
cally; (i) a shallow planar structure occupying a volume of about
10 x 30 x 1 km? (cyan in Fig. 3); (iii) an inclined surface extending
for about 2 km in depth and connecting two other structures (dark
blue in Fig. 3) and (iv) a square prism-shaped volume of about 2 km
height (red in Fig. 3). Choosing these structures has been motivated
by the following reasons: (i) shallow and deep planar structures
with different orientations mimic horizontal planes associated with
thrust shear zones; (ii) intersections between structures mimic inter-
secting faults; (iii) strong anisotropy mimics larger sequences that
propagate along a fault system and (iv) various orientations and
overall 3-D interconnectedness mimics a fractured volume without
preferential fault planes.

3.2 Cluster solutions in the parameter space

DBSCAN provides a wide range of solutions with clusters differ-
ing in number, shape and size depending on the value of ¢ and Z.

For Z = 1, all points become clustered (i.e. belong to one or more
clusters). Hints about the number of the largest structures can be
derived from the number of stepwise increases of the biggest cluster
size, Cy, as a function of . The behaviour of Cy(e, Z = 1) for the
synthetic data set is shown in Fig. 4(a). C,(¢, Z = 1) grows step-wise
every time a clustered region joins the biggest cluster. By increas-
ing ¢, the density threshold, Z/e, for identifying core and boundary
points decreases, leading to the clustering of larger regions with
lower density. Small jumps in Cj, indicate that small and dense re-
gions are incorporated into the biggest cluster. Bigger jumps in C,
instead indicate the presence of large and dense regions that are
spatially distant, as the clusters they belong to must increase in size
before joining the biggest cluster. This is more easily understood
for a data set with two dense regions that are separated by a large
gap. By increasing ¢, two big clusters in each of the two regions
will form and continue to increase in size (simultaneously and inde-
pendently of each other) until they merge. At this point, the larger
the spatial distance between the two dense regions, the larger the
corresponding stepwise increase in C, will be (because the ¢ range
in which both clusters grow separately increases with the separation
gap). Therefore, jumps in C, are controlled by the size and spatial
distance of dense regions.

For small Z (< 5), the number of clusters, N, typically becomes
very large and then gradually decreases to 1 for increasing ¢ (see
Fig. 4b). For larger Z, N (&) becomes more complex including minor
fluctuations before reaching 1 for large €.
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Figure 5. Influence of data scaling on DBSCAN solutions of two synthetic data sets for Z = 15. The two data sets differ only in the number of random points
representing the inclined surface intersecting horizontal structures. (a) ¢ = 2.6 km; (b) ¢ = 0.45 km; (¢) ¢ = 2.8 km and (d) € = 0.43 km.

If ¢ is small, Z/e becomes large, causing only regions with locally
high densities to become clustered; most points are classified as
noise. If ¢ is large, Z/e becomes small, causing an inclusion of less
dense regions into the clustering and most points to end up in the
biggest cluster. Examples for these two extreme cluster solutions
are shown in Figs 4(c) and (d), respectively: Fig. 4(c) illustrates
that the region with the highest density becomes clustered, whereas
Fig. 4(d) illustrates a separation of the large horizontal structures at
depth, which resembles a characteristic feature of the synthetic data
set.

Examples of cluster solutions for intermediate values of the
threshold density Z/e are reported in Fig. 5. In particular, Fig. 5(a)
shows that DBSCAN produces two large clusters that do not sep-
arate shallow and deep structures. This limitation is related to the
isotropic neighbour searching, that is processing points by using
spheres of radius e, for which even a small increase in ¢ leads to
incorporate structures into the clusters that are outside the planar
structures or linked to them. This can be more easily understood
by focusing on the structures that form the big cyan cluster of
Fig. 5(a). In presence of intersecting structures, like a planar struc-
ture and an inclined surface, DBSCAN is not able to distinguish
them as individual structures even though the point density in the
planar structure is high enough and the value of the neighbourhood
search radius ¢ does not exceed its thickness. This indiscernibility
happens for two main reasons: (i) decreasing ¢ while Z is kept fixed
leads to a considerable increase of noise points (see Fig. 4c) and (ii)

DBSCAN gives the same colour to paths of density connected points
of any shape, therefore making intersecting structures inseparable
unless they are characterized by different densities.

In an attempt to overcome this limitation, we scaled the data by
homogenizing horizontal and depth ranges before clustering, using
the latter as a reference (here: 0—7 km). To translate each coordinate
individually to a common range, we used the min—max scaling for
each horizontal coordinate x:

Xnew = w (xald - Minold) + mingey, (1)

(max,iq — mingy)

with min,e, = 0 km and max,., = 7 km. For intermediate values
of the threshold density Z/e, Fig. 5(b) shows a cluster solution after
applying this scaling, performing the clustering with DBSCAN
and mapping the results back to the original space. In this case,
clustering is more effective in resolving the shallow planar structure
(yellow points) and one of the two horizontal structures (brown
points). However, the shallow planar structure together with the
inclined structure and a large part of a deep horizontal structure
still belong to the same cluster (cyan cluster). The scaling-based
cluster analysis fails in this part because the point density within
the inclined structure is very high. To demonstrate the influence of
this high density, we repeat the analysis for a subset of the synthetic
data set in which the inclined structure has only 25 per cent of the
points, that is a four times lower density (see Figs 5¢ and d).

Accordingly, clustering without data scaling is again not able
to discriminate shallow and deep structures, whereas they can be
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Figure 6. Reachability plots of the OPTICS algorithm for the synthetic data set in (a) and (c), and corresponding DBSCAN solutions for ¢ = 2.5 km in (b)
and (d), respectively. Figures in the top row relate to Z = 15 and those in the bottom row to Z = 30. Dark blue points are noise points.

identified when data are scaled beforehand, even if the inclined
structure is still not well defined. It is worth noting that the min—
max scaling has some caveats. For instance, it may amplify the
effect of local depth uncertainties and does not preserve the abso-
lute distances among event pairs when the spatial boundary of the
catalogue changes (but here we do not consider temporal changes
of the catalogue). We suggest the min—max scaling only in the pres-
ence of strong anisotropies, that is when the horizontal extension
of large dense regions is much larger than the vertical extension,
Lx,y/Lz >>1. Figs 5(b) and (d) show that the scaling-based cluster
analysis fails in identifying intersecting structures as distinct ob-
jects if their contrast in point density values is not high enough.
However, we think that such a scaling is useful to identifying planar
structures that could be at least partially hidden by the uniform point
distributions in depth caused for instance by uncertainties.

For two different choices of parameter Z (15 and 30), Fig. 6
shows reachability plots (left-hand column) and the corresponding
DBSCAN solutions for ¢ = 2.5 km (right-hand column). The com-
parison reveals that a small Z produces more small-scale valleys in
the reachability plot than a larger Z, which reduced their widths. Ac-
cordingly, a smaller Z results in a larger number of clusters because
the ¢ threshold crosses more valleys horizontally than for larger Z.
Although it is theoretically possible to get information about the
number of characteristic structures by simply counting the number
of the crossed valleys, practically this is not an easy task if Z is too

small, because the meaning of a valley may be ambiguous. Both
reachability plots reveal two main valleys, which can be considered
as the main features of the data set. Such valleys do not correspond
to any of the five manually defined structures but contain them. In
particular, the relative locations of the main valleys suggest a spatial
separation that divides the investigated volume into two parts, which
are illuminated in Fig. 5(d) by cyan and green dots, respectively. The
fact that the ¢ threshold cannot cross all the nested clusters (‘sub-
valleys’) inside the biggest clusters (main valleys) indicates that
isotropic neighbour searching is not effective for our synthetic data
set and that scaling improves its characterization in DB clustering.

4. REPRESENTING DB CLUSTER
SOLUTIONS IN A PHASE DIAGRAM

DB algorithms provide cluster solutions that can vary greatly in
size and shape depending on the values of ¢ and Z. So, the question
is how to choose these parameter values. A common strategy for
estimating an appropriate ¢ is to detect the ‘knee’ in a k-distance
graph, which plots the distances of each point to its kth nearest point
in sorted order (see Ester ef al. 1996). However, this approach does
not always return an optimal &, especially when a certain number
of large clusters is desired instead of a single big one. As noted by
Cesca (2020), a general rule to determine the best value of ¢ and
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Figure 7. Phase diagram of DBSCAN solutions for the synthetic data set. The dotted—dashed and the red dashed lines divide the parameter space into five
regions with different types of cluster solutions (see annotations and main text). Cluster solutions corresponding to the five points in the diagram for Z = 10
(marked by asterisks) are reported in separate subplots. In each subplot, dark blue points are noise points.

Z cannot be provided because DB algorithms are used for different
purposes.

To get a better understanding of what types of information can
be retrieved from DB clustering algorithms by varying the input
parameters, we explore the whole space of solutions for synthetic
and real seismic catalogues. The numerical analysis has shown that
the phase diagram in the parameter space can be divided into five
areas, which represent different classes of cluster solutions. As an
example, Fig. 7 shows the phase diagram of the analysed synthetic
data set. At the opposite ends of ¢ axis in the phase diagram, we find
two extreme conditions: for very low ¢ all data points become noise
points, whereas for very high ¢ all data points become connected to
a single cluster. Moving horizontally from right to left in the phase
diagram (i.e. decreasing ¢ and increasing the density threshold Z/¢),
the size of the biggest cluster, Cy,, decreases and other clusters ap-
pear. The locations of the jumps in C, occur every time it splits
into two or more clusters. Based on this behaviour, we obtain a first
critical ¢ value when Cy, contains 60 per cent of all points, that is for
larger ¢, cluster solutions are characterized by a big cluster that con-
tains more than 60 per cent of the data. Similarly, by moving from
left to right in the phase diagram (i.c. increasing ¢ and decreasing
the density threshold Z/¢), we obtain another critical ¢ value when
60 per cent of the data are noise points, that is for lower ¢, cluster
solutions are characterized by more than 60 per cent of noise points.
For the synthetic data set presented in the previous section, exam-
ples of cluster solutions for which Noise > 60 per cent and C}, > 60
per cent are shown in Figs 4(c) and (d), respectively, for Z = 15. The
two critical ¢ are determined for various Z to construct the phase di-
agram (red markers in Fig. 7). The area between them is a transition

zone named ‘crossover region’, which represents cluster solutions
with many large clusters. Cluster solutions in Fig. 5 all belong to the
crossover region. We are most interested in cluster solutions belong-
ing to this region since they maximize the number of large clusters
and help us to identify volumes with the highest density (natural
clustering). Note that by using other jumps in Cy, (i.e. other splits of
the biggest cluster), it is possible to reconstruct a cluster hierarchy
and divide the crossover region into subregions that differ in the
number of large, stable clusters—depending on the event density
distribution.

For the special case Z = 1, there are no noise points, but it is
still possible to define two critical ¢ values, above which the biggest
cluster contains more than 60 per cent of the data (red star) and all
data (blue star), respectively.

Generally, decreasing ¢ for a fixed Z leads to more clusters,
while increasing Z for a fixed ¢ leads to a fewer clusters. However,
the number of clusters as a function of ¢ and Z does not behave
monotonic (see Fig. 4b).

It is worth noting that increasing the height of the horizontal ¢
threshold in the OPTICS’ reachability plot is equivalent to moving
from left to right in the phase diagram. Obtaining cluster solu-
tions in combination with the reachability plot has the advantage of
accounting for the nested clustering structure—because the reacha-
bility plot visualizes, for a fixed Z, all cluster solutions of DBSCAN
for a broad range of ¢ values.

The phase diagram also shows that cluster solutions de-
pend slightly on Z; an increase of Z generally leads to an in-
crease of noise points and to clusters that are more convex
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Figure 8. Overview of the 2016 Kumamoto sequence using catalogue extracts between 1 April 2016 and 31 August 2016. (a) Map view; (b) zoom into the area
where the three largest earthquakes occurred [see red frame in ‘(a)’]; (c) 3-D representation of (a); (d) 3-D representation of (b). The three largest earthquakes
are represented with red markers and annotated with their magnitude and day of occurrence.

in shape. Recall that a larger Z produces less small-scale val-
leys in the reachability plot. Thus, even if the reachability plot
helps in identifying the number of large clusters in the data set,
the choice of Z still affects the characterization of the cluster
hierarchy.

Finally, we want to point out that the areas covered by the five
regions in the phase diagram of Fig. 7 depend on the spatial distri-
bution of the data, which is an intrinsic property of a data set. Thus,
changing the data distribution will change the width of the crossover
region. Furthermore, exploring the whole parameter space is com-
putationally expensive and practically unnecessary. Our analysis
shows that only solutions in the crossover region are representative
to extract meaningful information about the characteristic largest
structures of a data set. In Section 6.1, we suggest a procedure for
finding them, and selecting those with the desired level of nesting
structure by using OPTICS.

5 APPLICATION TO REAL
EARTHQUAKE CATALOGUES

5.1 The 2016 Kumamoto earthquake sequence

We performed DB cluster analysis of events that occurred between
1 April 2016 and 31 August 2016 (4 months) in the Kumamoto area,
southwest of Japan. The earthquake catalogue was obtained from
the Seismological Bulletin of Japan as provided by the Japan Me-
teorological Agency (JMA) and contains 163 988 events. We only
use events with M > 1 and hypocentral depths shallower than 20 km
within the spatial range of UTM coordinates from 621 to 745 km
Easting and from 3564 to 3699 km Northing (WGS coordinates:
130.3-131.6°E, 32.2-33.4°N), totaling 20 887 events. Fig. 8 shows
2-D and 3-D representations of the hypocentral locations with the
three largest earthquakes highlighted with a red marker (6.5, M6.4
and M7.3).

220z aunr g|. uo Jasn fjodeN Ip eysionun A 009 1859/€202/€/0€Z/a101HENIB/WOoo"dno"o1wapeoe//:sdiy oy papeojumoq



3-D density-based clustering of seismic sequences 2081

e=1km;Z=30;N=34

700
Easting (km) g

620

700 iy,
Easting (km)___—
660

8.
- 3700 3680

depth (km)
3

700 e
Easting (km)

\\
660
620

—
3700 3680

3660

CPeN

\;580 3560
Northing (km)

3 3620 3600

3620 3600 3580 3560
Northing (km)

3620 i 3600 3580 3560

P Northing (km)

Figure 9. DBSCAN solutions of the 2016 Kumamoto sequence for Z = 30 and varying ¢: (a) ¢ = 1 km, (b) ¢ = 1.5 km and (c) ¢ = 2 km. Red markers
represent the location of the three largest earthquakes. Dark blue points represent noise points.

From Figs 8(a) and (c), we visually recognize a few big clusters
as denser areas that are separated by areas with sparse seismicity.
However, a zoom into the region where the largest earthquakes
occurred (Figs 8b and d) blurs the sharp borders of the denser areas
and reveals finer details, making a visual recognition of clusters
ambiguous. With DB clustering, instead, we can divide the catalogue
into natural groups in an exploratory way and identify patterns
within it.

Fig. 9 shows three DBSCAN solutions for different choices of
the input parameters inside the crossover region, that is for which
both the number of noise points and Cy, are less than 60 per cent of
the data. These choices for ¢ = 1, 1.5 and 2 km divide the seismic
sequence into 34, 11 and 7 clusters, respectively. With an increasing
¢, the number of clusters and the number of noise points decrease,
whereas the largest clusters increase in size by incorporating more
adjacent hypocentres. Even though the shapes of the clusters change
by varying ¢, the centres of the largest clusters remain the same;
the clusters always represent the most active zones and the largest

earthquakes always belong to the same cluster (coluored orange,
purple and light blue in Figs 9a—c, respectively).

Fig. 10 shows three reachability plots for Z = {15, 30, 70}
and the DBSCAN solution for Z = 30 and ¢ = 3 km, which is
characterized by the presence of three largest clusters. These three
clusters are evident in each of the three reachability plots as the
deepest and best-defined valleys, named C1, C2 and C3, which can
be considered as the main features of the sequence. As indicated
in Figs 10(b) and (c), this cluster solution can be obtained for a
wide range of ¢, that is many horizontal lines lead to a division into
three big clusters. However, for a small Z (Fig. 10a), the number
of clusters increases significantly as revealed by the many narrow
valleys inside the largest valleys. Consequently, a small variation
of ¢ can lead to new clusters that include very little data due to the
narrowness of the valleys.

The height of the peaks in the reachability plots represents an-
other feature of the seismic sequence, namely the spatial separation
of the clusters. In particular, the highest peaks correspond to the
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points with the largest dr, which indicate the most separated clus-
ters (see Section 2.2). The difference in height of the three main
peaks in Figs 10(a)—(c) indicates that C1 and C2 are less spatially
separated with respect to C3. In addition, Fig. 10(b) (¢ = 1.5 km and
Z = 30) lets us identify two well-defined nested structures related
to the smaller valleys inside both C2 and C3 (named c;, ¢;, ¢; and
c4), which are visible as light blue and green coloured clusters in
Fig. 9(b). Note that C4, which corresponds to a small event group in
the northwestern sector of the area (see Fig. 10d), is not easily rec-
ognizable in the reachability plots due to its very deep and narrow
valley on the left-hand side.

Finally, the horizontal ¢ = 1.5 km thresholds in the reachability
plots produce a different number of clusters for different Z: 14 for
Z = 15 (Fig. 10a), 11 for Z = 30 (Fig. 10b) and 12 for Z = 70
(Fig. 10c).

5.2 The 2016 Central Italy seismic sequence

For the 2016 Central Italy sequence, we used the high-resolution
earthquake catalogue of Tan et al. 2021 spanning from 2016-08-
15 to 2017-08-15. We only considered events with M,, > 2 and
hypocentral depths shallower than 12 km within the spatial range
of UTM coordinates from 330 to 370 km Easting and from 4690 to
4790 km Northing (12.9°-13.4°E, 42.3°-43.2°N), totalling 18 595

events (see Fig. 11). The locations of the four largest earthquakes are
indicated with a red marker (M,,6.1 Amatrice event on 24 August
2016, M,,5.7 Visso event on 26 October 2016, M,,6.1 Norcia event
on 30 October 2016 and M,,5.3 Campotosto event on 18 January
2017).

Since the data set is characterized by horizontally extended struc-
tures within a limited vertical range, the cluster analysis was applied
after scaling the horizontal coordinates to the depth range (0—12 km)
as discussed in Section 3. After remapping into the original coordi-
nate system, Fig. 12 visualizes the obtained clusters for two different
&, but a fixed Z = 100. The first parameter set (¢ = 0.4 km, Z = 100,
see Fig. 12a) represents a cluster solution whose proportion of noise
points is larger than 60 per cent, that is left of the crossover region.
As expected, many small clusters are returned (13 clusters, maxi-
mally about 1000 events each). Instead, the second parameter set (¢
= 0.5 km, Z = 100, see Fig. 12b) is located inside the crossover
region and produces a balance between the amount of noise points
and density-connected points, maximizing the number of large
clusters.

Fig. 12(c) shows the reachability plot for the same Z = 100 and
reveals several well-defined valleys corresponding to many high-
density zones. The threshold ¢ = 0.5 km (black horizontal line in
Fig. 12c) crosses nine valleys, which correspond to the DBSCAN
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Figure 13. Hypocentre density of the (a) synthetic data set, (b) 2016 Kumamoto sequence and (c) 2016 Central Italy sequence. The hypocentre density (see
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solution shown in Fig. 12(b). The reachability plot provides infor-
mation not only on the presence of nested structures but also on
the size and the number of the largest clusters. The main features
of the catalogue are the three largest earthquake clusters, named
Cl1, C2 and C5 in Figs 12(b) and (c). Cl, which represents the
extended structure at depth in the south, contains four smaller val-
leys. These four valleys were identified as individual clusters for
a smaller ¢ = 0.4 km and are visible in Fig. 12(a) as clusters of
different colour in this region. C2, which represents the extended
structure at depth in the centre of the sequence and includes the
Norcia main shock, is characterized by two larger and one smaller
valleys—three substructures also visible in Fig. 12(a). C5, which
represents a shallower structure in the north and contains the Visso
event, contains five valleys of which three correspond to structures
identified with ¢ = 0.4 km in this region (Fig. 12a). The spatial
volumes illuminated by C1, C2 and CS5 are also the main features of
this catalogue with a lower magnitude cut-off (M, > 1.5, totalling
76 055 events), which have been statistically analysed to character-
ize the behaviour of the magnitude distribution during and within
this complex sequence (Herrmann et al. 2021). The remaining clus-
ters in Fig. 12(b) either did not change significantly between the two
parameter sets (e.g. C4, C6 and C8), or were added for the higher &
(e.g. C7).

6 A GENERALIZED APPROACH TO DB
CLUSTER ANALYSIS AND A FURTHER
APPLICATION

DB clustering algorithms undoubtedly facilitate the analysis of large
catalogues by only using two input parameters. Yet, these two param-
eters can lead to a variety of cluster solutions, making their choice
difficult. Ultimately, the preferred clustering solution depends on
the purpose (i.e. the desired grouping of the data set), because a
single best clustering solution does not exist. The cluster hierarchy
of the catalogue can serve as key information for choosing the pre-
ferred solution and can be retrieved from the reachability plot of the
OPTICS algorithm. Our analyses showed that parameter Z is cru-
cial when the interest is in finding not only regions with the highest
hypocentre density but also large clusters that represent the main
structures. We have shown that parameter sets lying in the crossover
region of the phase diagram are good candidates for exploring the
catalogue in a meaningful way. However, finding all cluster solu-
tions in the crossover region by exploring the entire parameter space
is impractical (and needless) especially for large catalogues. Based
on our findings and some general considerations, we describe below
arecipe for finding a representative cluster solution in the crossover
region.
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6.1 A tentative recipe for finding cluster solutions in the
crossover region

Because DB algorithms identify clusters as dense regions separated
by sparse regions, their main drawback relates to the identification
of cluster boundaries, that is if density drops are absent, cluster
boundaries are not well defined. Therefore, we suggest their use
with a foregoing inspection of the spatial distribution of earthquake
hypocentres, which add information about their density and can help
in the cluster analysis. Fig. 13 illustrates this for the investigated
catalogues. The colour scale represents the hypocentre density de-
fined as the number of earthquakes, Ngq, in a sphere of radius 1 km,
V;. The number of events displayed in Figs 13(b) and (c) differs
from Figs 8 and 11 because we have only visualized hypocentres
for which the corresponding density is above a threshold of five
events per V. This threshold simply avoids that many irrelevant
events (in low-density areas) prevent the view of areas of interest
(those that have high density). Fig. 13 highlights that density infor-
mation is fundamental not only to locate the most active regions,
but also to quantify the intensity of seismicity. In particular, the
maximum value of the density, Z,y, 1S approximately equal to 5,
30 and 45 for the synthetic data set and our extracted catalogues
of the 2016 Kumamoto and Central Italy sequences, respectively.
Interestingly, the most active regions in both investigated real cases
do not include the largest earthquakes. We can use Z,,, to find solu-
tions in the crossover region. In Fig. 14, we propose a diagram that
shows the main steps to obtain such solutions without performing
an extensive exploration of the phase diagram.

Given an earthquake catalogue for a region of interest, the first
step consists in converting the map units into km units (e.g. UTM
coordinates), because an orthogonal coordinate system is required to
correctly measure Euclidean distances between hypocentres. Then,
the density of hypocentres needs to be computed and visualized

for every event to infer the spatial distribution of hypocentres and
obtain the Z,,x and the geometry of dense regions. The cluster
analysis starts with ¢ = 1 km and Z = Z,,,. If strong anisotropic
structures characterize the data set, data scaling is suggested and
to start cluster analysis with ¢ = 0.5 km and Z = 2Z,,,x. We note
that the evaluation of anisotropic structures is done retrospectively
considering the spatial distribution of the whole seismic sequence
and when the depth range of hypocentres significantly differs from
their horizontal range. Such an evaluation becomes more feasible
when the catalogue increases in size, and cannot be done at the
beginning of a sequence.

These initial choices for ¢ and Z were motivated by investigat-
ing several catalogues (also catalogues not discussed here), because
they proved effective in providing solutions in the crossover region
or its proximity. Regarding the earthquake density definition, chang-
ing the sphere size V; does not change the spatial distribution of
points in Fig. 13, but only their colour. Generally, for an increasing
sphere radius, the earthquake density decreases because the volume
increases faster than Ngq. Thus, if density values decrease, also
Zmax decreases. Consequently, small values of Z in the initial con-
figuration require small values of ¢ to find solutions in the crossover
region, which however are associated with the undesired feature of a
big amount of noise points. In addition, uncertainties of hypocentral
depths are typically of the order of 1 km, so that smaller values of
V, might not be useful. Regarding the initial choice for &, we set the
radius of the spherical neighbourhood to 1 km because earthquakes
usually occur at a depth of about 0—15 km. If ¢ is larger than 1 km,
DBSCAN likely returns solutions with vertical extensions of the
clusters spanning the entire depth range (see Fig. 9), not allowing to
distinguish shallow and deep structures. Note that larger & require
larger Z to avoid solutions with only one or two huge clusters but
instead remain in the crossover region. Besides, larger ¢ and Z result
in more convex cluster shapes.

220z aunr g|. uo Jasn fjodeN Ip eysionun A 009 1859/€202/€/0€Z/a101HENIB/WOoo"dno"o1wapeoe//:sdiy oy papeojumoq



2086  E. Piegari et al.

2645 (3) (b)
3640
g 3635
(@)] —_
E 3630 = 0
o = X
3625 2L
5 £ 10 680
Z 3620 o
3615+ T 20
3640 660
3610 .
3630 Easting (km)
650

3605 NGFEHITE (i 3620
645 650 655 660 665 670 675 680 orthing (km) 3610
Easting (km)

c d
e © (d)
3640
-10
3635 = 11
3 E
o 3630 S 2
c S 3
€ 3625 =
= S a4
S 3620 -15
3615 3610
3620 650
3610 : 3630 660
s605 Northing (km) 3640 ot 670 Easting (km)
645 650 655 660 665 670 675 680
Easting (km)
e 0
e
3640 4 C6 o7
— 0%
£ 3635 —
=3 £ a1
3630 =
2 < 12
£ 3e25; C7 2 3
o] °
Z 3620} -14
I -15 \
o e 3610 ca -
3610 3620 T~ ' — 660 o
3630

3605 ' e G Easting (km)
645 650 655 660 665 670 675 eso  Northing (km) 3640 " ggo 9
Easting (km)

(9)

Reachability distance

0 1000 2000 3000 4000
Order index

Figure 15. Performing cluster analysis for the largest cluster of the 2016 Kumamoto sequence shown in Fig. 9(b), totalling 9414 events. (a) Map view and
(b) 3-D view. (c) Map view and (d) 3-D view using data in the depth range 10—15 km, totalling 4742 events. Events occurring between the two largest events
(M6.5 and M7.3) are shown in red, the rest in blue (16 April 2016 to 31 August 2016). Black markers represent the three largest events of the sequence. (e—g)
Cluster analysis for Z = 25 applied to the depth-constrained subset shown in panels (c) and (d). The map view and 3-D view in panels (e) and (f) relate to a
DBSCAN solution using ¢ = 1 km, which is indicated by a horizontal line in the reachability plot in panel (g). Noise points are not shown.

220z aunr g1 uo Jasn ijodeN I1p eysioaun A 0091859/€20Z/€/0€Z/P10MEIB/W00"dno olwapese/:sd)y Woly pepeojumoq



Iteratively, the test condition of the cluster solution belonging to
the crossover region is checked by computing the number of noise
points and the size of the biggest cluster Cy. If this condition is not
satisfied, comparing C,, to the size of the other clusters defines how
to change the Z value: if Cy is much larger than the sum of sizes
of other clusters, it must be decreased, otherwise decreased. Once a
solution in the crossover region has been obtained, the reachability
plot is computed for this Z with the OPTICS algorithm. Given
this visualization of the nested hierarchical structure, the & value
is determined by the desired hierarchy level. This ¢ completes the
parameter set for DBSCAN to obtain the final cluster solution.

6.2 Application to a real case

The proposed recipe (Fig. 14) is applied to the largest cluster of the
Kumamoto sequence obtained from the cluster solution shown in
Fig. 9(b). Since this group of earthquakes contains the three largest
earthquakes of the sequence, we want to investigate if they may
belong to different partitions. Fig. 15 emphasizes two periods of
the data set: between the two largest events, a M6.5 and a M7.3
(14 and 15 April 2016, show in red) and everything after (16 April
to 31 August 2016, show in blue). The earlier events represent a
well-known, preferred alignment (Yano & Matsubara 2017), which
also persists in the depth range of 10-15 km (Figs 15¢ and d), and
are characterized by a spatial distribution that resembles a branched
structure. The two largest events initiated at similar depths and
belong to two different branches. From our cluster analysis, we
find that both events belong to the same cluster. By applying our
proposed procedure only using hypocentres in the depth range of
10-15 km, we again find that the two largest events belong to the
same cluster (see Figs 15¢ and f), supporting the findings of previous
studies (Sugito et al. 2016; Yue et al. 2017). The reachability plot
nicely reflects the hierarchy of the data set and its characteristic
structures (see Fig. 15g). In particular, a horizontal cut at ¢ = 1 km
crosses seven valleys corresponding to the seven clusters shown in
Figs 15(e) and (f) as retrieved by DBSCAN. From the reachability
plot, we can infer the density and size of each cluster and already
presume what happens when we change the ¢ threshold: a small
increase in ¢ will cause C2 and C3 to be included in C1, whereas a
decrease in ¢ leads to a splitting of C1 into smaller clusters due to
several smaller valleys contained in it.

7 CONCLUSIONS

We performed 3-D spatial cluster analyses of seismic sequences
by applying the popular density-based clustering algorithms DB-
SCAN in combination with the reachability plot of the OPTICS
algorithm to synthetic and real hypocentre catalogues. Our analyses
address the influence of the input parameters on cluster solutions
and provide suggestions for exploring earthquake catalogues more
appropriately.

Several studies that applied DBSCAN to earthquake catalogues
using hypocentre locations, occurrence times, and/or focal mecha-
nisms all remain vague about the choice of input parameters. Here
we showed that such choices are crucial to discover regions of in-
terest for a subsequent analysis and to identify meaningful tectonic
structures that were activated in a seismic sequence.

We showed that varying the DBSCAN parameters leads to a va-
riety of cluster solutions that can be classified into five different
regions of the phase diagram. Cluster solutions inside the so-called
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crossover region are the most representative candidates for char-
acterizing 3-D spatial features of seismic sequences, because they
represent the individual structures as large clusters. To identify these
solutions, we proposed a tentative recipe that includes a density rep-
resentation of earthquakes and investigating the nested clustering
structure.

We draw the following conclusions from our analyses: (i) using
DB algorithms for cluster analysis requires utmost care in the se-
lection of input parameters and the type to which the considered
solution belongs to; (ii) graphically representing the spatial distri-
bution of hypocentres and their density helps to select the input
parameters and (iii) only cluster solutions in the crossover region
represent information about the largest characteristic structures of
a data set. Investigating such solutions can provide insight into the
main features of a seismic sequence (e.g. its 3-D fault geometry) and
open new perspectives for studying the spatiotemporal evolution of
fault systems.
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