Presentation Open Access
Employing the properties of linguistic networks allows discovering structure and making predictions.
This course seeks answers to three questions: (1) how to express the linguistic phenomena as graphs, (2) how to gain knowledge based on them, and (3) how to assess the quality of this knowledge. We will start with traditional graph-based Natural Language Processing (NLP) methods like TextRank and Markov Clustering and finish with such contemporary Machine Learning techniques as DeepWalk and Graph Convolutional Networks. As the growing interest in NLP methods urges their meaningful evaluation, we pay special attention to quality assessment and human judgements. The course has five lectures on Language Graphs, Graph Clustering, Graph Embeddings, Knowledge Graphs, and Evaluation. They elaborately go through the essential algorithms step-by-step, discuss case studies, and suggest insightful references and datasets.
The target audience is undergraduate and graduate students, data analysts, and interdisciplinary researchers (but it is not limited to them).
The course was held in person in August 2022 at the 33rd European Summer School in Logic, Language and Information (ESSLLI 2022) in Galway, Ireland: https://2022.esslli.eu/courses-workshops-accepted/week-1-and-2-schedule.html.
Name | Size | |
---|---|---|
Clustering.pdf
md5:f22911eb64535aae3545f2de367b750c |
4.9 MB | Download |
Embeddings.pdf
md5:db5804d8af33a5ef9feba5f6027f260d |
4.0 MB | Download |
Evaluation.pdf
md5:804d8ebbd8c7e959c012c321a63eab5f |
5.2 MB | Download |
Knowledge.pdf
md5:6671ffc64e72ba29dc3d8974e17dc888 |
9.6 MB | Download |
Language.pdf
md5:118692226afdc7ab191aab3d832e3fa3 |
4.4 MB | Download |
Agirre, E., López de Lacalle, O., Soroa, A.: Random Walks for Knowledge-Based Word Sense Disambiguation. Computational Linguistics. 40, 57–84 (2014). https://doi.org/10.1162/COLI_a_00164
von Ahn, L., Dabbish, L.: Labeling Images with a Computer Game. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 319–326. ACM, Vienna, Austria (2004). https://doi.org/10.1145/985692.985733
Ali, M., Berrendorf, M., Hoyt, C.T., Vermue, L., Sharifzadeh, S., Tresp, V., Lehmann, J.: PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge Graph Embeddings. Journal of Machine Learning Research. 22, 1–6 (2021)
Alonso, O., Rose, D.E., Stewart, B.: Crowdsourcing for Relevance Evaluation. SIGIR Forum. 42, 9–15 (2008). https://doi.org/10.1145/1480506.1480508
Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., Saunders, L., Tyers, F.M., Weber, G.: Common Voice: A Massively-Multilingual Speech Corpus. In: Proceedings of The 12th Language Resources and Evaluation Conference. pp. 4218–4222. European Language Resources Association (ELRA), Marseille, France (2020)
Artstein, R., Poesio, M.: Inter-Coder Agreement for Computational Linguistics. Computational Linguistics. 34, 555–596 (2008). https://doi.org/10.1162/coli.07-034-R2
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A Nucleus for a Web of Open Data. In: The Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11–15, 2007. Proceedings. pp. 722–735. Springer Berlin Heidelberg, Berlin; Heidelberg, Germany (2007). https://doi.org/10.1007/978-3-540-76298-0_52
Azadani, M.N., Ghadiri, N., Davoodijam, E.: Graph-based biomedical text summarization: An itemset mining and sentence clustering approach. Journal of Biomedical Informatics. 84, 42–58 (2018). https://doi.org/10.1016/j.jbi.2018.06.005
Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet Project. In: Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics - Volume 1. pp. 86–90. Association for Computational Linguistics, Montréal, QC, Canada (1998). https://doi.org/10.3115/980845.980860
Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science. 286, 509–512 (1999). https://doi.org/10.1126/science.286.5439.509
Bartunov, S., Kondrashkin, D., Osokin, A., Vetrov, D.: Breaking Sticks and Ambiguities with Adaptive Skip-gram. In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. pp. 130–138. PMLR, Cadiz, Spain (2016)
Bavelas, A.: Communication Patterns in Task-Oriented Groups. The Journal of the Acoustical Society of America. 22, 725–730 (1950). https://doi.org/10.1121/1.1906679
Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation. 15, 1373–1396 (2003). https://doi.org/10.1162/089976603321780317
Biemann, C., Riedl, M.: Text: now in 2D! A framework for lexical expansion with contextual similarity. Journal of Language Modelling. 1, 55–95 (2013). https://doi.org/10.15398/jlm.v1i1.60
Biemann, C.: Chinese Whispers: An Efficient Graph Clustering Algorithm and Its Application to Natural Language Processing Problems. In: Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing. pp. 73–80. Association for Computational Linguistics, New York, NY, USA (2006). https://doi.org/10.3115/1654758.1654774
Biemann, C.: Creating a system for lexical substitutions from scratch using crowdsourcing. Language Resources and Evaluation. 47, 97–122 (2013). https://doi.org/10.1007/s10579-012-9180-5
Biemann, C.: Structure Discovery in Natural Language. Springer Berlin Heidelberg (2012). https://doi.org/10.1007/978-3-642-25923-4
Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python. O'Reilly Media (2017)
Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment. 2008, P10008 (2008). https://doi.org/10.1088/1742-5468/2008/10/P10008
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching Word Vectors with Subword Information. Transactions of the Association for Computational Linguistics. 5, 135–146 (2017). https://doi.org/10.1162/tacl_a_00051
Bonacich, P.: Power and Centrality: A Family of Measures. American Journal of Sociology. 92, 1170–1182 (1987). https://doi.org/10.1086/228631
Bonnabel, S.: Stochastic Gradient Descent on Riemannian Manifolds. IEEE Transactions on Automatic Control. 58, 2217–2229 (2013). https://doi.org/10.1109/TAC.2013.2254619
Bordea, G., Lefever, E., Buitelaar, P.: SemEval-2016 Task 13: Taxonomy Extraction Evaluation (TExEval-2). In: Proceedings of the 10th International Workshop on Semantic Evaluation. pp. 1081–1091. Association for Computational Linguistics, San Diego, CA, USA (2016). https://doi.org/10.18653/v1/S16-1168
Bordes, A., Chopra, S., Weston, J.: Question Answering with Subgraph Embeddings. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. pp. 615–620. Association for Computational Linguistics, Doha, Qatar (2014). https://doi.org/10.3115/v1/D14-1067
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating Embeddings for Modeling Multi-relational Data. In: Advances in Neural Information Processing Systems 26. pp. 2787–2795. Curran Associates, Inc., Lake Tahoe, NV, USA (2013)
Boudin, F.: A Comparison of Centrality Measures for Graph-Based Keyphrase Extraction. In: Proceedings of the Sixth International Joint Conference on Natural Language Processing. pp. 834–838. Asian Federation of Natural Language Processing, Nagoya, Japan (2013)
Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Social Networks. 30, 136–145 (2008). https://doi.org/10.1016/j.socnet.2007.11.001
Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems. 30, 107–117 (1998). https://doi.org/10.1016/S0169-7552(98)00110-X
Brody, S., Alon, U., Yahav, E.: How Attentive are Graph Attention Networks? In: 10th International Conference on Learning Representations. OpenReview.net, Virtual (2022)
Buckley, C., Voorhees, E.M.: Evaluating Evaluation Measure Stability. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 33–40. Association for Computing Machinery, Athens, Greece (2000). https://doi.org/10.1145/345508.345543
Cai, H., Zheng, V.W., Chen-Chuan Chang, K.: A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications. IEEE Transactions on Knowledge and Data Engineering. 30, 1616–1637 (2018). https://doi.org/10.1109/TKDE.2018.2807452
Callison-Burch, C.: Fast, Cheap, and Creative: Evaluating Translation Quality Using Amazon's Mechanical Turk. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. pp. 286–295. Association for Computational Linguistics; Asian Federation of Natural Language Processing, Singapore (2009). https://doi.org/10.3115/1699510.1699548
Camacho-Collados, J., Delli Bovi, C., Espinosa-Anke, L., Oramas, S., Pasini, T., Santus, E., Shwartz, V., Navigli, R., Saggion, H.: SemEval-2018 Task 9: Hypernym Discovery. In: Proceedings of The 12th International Workshop on Semantic Evaluation. pp. 712–724. Association for Computational Linguistics, New Orleans, LA, USA (2018). https://doi.org/10.18653/v1/S18-1115
Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C., Blei, D.M.: Reading Tea Leaves: How Humans Interpret Topic Models. In: Advances in Neural Information Processing Systems 22. pp. 288–296. Curran Associates, Inc., Vancouver, BC, Canada (2009)
Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected Reciprocal Rank for Graded Relevance. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management. pp. 621–630. Association for Computing Machinery, Hong Kong, China (2009). https://doi.org/10.1145/1645953.1646033
Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and Relieving the Over-Smoothing Problem for Graph Neural Networks from the Topological View. Proceedings of the AAAI Conference on Artificial Intelligence. 34, 3438–3445 (2020). https://doi.org/10.1609/aaai.v34i04.5747
Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 21, 6 (2020). https://doi.org/10.1186/s12864-019-6413-7
Cimiano, P., Chiarcos, C., McCrae, J.P., Gracia, J.: Linguistic Linked Data: Representation, Generation and Applications. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-30225-2
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press (2022)
Csárdi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Systems. 1695, 1–9 (2006)
Dacrema, M.F., Cremonesi, P., Jannach, D.: Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches. In: Proceedings of the 13th ACM Conference on Recommender Systems. pp. 101–109. Association for Computing Machinery, Copenhagen, Denmark (2019). https://doi.org/10.1145/3298689.3347058
Davis, J., Goadrich, M.: The Relationship between Precision-Recall and ROC Curves. In: Proceedings of the 23rd International Conference on Machine Learning. pp. 233–240. Association for Computing Machinery, Pittsburgh, PA, USA (2006). https://doi.org/10.1145/1143844.1143874
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp. 4171–4186. Association for Computational Linguistics, Minneapolis, MN, USA (2019). https://doi.org/10.18653/v1/N19-1423
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik. 1, 269–271 (1959). https://doi.org/10.1007/BF01386390
Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 601–610. Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2623330.2623623
van Dongen, S.: Graph Clustering by Flow Simulation, (2000)
Dorogovtsev, S.N., Mendes, J.F.F.: Language as an evolving word web. Proceedings of the Royal Society of London B: Biological Sciences. 268, 2603–2606 (2001). https://doi.org/10.1098/rspb.2001.1824
Dorogovtsev, S.N., Mendes, J.F.F.: The Nature of Complex Networks. Oxford University Press, Oxford, UK (2022)
Dorow, B., Widdows, D.: Discovering Corpus-Specific Word Senses. In: Proceedings of the Tenth Conference on European Chapter of the Association for Computational Linguistics - Volume 2. pp. 79–82. Association for Computational Linguistics, Budapest, Hungary (2003). https://doi.org/10.3115/1067737.1067753
Dror, R., Baumer, G., Shlomov, S., Reichart, R.: The Hitchhiker's Guide to Testing Statistical Significance in Natural Language Processing. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). pp. 1383–1392. Association for Computational Linguistics, Melbourne, VIC, Australia (2018). https://doi.org/10.18653/v1/P18-1128
Estellés-Arolas, E., González-Ladrón-de-Guevara, F.: Towards an integrated crowdsourcing definition. Journal of Information Science. 38, 189–200 (2012). https://doi.org/10.1177/0165551512437638
Faralli, S., Panchenko, A., Biemann, C., Ponzetto, S.P.: Linked Disambiguated Distributional Semantic Networks. In: The Semantic Web – ISWC 2016, 15th International Semantic Web Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part II. pp. 56–64. Springer International Publishing, Cham, Switzerland (2016). https://doi.org/10.1007/978-3-319-46547-0_7
Faruqui, M., Dodge, J., Jauhar, S.K., Dyer, C., Hovy, E., Smith, N.A.: Retrofitting Word Vectors to Semantic Lexicons. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. pp. 1606–1615. Association for Computational Linguistics, Denver, CO, USA (2015). https://doi.org/10.3115/v1/N15-1184
Fellbaum, C.: WordNet: An Electronic Database. MIT Press, Massachusetts, MA, USA (1998). https://doi.org/10.7551/mitpress/7287.001.0001
Fey, M., Lenssen, J.E.: Fast Graph Representation Learning with PyTorch Geometric. In: ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds, New Orleans, LA, USA (2019)
Fillmore, C.J.: Frame Semantics. In: Linguistics in the Morning Calm. pp. 111–137. Hanshin Publishing Co., Seoul, South Korea (1982)
Florescu, C., Caragea, C.: PositionRank: An Unsupervised Approach to Keyphrase Extraction from Scholarly Documents. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). pp. 1105–1115. Association for Computational Linguistics, Vancouver, BC, Canada (2017). https://doi.org/10.18653/v1/P17-1102
Fortunato, S.: Community detection in graphs. Physics Reports. 486, 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002
Fowlkes, E.B., Mallows, C.L.: A Method for Comparing Two Hierarchical Clusterings. Journal of the American Statistical Association. 78, 553–569 (1983). https://doi.org/10.1080/01621459.1983.10478008
Freeman, L.C.: A Set of Measures of Centrality Based on Betweenness. Sociometry. 40, 35–41 (1977). https://doi.org/10.2307/3033543
Frey, B.J., Dueck, D.: Clustering by Passing Messages Between Data Points. Science. 315, 972–976 (2007). https://doi.org/10.1126/science.1136800
Fu, R., Guo, J., Qin, B., Che, W., Wang, H., Liu, T.: Learning Semantic Hierarchies via Word Embeddings. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics Volume 1: Long Papers. pp. 1199–1209. Association for Computational Linguistics, Baltimore, MD, USA (2014). https://doi.org/10.3115/v1/P14-1113
Gallardo, P.F.: Google's secret and Linear Algebra. EMS Newsletter. 63, 10–15 (2007)
Goldhahn, D., Eckart, T., Quasthoff, U.: Building Large Monolingual Dictionaries at the Leipzig Corpora Collection: From 100 to 200 Languages. In: Proceedings of the Eight International Conference on Language Resources and Evaluation. pp. 759–765. European Language Resources Association (ELRA), Istanbul, Turkey (2012)
Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: GraphX: Graph Processing in a Distributed Dataflow Framework. In: 11th USENIX Symposium on Operating Systems Design and Implementation. pp. 599–613. USENIX Association, Broomfield, CO, USA (2014)
Good, B.H., de Montjoye, Y.-A., Clauset, A.: Performance of modularity maximization in practical contexts. Physical Review E. 81, 046106 (2010). https://doi.org/10.1103/PhysRevE.81.046106
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016)
Gorodkin, J.: Comparing two K-category assignments by a K-category correlation coefficient. Computational Biology and Chemistry. 28, 367–374 (2004). https://doi.org/10.1016/j.compbiolchem.2004.09.006
Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems. 151, 78–94 (2018). https://doi.org/10.1016/j.knosys.2018.03.022
Grover, A., Leskovec, J.: node2vec: Scalable Feature Learning for Networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 855–864. ACM, San Francisco, CA, USA (2016). https://doi.org/10.1145/2939672.2939754
Gösgens, M., Tikhonov, A., Prokhorenkova, L.: Systematic Analysis of Cluster Similarity Indices: How to Validate Validation Measures. In: Proceedings of the 38th International Conference on Machine Learning. pp. 3799–3808. PMLR, Online (2021)
Gösgens, M., Zhiyanov, A., Tikhonov, A., Prokhorenkova, L.: Good Classification Measures and How to Find Them. In: Advances in Neural Information Processing Systems 34. pp. 17136–17147. Curran Associates, Inc., Online (2021)
Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring Network Structure, Dynamics, and Function using NetworkX. In: Proceedings of the 7th Python in Science Conference. pp. 11–15, Pasadena, CA, USA (2008)
Hamilton, W.L., Ying, R., Leskovec, J.: Inductive Representation Learning on Large Graphs. In: Advances in Neural Information Processing Systems 30. pp. 1024–1034. Curran Associates, Inc., Vancouver, BC, Canada (2017)
Han, X., Cao, S., Lv, X., Lin, Y., Liu, Z., Sun, M., Li, J.: OpenKE: An Open Toolkit for Knowledge Embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. pp. 139–144. Association for Computational Linguistics, Brussels, Belgium (2018). https://doi.org/10.18653/v1/D18-2024
Hansen, P.C.: The truncatedSVD as a method for regularization. BIT Numerical Mathematics. 27, 534–553 (1987). https://doi.org/10.1007/BF01937276
Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics). 28, 100–108 (1979). https://doi.org/10.2307/2346830
Hearst, M.A.: Automatic Acquisition of Hyponyms from Large Text Corpora. In: Proceedings of the 14th Conference on Computational Linguistics - Volume 2. pp. 539–545. Association for Computational Linguistics, Nantes, France (1992). https://doi.org/10.3115/992133.992154
Heo, Y.-J., Kim, E.-S., Choi, W.S., Zhang, B.-T.: Hypergraph Transformer: Weakly-Supervised Multi-hop Reasoning for Knowledge-based Visual Question Answering. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). pp. 373–390. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.29
Hitzler, P.: A Review of the Semantic Web Field. Communications of the ACM. 64, 76–83 (2021). https://doi.org/10.1145/3397512
Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation. 9, 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Hogan, A., Blomqvist, E., Cochez, M., D'amato, C., Melo, G.D., Gutierrez, C., Kirrane, S., Gayo, J.E.L., Navigli, R., Neumaier, S., Ngomo, A.-C.N., Polleres, A., Rashid, S.M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., Zimmermann, A.: Knowledge Graphs. ACM Computing Surveys. 54, 1–37 (2021). https://doi.org/10.1145/3447772
Hope, D., Keller, B.: MaxMax: A Graph-Based Soft Clustering Algorithm Applied to Word Sense Induction. In: Computational Linguistics and Intelligent Text Processing, 14th International Conference, CICLing 2013, Samos, Greece, March 24-30, 2013, Proceedings, Part I. pp. 368–381. Springer Berlin Heidelberg, Berlin; Heidelberg, Germany (2013). https://doi.org/10.1007/978-3-642-37247-6_30
Hope, D., Keller, B.: UoS: A Graph-Based System for Graded Word Sense Induction. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013). pp. 689–694. Association for Computational Linguistics, Atlanta, GA, USA (2013)
Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification. 2, 193–218 (1985). https://doi.org/10.1007/BF01908075
İrsoy, O., Benton, A., Stratos, K.: Corrected BOW Performs as well as Skip-gram. In: Proceedings of the Second Workshop on Insights from Negative Results in NLP. pp. 1–8. Association for Computational Linguistics, Online; Punta Cana, Dominican Republic (2021). https://doi.org/10.18653/v1/2021.insights-1.1
Jana, A., Goyal, P.: Can Network Embedding of Distributional Thesaurus Be Combined with Word Vectors for Better Representation? In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). pp. 463–473. Association for Computational Linguistics, New Orleans, LA, USA (2018). https://doi.org/10.18653/v1/N18-1043
Jansen, P., Ustalov, D.: TextGraphs 2020 Shared Task on Multi-Hop Inference for Explanation Regeneration. In: Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs). pp. 85–97. Association for Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.textgraphs-1.10
Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A Survey on Knowledge Graphs: Representation, Acquisition, and Applications. IEEE Transactions on Neural Networks and Learning Systems. 33, 494–514 (2022). https://doi.org/10.1109/TNNLS.2021.3070843
Johnson, D.B.: Efficient Algorithms for Shortest Paths in Sparse Networks. Journal of the ACM. 24, 1–13 (1977). https://doi.org/10.1145/321992.321993
Jurgens, D., Klapaftis, I.: SemEval-2013 Task 13: Word Sense Induction for Graded and Non-Graded Senses. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013). pp. 290–299. Association for Computational Linguistics, Atlanta, GA, USA (2013)
Järvelin, K., Kekäläinen, J.: Cumulated Gain-Based Evaluation of IR Techniques. ACM Transactions on Information Systems. 20, 422–446 (2002). https://doi.org/10.1145/582415.582418
Kapustin, V., Jamsen, A.: Vertex Degree Distribution for the Graph of Word Co-Occurrences in Russian. In: Proceedings of the Second Workshop on TextGraphs: Graph-Based Algorithms for Natural Language Processing. pp. 89–92. Association for Computational Linguistics, Rochester, NY, USA (2007)
Kartsaklis, D., Pilehvar, M.T., Collier, N.: Mapping Text to Knowledge Graph Entities using Multi-Sense LSTMs. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. pp. 1959–1970. Association for Computational Linguistics, Brussels, Belgium (2018). https://doi.org/10.18653/v1/D18-1221
Kawahara, D., Peterson, D.W., Palmer, M.: A Step-wise Usage-based Method for Inducing Polysemy-aware Verb Classes. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics Volume 1: Long Papers. pp. 1030–1040. Association for Computational Linguistics, Baltimore, MD, USA (2014). https://doi.org/10.3115/v1/P14-1097
Kazemi, A., Pérez-Rosas, V., Mihalcea, R.: Biased TextRank: Unsupervised Graph-Based Content Extraction. In: Proceedings of the 28th International Conference on Computational Linguistics. pp. 1642–1652. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.144
Kejriwal, M., Knoblock, C.A., Szekely, P.: Knowledge Graphs: Fundamentals, Techniques, and Applications. MIT Press (2021)
Kent, A., Berry, M.M., Luehrs Jr., F.U., Perry, J.W.: Machine literature searching VIII. Operational criteria for designing information retrieval systems. American Documentation. 6, 93–101 (1955). https://doi.org/10.1002/asi.5090060209
Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph Convolutional Networks. In: 5th International Conference on Learning Representations, Conference Track Proceedings. OpenReview.net, Toulon, France (2017)
Kleinberg, J.M.: Authoritative Sources in a Hyperlinked Environment. Journal of the ACM. 46, 604–632 (1999). https://doi.org/10.1145/324133.324140
Kohavi, R., Tang, D., Xu, Y.: Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing. Cambridge University Press (2020). https://doi.org/10.1017/9781108653985
Kozareva, Z., Hovy, E.: A Semi-Supervised Method to Learn and Construct Taxonomies Using the Web. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. pp. 1110–1118. Association for Computational Linguistics, Cambridge, MA, USA (2010)
Krippendorff, K.: Content Analysis: An Introduction to Its Methodology. SAGE Publications, Inc, Thousand Oaks, CA, USA (2018)
Krizhanovsky, A.A., Smirnov, A.V.: An approach to automated construction of a general-purpose lexical ontology based on Wiktionary. Journal of Computer and Systems Sciences International. 52, 215–225 (2013). https://doi.org/10.1134/S1064230713020068
Lassila, O., McGuinness, D.: The Role of Frame-Based Representation on the Semantic Web. Linköping Electronic Articles in Computer and Information Science. 6, (2001)
Le, M., Roller, S., Papaxanthos, L., Kiela, D., Nickel, M.: Inferring Concept Hierarchies from Text Corpora via Hyperbolic Embeddings. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. pp. 3231–3241. Association for Computational Linguistics, Florence, Italy (2019). https://doi.org/10.18653/v1/P19-1313
Lenat, D.B.: CYC: A Large-Scale Investment in Knowledge Infrastructure. Communications of the ACM. 38, 33–38 (1995). https://doi.org/10.1145/219717.219745
Leskovec, J., Sosič, R.: SNAP: A General-Purpose Network Analysis and Graph-Mining Library. ACM Transactions on Intelligent Systems and Technology. 8, 1:1–1:20 (2016). https://doi.org/10.1145/2898361
Levy, O., Goldberg, Y.: Neural Word Embedding as Implicit Matrix Factorization. In: Advances in Neural Information Processing Systems 27. pp. 2177–2185. Curran Associates, Inc., Montréal, QC, Canada (2014)
Lewis, M., Steedman, M.: Unsupervised Induction of Cross-Lingual Semantic Relations. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. pp. 681–692. Association for Computational Linguistics, Seattle, WA, USA (2013)
Li, W., Lu, Y., Huang, Z., Su, W., Liu, J., Feng, S., Sun, Y.: PGL at TextGraphs 2020 Shared Task: Explanation Regeneration using Language and Graph Learning Methods. In: Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs). pp. 98–102. Association for Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.textgraphs-1.11
Litvak, M., Last, M., Kandel, A.: DegExt: a language-independent keyphrase extractor. Journal of Ambient Intelligence and Humanized Computing. 4, 377–387 (2013). https://doi.org/10.1007/s12652-012-0109-z
Lucchese, C., Muntean, C.I., Nardini, F.M., Perego, R., Trani, S.: RankEval: An Evaluation and Analysis Framework for Learning-to-Rank Solutions. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 1281–1284. Association for Computing Machinery, Shinjuku, Tokyo, Japan (2017). https://doi.org/10.1145/3077136.3084140
Lutov, A., Khayati, M., Cudré-Mauroux, P.: Accuracy Evaluation of Overlapping and Multi-Resolution Clustering Algorithms on Large Datasets. In: 2019 IEEE International Conference on Big Data and Smart Computing (BigComp). pp. 1–8. IEEE, Kyoto, Japan (2019). https://doi.org/10.1109/BIGCOMP.2019.8679398
von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing. 17, 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z
Ma, Y., Yu, D., Wu, T., Wang, H.: PaddlePaddle: An Open-Source Deep Learning Platform from Industrial Practice. Frontiers of Data and Computing. 1, 105–115 (2019). https://doi.org/10.11871/jfdc.issn.2096.742X.2019.01.011
Manandhar, S., Klapaftis, I., Dligach, D., Pradhan, S.: SemEval-2010 Task 14: Word Sense Induction & Disambiguation. In: Proceedings of the 5th International Workshop on Semantic Evaluation. pp. 63–68. Association for Computational Linguistics, Uppsala, Sweden (2010)
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)
Marcheggiani, D., Titov, I.: Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. pp. 1506–1515. Association for Computational Linguistics, Copenhagen, Denmark (2017). https://doi.org/10.18653/v1/D17-1159
Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a Large Annotated Corpus of English: The Penn Treebank. Computational Linguistics. 19, 313–330 (1993)
Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure. 405, 442–451 (1975). https://doi.org/10.1016/0005-2795(75)90109-9
Meyer, C.M., Mieskes, M., Stab, C., Gurevych, I.: DKPro Agreement: An Open-Source Java Library for Measuring Inter-Rater Agreement. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: System Demonstrations. pp. 105–109. Dublin City University; Association for Computational Linguistics, Dublin, Ireland (2014)
Michail, D., Kinable, J., Naveh, B., Sichi, J.V.: JGraphT—A Java Library for Graph Data Structures and Algorithms. ACM Transactions on Mathematical Software. 46, 16:1–16:29 (2020). https://doi.org/10.1145/3381449
Mihalcea, R., Radev, D.: Graph-Based Natural Language Processing and Information Retrieval. Cambridge University Press (2011). https://doi.org/10.1017/CBO9780511976247
Mihalcea, R., Tarau, P., Figa, E.: PageRank on Semantic Networks, with Application to Word Sense Disambiguation. In: Proceedings of the 20th International Conference on Computational Linguistics. pp. 1126–1132. COLING, Geneva, Switzerland (2004). https://doi.org/10.3115/1220355.1220517
Mihalcea, R., Tarau, P.: TextRank: Bringing Order into Text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. pp. 404–411. Association for Computational Linguistics, Barcelona, Spain (2004)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed Representations of Words and Phrases and their Compositionality. In: Advances in Neural Information Processing Systems 26. pp. 3111–3119. Curran Associates, Inc., Lake Tahoe, NV, USA (2013)
Moro, A., Raganato, A., Navigli, R.: Entity Linking meets Word Sense Disambiguation: a Unified Approach. Transactions of the Association for Computational Linguistics. 2, 231–244 (2014). https://doi.org/10.1162/tacl_a_00179
Navigli, R., Ponzetto, S.P.: BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artificial Intelligence. 193, 217–250 (2012). https://doi.org/10.1016/j.artint.2012.07.001
Newman, M.E.J.: Analysis of weighted networks. Physical Review E. 70, 056131 (2004). https://doi.org/10.1103/PhysRevE.70.056131
Ng, A., Jordan, M., Weiss, Y.: On Spectral Clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems 14. pp. 846–856. MIT Press, Vancouver, BC, Canada (2002)
Nickel, M., Kiela, D.: Poincaré Embeddings for Learning Hierarchical Representations. In: Advances in Neural Information Processing Systems 30. pp. 6341–6350. Curran Associates, Inc., Vancouver, BC, Canada (2017)
Nickel, M., Tresp, V., Kriegel, H.-P.: A Three-Way Model for Collective Learning on Multi-Relational Data. In: Proceedings of the 28th International Conference on International Conference on Machine Learning. pp. 809–816. Omnipress, Bellevue, WA, USA (2011)
Orlando, R., Conia, S., Brignone, F., Cecconi, F., Navigli, R.: AMuSE-WSD: An All-in-one Multilingual System for Easy Word Sense Disambiguation. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. pp. 298–307. Association for Computational Linguistics, Online; Punta Cana, Dominican Republic (2021). https://doi.org/10.18653/v1/2021.emnlp-demo.34
Padó, S.: User's guide to sigf: Significance testing by approximate randomisation. (2006)
Panchenko, A., Ruppert, E., Faralli, S., Ponzetto, S.P., Biemann, C.: Building a Web-Scale Dependency-Parsed Corpus from Common Crawl. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation. pp. 1816–1823. European Language Resources Association (ELRA), Miyazaki, Japan (2018)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 12, 2825–2830 (2011)
Pelevina, M., Arefiev, N., Biemann, C., Panchenko, A.: Making Sense of Word Embeddings. In: Proceedings of the 1st Workshop on Representation Learning for NLP. pp. 174–183. Association for Computational Linguistics, Berlin, Germany (2016). https://doi.org/10.18653/v1/W16-1620
Pellissier Tanon, T., Vrandečić, D., Schaffert, S., Steiner, T., Pintscher, L.: From Freebase to Wikidata: The Great Migration. In: Proceedings of the 25th International Conference on World Wide Web. pp. 1419–1428. International World Wide Web Conferences Steering Committee, Montréal, Québec, Canada (2016). https://doi.org/10.1145/2872427.2874809
Peng, Y., Choi, B., Xu, J.: Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art. Data Science and Engineering. 6, 119–141 (2021). https://doi.org/10.1007/s41019-021-00155-3
Pennington, J., Socher, R., Manning, C.: GloVe: Global Vectors for Word Representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. pp. 1532–1543. Association for Computational Linguistics, Doha, Qatar (2014). https://doi.org/10.3115/v1/D14-1162
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: Online Learning of Social Representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 701–710. ACM, New York, NY, USA (2014). https://doi.org/10.1145/2623330.2623732
Powers, D.M.W.: Evaluation Evaluation. In: 18th European Conference on Artificial Intelligence, Proceedings. pp. 843–844. IOS Press, Patras, Greece (2008). https://doi.org/10.3233/978-1-58603-891-5-843
Rand, W.M.: Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association. 66, 846–850 (1971). https://doi.org/10.1080/01621459.1971.10482356
Reimers, N., Gurevych, I.: Reporting Score Distributions Makes a Difference: Performance Study of LSTM-networks for Sequence Tagging. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. pp. 338–348. Association for Computational Linguistics, Copenhagen, Denmark (2017). https://doi.org/10.18653/v1/D17-1035
Ribeiro, M.T., Wu, T., Guestrin, C., Singh, S.: Beyond Accuracy: Behavioral Testing of NLP Models with CheckList. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. pp. 4902–4912. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.442
van Rijsbergen, C.J.: Information Retrieval. Butterworth-Heinemann, London, UK (1979)
Ristoski, P., Rosati, J., Di Noia, T., De Leone, R., Paulheim, H.: RDF2Vec: RDF graph embeddings and their applications. Semantic Web. 1–32 (2018). https://doi.org/10.3233/SW-180317
Roller, S., Kiela, D., Nickel, M.: Hearst Patterns Revisited: Automatic Hypernym Detection from Large Text Corpora. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). pp. 358–363. Association for Computational Linguistics, Melbourne, VIC, Australia (2018). https://doi.org/10.18653/v1/P18-2057
Rozemberczki, B., Kiss, O., Sarkar, R.: Karate Club: An API Oriented Open-Source Python Framework for Unsupervised Learning on Graphs. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management. pp. 3125–3132. Association for Computing Machinery, Virtual Event, Ireland (2020). https://doi.org/10.1145/3340531.3412757
Ruffinelli, D., Broscheit, S., Gemulla, R.: You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings. In: 8th International Conference on Learning Representations. OpenReview.net, Virtual (2020)
Saito, T., Rehmsmeier, M.: The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE. 10, 1–21 (2015). https://doi.org/10.1371/journal.pone.0118432
Sakai, T.: Evaluating Evaluation Metrics Based on the Bootstrap. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 525–532. Association for Computing Machinery, Seattle, WA, USA (2006). https://doi.org/10.1145/1148170.1148261
Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling Relational Data with Graph Convolutional Networks. In: The Semantic Web: 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings. pp. 593–607. Springer International Publishing, Cham, Switzerland (2018). https://doi.org/10.1007/978-3-319-93417-4_38
Scozzafava, F., Maru, M., Brignone, F., Torrisi, G., Navigli, R.: Personalized PageRank with Syntagmatic Information for Multilingual Word Sense Disambiguation. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations. pp. 37–46. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-demos.6
Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., Crespo, J.-F., Dennison, D.: Hidden Technical Debt in Machine Learning Systems. In: Advances in Neural Information Processing Systems 28. pp. 2503–2511. Curran Associates, Inc., Montréal, QC, Canada (2015)
Segalovich, I.: Machine Learning in Search Quality at Yandex, https://www.eurospider.com/images/SIGIR_2010/04_SIGIR-2010-SEGALOVICH.pdf, (2010)
Seitner, J., Bizer, C., Eckert, K., Faralli, S., Meusel, R., Paulheim, H., Ponzetto, S.P.: A Large DataBase of Hypernymy Relations Extracted from the Web. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation. pp. 360–367. European Language Resources Association (ELRA), Portorož, Slovenia (2016)
Şenel, L.K., Utlu, İ., Yücesoy, V., Koç, A., Çukur, T.: Semantic Structure and Interpretability of Word Embeddings. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 26, 1769–1779 (2018). https://doi.org/10.1109/TASLP.2018.2837384
Shah, S., Mishra, A., Yadati, N., Talukdar, P.P.: KVQA: Knowledge-Aware Visual Question Answering. Proceedings of the AAAI Conference on Artificial Intelligence. 33, 8876–8884 (2019). https://doi.org/10.1609/aaai.v33i01.33018876
Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 22, 888–905 (2000). https://doi.org/10.1109/34.868688
Singhal, A.: Introducing the Knowledge Graph: things, not strings, https://blog.google/products/search/introducing-knowledge-graph-things-not/
Smucker, M.D., Allan, J., Carterette, B.: A Comparison of Statistical Significance Tests for Information Retrieval Evaluation. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management. pp. 623–632. Association for Computing Machinery, Lisbon, Portugal (2007). https://doi.org/10.1145/1321440.1321528
Snow, R., Jurafsky, D., Ng, A.: Learning Syntactic Patterns for Automatic Hypernym Discovery. In: Advances in Neural Information Processing Systems 17. pp. 1297–1304. A Bradford Book, Vancouver, BC, Canada (2004)
Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: An Open Multilingual Graph of General Knowledge. Proceedings of the AAAI Conference on Artificial Intelligence. 31, (2017). https://doi.org/10.1609/aaai.v31i1.11164
Steyvers, M., Tenenbaum, J.B.: The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth. Cognitive Science. 29, 41–78 (2005). https://doi.org/10.1207/s15516709cog2901_3
Sun, Y., Wang, S., Li, Y., Feng, S., Tian, H., Wu, H., Wang, H.: ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding. Proceedings of the AAAI Conference on Artificial Intelligence. 34, 8968–8975 (2020). https://doi.org/10.1609/aaai.v34i05.6428
Tauer, G., Date, K., Nagi, R., Sudit, M.: An incremental graph-partitioning algorithm for entity resolution. Information Fusion. 46, 171–183 (2019). https://doi.org/10.1016/j.inffus.2018.06.001
Tong, H., Faloutsos, C., Pan, J.-Y.: Random walk with restart: fast solutions and applications. Knowledge and Information Systems. 14, 327–346 (2008). https://doi.org/10.1007/s10115-007-0094-2
Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex Embeddings for Simple Link Prediction. In: Proceedings of The 33rd International Conference on Machine Learning. pp. 2071–2080. PMLR, New York, NY, USA (2016)
Tsai, Y.-H.H., Bai, S., Liang, P.P., Kolter, J.Z., Morency, L.-P., Salakhutdinov, R.: Multimodal Transformer for Unaligned Multimodal Language Sequences. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. pp. 6558–6569. Association for Computational Linguistics, Florence, Italy (2019). https://doi.org/10.18653/v1/P19-1656
Ustalov, D., Arefyev, N., Biemann, C., Panchenko, A.: Negative Sampling Improves Hypernymy Extraction Based on Projection Learning. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. pp. 543–550. Association for Computational Linguistics, Valencia, Spain (2017). https://doi.org/10.18653/v1/E17-2087
Ustalov, D., Panchenko, A., Biemann, C., Ponzetto, S.P.: Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction. Computational Linguistics. 45, 423–479 (2019). https://doi.org/10.1162/COLI_a_00354
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention Is All You Need. In: Advances in Neural Information Processing Systems 30. pp. 6000–6010. Curran Associates, Inc., Vancouver, BC, Canada (2017)
Velardi, P., Faralli, S., Navigli, R.: OntoLearn Reloaded: A Graph-Based Algorithm for Taxonomy Induction. Computational Linguistics. 39, 665–707 (2013). https://doi.org/10.1162/COLI_a_00146
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph Attention Networks. In: 6th International Conference on Learning Representations. OpenReview.net, Vancouver, BC, Canada (2018)
Vlasblom, J., Wodak, S.J.: Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinformatics. 10, 99 (2009). https://doi.org/10.1186/1471-2105-10-99
Voorhees, E.M.: The TREC-8 Question Answering Track Report. In: Proceedings of the 8th Text REtrieval Conference. pp. 77–82. NIST, Gaithersburg, MD, USA (1999)
Walker, A.J.: An Efficient Method for Generating Discrete Random Variables with General Distributions. ACM Transactions on Mathematical Software. 3, 253–256 (1977). https://doi.org/10.1145/355744.355749
Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis, G., Li, J., Zhang, Z.: Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks, https://arxiv.org/abs/1909.01315, (2019)
Wang, Y., Wang, L., Li, Y., He, D., Liu, T.-Y.: A Theoretical Analysis of NDCG Type Ranking Measures. In: Proceedings of the 26th Annual Conference on Learning Theory. pp. 25–54. PMLR, Princeton, NJ, USA (2013)
Wu, L., Cui, P., Pei, J., Zhao, L. eds: Graph Neural Networks: Foundations, Frontiers, and Applications. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-6054-2
Wu, L., Fisch, A., Chopra, S., Adams, K., Bordes, A., Weston, J.: StarSpace: Embed All The Things! In: The Thirty-Second AAAI Conference on Artificial Intelligence. pp. 5569–5577. Association for the Advancement of Artificial Intelligence (2018)
Řehůřek, R., Sojka, P.: Software Framework for Topic Modelling with Large Corpora. In: Proceedings of the Workshop New Challenges for NLP Frameworks (NLPFrameworks 2010). pp. 46–50. European Language Resources Association (ELRA), Valletta, Malta (2010)
Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How Powerful are Graph Neural Networks? In: 7th International Conference on Learning Representations, Conference Track Proceedings. OpenReview.net, New Orleans, LA, USA (2019)
Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding Entities and Relations for Learning and Inference in Knowledge Bases. In: 3rd International Conference on Learning Representations, Conference Track Proceedings, San Diego, CA, USA (2015)
Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.: Network Representation Learning with Rich Text Information. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. pp. 2111–2117. AAAI Press / International Joint Conferences on Artificial Intelligence, Buenos Aires, Argentina (2015)
Yang, J., Leskovec, J.: Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining. pp. 587–596. Association for Computing Machinery, Rome, Italy (2013). https://doi.org/10.1145/2433396.2433471
Yao, L., Mao, C., Luo, Y.: Graph Convolutional Networks for Text Classification. Proceedings of the AAAI Conference on Artificial Intelligence. 33, 7370–7377 (2019). https://doi.org/10.1609/aaai.v33i01.33017370
Yeh, A.: More accurate tests for the statistical significance of result differences. In: Proceedings of the 18th Conference on Computational Linguistics - Volume 2. pp. 947–953. Association for Computational Linguistics, Saarbrücken, Germany (2000). https://doi.org/10.3115/992730.992783
You, J., Ying, Z., Leskovec, J.: Design Space for Graph Neural Networks. In: Advances in Neural Information Processing Systems 33. pp. 17009–17021. Curran Associates, Inc., Montréal, QC, Canada (2020)
Zesch, T., Müller, C., Gurevych, I.: Extracting Lexical Semantic Knowledge from Wikipedia and Wiktionary. In: Proceedings of the 6th International Conference on Language Resources and Evaluation. pp. 1646–1652. European Language Resources Association (ELRA), Marrakech, Morocco (2008)
Zhong, W., Xu, J., Tang, D., Xu, Z., Duan, N., Zhou, M., Wang, J., Yin, J.: Reasoning Over Semantic-Level Graph for Fact Checking. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. pp. 6170–6180. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.549
All versions | This version | |
---|---|---|
Views | 696 | 483 |
Downloads | 993 | 389 |
Data volume | 5.5 GB | 2.2 GB |
Unique views | 617 | 456 |
Unique downloads | 629 | 257 |