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ABSTRACT26

A key challenge in designing algorithms for leakage detection and isolation in drinking water27

distribution systems, is the performance evaluation and comparison between methodologies using28

benchmarks. For this purpose, the “Battle of the Leakage Detection and Isolation Methods” (Bat-29

tLeDIM) competition was organized in 2020 with the aim to objectively compare the performance30

of methods for the detection and localization of leakage events, relying on SCADA measurements31

of flow and pressure sensors installed within a virtual water distribution system. Several teams from32

academia and the industry submitted their solutions, using various techniques including time-series33

analysis, statistical methods, machine learning, mathematical programming, meta-heuristics and34

engineering judgment, and were evaluated using realistic economic criteria. This paper summa-35

rizes the results of the competition and conducts an analysis of the different leakage detection36

and isolation methods used by the teams. The competition results highlight the need for further37

development of methods for leakage detection and isolation, and also the need to develop additional38

open benchmark problems for this purpose.39

INTRODUCTION40

DrinkingWater Distribution Networks (DWDN) are susceptible to infrastructure failures, which41

may lead to water losses. The global average Non-RevenueWater (NRW) is 30%, with an estimated42

annual cost of $39 billion USD (Liemberger and Wyatt 2019). A significant part of NRW is due to43

background leakages and pipe bursts, which may occur anywhere within the distribution network.44

Background leakages are typically difficult to detect due to their small size, whereas pipe bursts45

are easier to locate as they are of larger size and may appear on the surface. The early detection46

and localization of any leakage event is crucial, as this reduces the time required for addressing the47

event and therefore reducing the risk of further infrastructure degradation, contamination events48

and consumer complaints.49

Leakage diagnosis in water distribution systems has attracted a great deal of attention from both50

practitioners and researchers over the past years (Chan et al. 2018). The process of leakage diagnosis51

can be separated into: leakage detection, which focuses on identifying the existence of a leak in the52
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network; and leakage localization, which aims to provide an approximate location of leakages given53

the available measurements. A recent review paper (Chan et al. 2018) classifies leakage detection54

methodologies into Passive and Active methods. Passive methods (also referred to as equipment-55

based, hardware or external methods) require the deployment of specialized equipment, such as56

acoustic sensors or ground penetrating radars, at areas that are suspect of leakage. Active methods57

(also referred to as internal or software methods) are methods that are based on the presence of58

permanently installed sensors which continuously monitor the system for leakages. The latest59

developments in hydraulic sensor technology and on-line data acquisition systems have enabled60

water companies to deploy a larger number of more accurate pressure and flow devices with less61

cost. These data can be used to monitor the system in real-time and develop methodologies that use62

the data to detect and pre-localize leaks using Active methods. Pre-localization is the process of63

defining an area in which the leak exists, instead of pin-pointing exactly its location. This research64

area has witnessed a significant interest, as indicated in recent review papers (Li et al. 2015; Chan65

et al. 2018; Zaman et al. 2019).66

The termmodel-based leakage diagnosis is used to describe methodologies that utilize a model67

of theDWDN (also referred to as numerical model) and sensormeasurements to estimate the steady-68

state hydraulic conditions in the network (Vrachimis et al. 2018b). The operating principle behind69

model-based leakage detection, as suggested by (Pudar and Liggett 1992), is to find discrepancies of70

measurements to their estimates obtained by the network model, which would indicate the existence71

of a leakage. Typically, model-based methods utilize a larger number of pressure sensors than flow72

sensors because they are cheaper and easier to install and maintain (Pérez et al. 2011). However,73

DWDN are large-scale systems and the number of sensors used in practice is still small compared74

to the system size. Moreover, to enhance leakage diagnosis, methodologies for optimal placement75

of pressure sensors are used (Farley et al. 2010; Casillas et al. 2013; Cuguero-Escofet et al. 2017).76

Finally, the consideration of measurement and model uncertainties is important when using these77

methods to determine if the network is operating in a normal state (Vrachimis et al. 2019) and78

should be taken into account before making a decision about the occurrence of a leakage in the79
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network (Vrachimis et al. 2018a).80

Leakage localizationmethods are typicallymodel-based due to the limited information provided81

by the small number of sensors; one of the first representative examples is the work in (Wu et al.82

2009) where the authors develop a model-based approach for leak localization which is applied to83

a large real system. Another interesting model-based approach applied on real systems is found84

in (Sophocleous et al. 2019), where the authors formulate an optimization problem to perform85

leakage diagnosis and deal with the dimentionality of the problem using search space reduction to86

reduce decision variables. Some approaches relate the acquired measurements with the simulated87

output from many simulated leakage scenarios on different locations of the network (Farley et al.88

2010; Goulet et al. 2013); the geographical mapping of each model component can then be used89

to indicate the probability that a zone contains a leakage (Perez et al. 2014). Researchers have90

also used pressure residual analysis, by creating a system pressure sensitivity matrix to identify the91

location of leaks, based on the assumption of a single leakage occurring in the system (Pérez et al.92

2011; Cuguero-Escofet et al. 2017). A more recent approach considers modeling uncertainties93

to create a set-bounded model of the system and then incorporates sensor measurements in an94

optimization-based framework to detect and pre-localize leakages using the concept of model-95

invalidation (Vrachimis et al. 2021).96

Data-driven methods (also referred to as non-numerical model methods) do not require a model97

to perform detection. Leakage detectionmethodologies typically follow a data-driven approach; the98

authors in (Wu and He 2021) provide the latest review on this topic, and present a practical approach99

for anomaly event detection (including but not limited to leaks), classification and evaluation. Some100

approaches may require large amounts of reliable training data where the events are labeled by the101

operators or experts and they may perform poorly when data is not available (Li et al. 2015). An102

example of a data-driven approach is found in (Mounce et al. 2002) where the authors introduced103

artificial neural networks (ANNs) for burst detection and have continued to extend their work in the104

following years (Mounce et al. 2010). Another approach is found in (Eliades and Polycarpou 2012)105

where the authors proposed an algorithm which analyzes the discrete inflow signal of a District106
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MeteredArea (DMA) by using an adaptive approximationmethodology for updating the coefficients107

of a Fourier series and detects leakages by utilizing the Cumulative Sum (CUSUM) algorithm. The108

authors in (Soldevila et al. 2016) used a mixed model-based and data driven approach to improve109

performance. The study in (Wu and Liu 2017) provides a review on data-driven approaches for110

burst detection. The study concludes that these approaches are promising for use in real-life burst111

detection, however, reducing false alarms is still an important issue. Moreover, a comprehensive112

performance evaluation procedure, especially under different network configurations, might be113

necessary.114

Leakage diagnosis methods are commonly evaluated on private commercial datasets (Chan et al.115

2018), and as a result, it is not possible to objectively compare different methods in their ability to116

detect and isolate leaks. Moreover, data from real systems may not be readily available, while many117

aspects of the system operation are unknown. For example, information about the exact location,118

magnitude and time profile of leakages are typically unknown, but crucial when evaluating leakage119

diagnosis methodologies. The middle ground between evaluating algorithms on real systems and120

having all the available information about the system, is the development of a realistic simulation121

benchmark, built upon the expertise of practitioners, of which the operation resembles that of a122

real system. Recently, a benchmark leakage detection dataset has been developed named LeakDB123

(Vrachimis et al. 2018c), created using theWNTR tool (Klise et al. 2017). The dataset comprises of124

data generated from benchmark networks and uses pressure-driven demands and realistic leakage125

modelling (van Zyl et al. 2017). In this work, a realistic open benchmark for leakage detection and126

localization is developed and used in a “battle” (Taormina et al. 2018), to allow different teams to127

evaluate their methods in a unified way.128

The Battle of Leakage Detection and Isolation Methods (BattLeDIM), was organized in 2020129

initially as part of the CCWI/WDSA 2020 conference (the conference was postponed due to the130

COVID-19 pandemic). The competition aimed to objectively compare the performance of methods131

for the detection and localization of leakage events, relying on SCADA measurements of flow and132

pressure sensors generated using a realistic virtual city, which was based on a real water distribution133
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network in Cyprus. The overall objective was to detect as many leakages as possible, as fast as134

possible and as close to the source as possible, while avoiding false alarms. Participants could use135

different types of tools and methods, including (but not limited to) engineering judgement, machine136

learning, statistical methods, signal processing, and model-based fault diagnosis approaches. In137

total, 18 teams from universities and industry around the world have submitted their solutions to138

the competition, and the results were presented on an online workshop organized on September 3,139

2020.140

The main contributions of this work are: 1) introduce a new benchmark network named “L-141

Town”, developed for the purposes of the competition, along with a benchmark SCADA dataset;142

2) provide an overview of the different leakage and isolation methodologies presented at the143

BattLeDIM competition and 3) analyze their results with respect to different objectives by proposing144

a comprehensive evaluation procedure.145

THE L-TOWN BENCHMARK NETWORK146

Below we introduce a new benchmark water distribution network, which we refer to as “L-147

Town”. This is a city-scale model inspired by a coastal city in Cyprus, which can be used for148

research purposes. The network has been suitably modified and redesigned for security purposes.149

The L-Town is part of the KIOS Virtual City Testbed, an open software platform for simulating the150

SCADA operation of different critical infrastructures, including water, power, telecommunications151

and transportation systems.152

Topology and structure153

The L-Town model, depicted in Fig. 1, is represented using the EPANET input file format.154

It has 782 junctions and 905 pipe segments of approximately 50 meters length each and delivers155

drinking water to around 10,000 consumers and industries. It comprises of a network of steel pipes156

with a total length of 42.6 km and roughness coefficients (C values) between 120-140. The L-Town157

network has a loop ratio of 25%, a measure of complexity when solving the hydraulics of the158

network; it indicates that 25% of the pipes have to be removed in order to eliminate all loops from159
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the network (Vrachimis et al. 2019). The node elevations range between 1.5 m and 75 m above the160

sea level.161

Thewater distribution network of L-Town is receiving water from two reservoirs, and it has been162

designed to provide pressure head of at least 20m to all of its consumers. The normal operating163

pressure in the network ranges between 20-30 meters. A Pressure Reduction Valve (PRV) is164

installed at the lower part of the town (“Area B”), to help reduce background leakages. The network165

has different pressure areas, and therefore exhibits different sensitivity to leakages. PRVs are also166

installed downstream of the two main reservoirs, to help regulate the pressure. A pump and a water167

tank have been installed in the higher part of the town (“Area C”), to provide sufficient pressure to168

the consumers of that area. The tank has a diameter of 16 meters with a cylindrical shape. The169

pump has been programmed so that the tank refills during the night and empties to “Area C” during170

the day.171

Note that the design decision to include pipes of 50 meters length is based on the following172

considerations: First, it is common for a real network to have consumer demand locations at a 50173

meter interval, thus, in this sense, the provided benchmark can be considered a detailed version174

of a real network. Moreover, for the purposes of this competition, it is more efficient to allow175

participants to define a labeled pipe segment when localizing a leak, instead of defining a long176

pipe and the position of the leak on that pipe. Finally, the participating teams can apply model177

reduction techniques to reduce the complexity of the model and computational cost. This approach178

has the benefit of allowing teams to showcase the ability of their methodology to deal with complex179

network models. This would not have been possible if a reduced model of the benchmark network180

was already provided.181

Water demand modelling182

L-Town is assumed to be located in the Northern hemisphere, thus higher water usage is183

expected around July/August, and lower in December/January. No significant variations of water184

consumption is observed during holidays or other special days. During workdays (Monday to185

Friday), water consumption follows a similar pattern, whereas during the weekend (Saturday and186
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Sunday), there is higher consumption during late hours as the result of night life. Areas with187

industrial users do not follow the same pattern of consumption.188

For constructing the benchmark model, open geospatial data were considered corresponding to189

the buildings of the actual location. A clustering algorithm was implemented in QGIS (QGIS.org190

2020) to assign each building to a network node, and the node population was assigned to be191

proportional to the building area. This was computed using:192

𝑑𝑏𝑖 =

𝑛∑︁
𝑗=1

(𝛼 𝑗

𝑖
𝛽
𝑗

𝑖
)𝛾𝑖, (1)193

where 𝑑𝑏
𝑖
is the base demand of node 𝑖, 𝑛 is the number of consumer types, 𝛼 𝑗

𝑖
is the percentage194

of the 𝑗-th consumer type at the 𝑖-th node, 𝛽 𝑗

𝑖
the average amount of water consumed in 𝑚3/ℎ for195

each 𝑚2 of a building, and 𝛾𝑖 the total building area corresponding to node 𝑖. In this benchmark,196

three types of consumers (𝑛 = 3) were considered: residential, commercial and industrial.197

Each node has a unique demand pattern for each consumer type, based on the statistical198

characteristics of real metered data from the area. Specifically, a Fourier Series model was used to199

approximate the demands (Vrachimis et al. 2018c), capturing seasonality (weekly, yearly) as well200

as the uncertainties on demand patterns (see Fig. 2). The overall water consumption is the linear201

combination of the base demands with the corresponding patterns.202

The demand peaking factor, which is the ratio of the Maximum Daily Demand (MDD) to the203

Average Daily Demand (ADD) in a water system, was also considered in the design of demand204

patterns. The ratio, based on observations from real systems, typically ranges from 1.2 for very205

large water systems, to 3.0 or even higher for specific small systems. The demand peaking factor206

in L-Town ranges between 1.5 and 2.0, given it is an average size system.207

THE BATTLEDIM CHALLENGE SCENARIO208

As part of the “Battle of the Leakage Detection and Isolation Methods”, all participating teams209

were given the following artificial scenario to establish the challenge:210

“In previous years, the utility of L-Town was experiencing a large number of pipe breaks and211
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water losses, affecting its service quality. During 2018, a number of leakage events occurred,212

which were detected and fixed by the water utility. However, it is believed that a number of smaller213

leakages occurred but not revealed. It is also assumed that some leakages occurred abruptly,214

whereas others developed gradually, as incipient events, from background leaks into pipe bursts.215

To assist the L-Town water utility decision-making process, the utility developed an EPANET-216

based nominal model of the distribution network, in which base demands were assigned to nodes,217

following historical billing data of proximity consumers. Moreover, two nominal demand patterns218

were identified for residential and commercial consumer types (with some discrepancies). The219

utility believes that there might be some inaccuracies in the model, e.g., with respect to the pipe220

roughness and pipe diameters. In addition, the utility was not able to confirm the status of all the221

valves in the network (i.e., whether they are open or closed).222

The L-Town water utility is searching for a solution to help them analyze the SCADA dataset,223

and detect leakage events as fast as possible. In addition, it is crucial for the utility to have an224

indication where approximately the leakage occurs, so that the field workers can inspect those225

potential leaks using their equipment.226

The L-Town utility has created an open call for teams to demonstrate their ability in detecting and227

localizing leakage events. The teams are given a historical SCADA dataset along with information228

related with the leakages detected and fixed by the utility throughout 2018, to use for training229

purposes and for calibrating their models. It is possible that more leakage events occurred during230

2018, however the utility was not able to detect and localize them.231

Throughout 2019, the utility conducted periodic surveys using additional sensing equipment,232

pipe inspections and other methods, and was able to detect and isolate all the leakage events that233

occurred within that period. The most critical of these events were repaired, however it was not234

possible to repair some of these leakages due to financial reasons.235

The overall goal of this competition, is to identify methods which are able to detect and localize236

the leakage events that occurred in L-Town in 2019, as fast as possible (with respect to time) and as237

accurately as possible (with respect to their location), in order to minimize their overall financial238
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costs, both in water losses, as well as due to the hours spent in isolating the leakage by the utility239

staff. The L-Town utility will compare the different solutions and select the best one based on that240

objective.”241

SCENARIO GENERATION AND AVAILABLE DATA242

To replicate the conditions of a real system, a SCADA dataset was synthetically generated using243

simulation, to correspond to sensor measurements from two (2) years of system “operation”. For244

the generation of this SCADA dataset, a virtual testbed engine was designed in Python, released245

under the EUPL Open Source license (see Data Availability Section). This testbed uses the L-Town246

EPANET benchmark, and incorporates a number of assumptions with respect to the hydraulic247

solving, the leakage modelling, the modelling of uncertainty as well as the modelling of sensors.248

Simulation and dataset generation engine249

The dataset generation engine takes as input a structured file “dataset_configuration.yalm”,250

which includes the start and end-time of the simulation, the leakages (including the start and end-251

time, the leak diameter, the type of the leakage and its peak time), the locations of the sensors (flow,252

pressure, AMRs and level sensors).253

The hydraulic simulations are executed using theWater Network Tool for Resilience (WNTR), a254

Python package which supports pressure-driven demand simulations and leakage modelling (Klise255

et al. 2017). Specifically, for the pressure-driven demands, we compute a new demand for the 𝑖-th256

node 𝐷𝑖 (𝑘), using the function 𝑓𝑃𝐷𝐷 , such that 𝐷𝑖 (𝑘) = 𝑓𝑃𝐷𝐷 (𝑝𝑖 (𝑘), 𝑑𝑖 (𝑘)), where 𝑝𝑖 (𝑘) is the257

pressure and 𝑑𝑖 (𝑘) is the requested demand at node 𝑖: If the computed pressure is 𝑝𝑖 (𝑘) < 𝑃0 then258

the demand is zero, i.e., 𝐷𝑖 (𝑘) = 0. If the pressure is 𝑝𝑖 (𝑘) > 𝑃 𝑓 , then the demand equals the259

requested demand, i.e., 𝐷𝑖 (𝑘) = 𝑑𝑖 (𝑘). Finally, in the case where the pressure is 𝑃0 ≤ 𝑝𝑖 (𝑘) ≤ 𝑃 𝑓 ,260

then the demand is calculated as 𝐷𝑖 (𝑘) = 𝑑𝑖 (𝑘) ((𝑝𝑖 (𝑘) − 𝑃0)/(𝑃 𝑓 − 𝑃0))𝛿. In BattLeDIM, we261

consider the following parameters: 𝑃0 = 7, 𝑃 𝑓 = 25, 𝛿 = 0.5. The values for 𝑃 𝑓 and 𝛿 are the262

default values used in WNTR, while the minimum pressure value 𝑃0 = 7 was raised from 3.5 to 7263

meters since this minimum value was never observed in the L-Town network during the considered264

scenarios.265
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Using the pressure dependent demand simulation, the node demand 𝐷𝑖 (𝑘) starts to decrease266

compared to the requested demand 𝑑𝑖 (𝑘) when the pressure is below 𝑃 𝑓 and goes to zero when267

pressure is below 𝑃0.268

Nominal and Real models269

In practice, it is difficult to have an accurate model of the real system. For this reason, a270

“nominal” EPANET L-Town model was provided to the BattLeDIM participants, however a “real”271

model (which was unknown to the competitors) was used to generate the SCADA dataset. In272

general the nominal model approximates the real, with some uncertainties. The nominal model was273

generated by randomizing parameters of the real L-Town network, using the EPANET-MATLAB274

Toolkit (Eliades et al. 2016), as follows:275

• Base demand of each consumer type at each node are randomized uniformly between ±10%276

compared to the ‘real’ value.277

• Demand patterns: Nominal residential and commercial patterns are available, however278

industrial patterns are not available. The patterns used in the ‘real’ model are unique for279

each node and may differ significantly from the nominal patterns, while they also include a280

significant noise component.281

• Pipe parameter uncertainty: All pipe parameters (roughness, length, and diameter) are282

randomized uniformly between ±10% of their ’real’ value. This randomization aims to283

represent the uncertainty on hydraulic resistance, which is a function of all the aforemen-284

tioned pipe parameters. We note that, in reality, parameter uncertainties may have different285

magnitudes. Typically, the most uncertain parameter is pipe roughness, while pipe length286

and diameter are less uncertain.287

• Topological uncertainty: Two pipes (“p37” and “p251”) were randomly selected to be288

closed in the real network, whereas in the nominal model they appeared to be open. The289

term “topological” uncertainty is used here to describe the variability of the topological290

graph of the network, due to a pipe valve with unknown status (open/closed). This can291
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also be considered as “operational” uncertainty since, typically, valves change status during292

operations, such as repairs, that have taken place in the network.293

Sensors and Telemetry294

We assume that there is one (1) tank water level sensor, a total of three (3) flow sensors, one295

at the pump and one at each of the DMA entrances, and 33 pressure sensors, all transmitting their296

measurements every 5 minutes to the utility’s Supervisory Control and Data Acquisition (SCADA)297

System. There are no time delays in the data transmission, and no lost packages. Pressure sensors298

give an average value of the last 5minutes, whichmitigates the uncertainty due to pressure transients299

in the system. In addition, 82 Automated Metered Readings (AMRs) have been installed in “Area300

C”, for delivering water consumption data directly to the SCADA system. Each AMR gives the301

aggregated consumption of many users in the AMR area.302

The locations of the pressure sensors is depicted in Fig. 3, and the AMRs in Fig. 4. Sensor303

readings do not have errors, nor time-delays. The simulated sensor readings are rounded to 2304

decimal points; in practice this reduces the amount of data sent over the telecommunications305

network.306

Leakage modelling307

We assume that the only faults affecting the system during the 2-year operation, are background308

leakages and pipe bursts. Any pre-existing leakages in the network are assumed to be small relative309

to individual node demands and have been incorporated into the pressure-dependent demands of310

the network. To model the leakage outflow in the 𝑖-th node, we assume the following general model311

(Lambert 2001; Greyvenstein and van Zyl 2007; Cassa et al. 2010):312

𝑙𝑖 (𝑘) = 𝐿 (𝑘) [𝑝𝑖 (𝑘)]Z , (2)313

where 𝐿 (𝑘) = 𝐶𝐴(𝑘)
√
2𝜌Z , for which the discharge coefficient for turbulent flow is 𝐶 = 0.75,314

𝐴(𝑘) is the area of the leak hole which may change in time, and 𝜌 is the fluid density (for water315

we assume that 𝜌 = 1000𝑘𝑔/𝑚3). For simplicity, we assume that the pipes in L-Town are made of316
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steel, with roughness coefficients ranging between 120 and 140 (Hazen-Williams). Therefore, the317

exponent related to the characteristics of the leak, is assumed to be Z = 0.5.318

A key aspect is the leakage magnitude and the time profile of the leakages. There are three (3)319

types of leaks in the system, categorized depending on their magnitude:320

1. Background leaks: These are small leaks with size of 0-5% of the average inflow.321

2. Medium pipe-bursts: Pipe breaks with flow size of 5-10% of the average inflow.322

3. Large pipe-bursts: Pipe breaks with flow size above 10% of the average inflow.323

In general, the average system inflow for the benchmark is around 180 𝑚3/ℎ. The concept of324

background leaks is based on the categorization presented in (Lambert 1994); these are leakages325

that may exist in the system undetected for a long period of time. In the proposed benchmark, the326

smallest background leak was constrained at 2.5% of the average inflow, to enable their detection.327

The distinction between medium and large pipe-bursts is made assuming the latter are made visible328

and fixed more quickly by the water utility.329

Moreover, the leak hole area 𝐴(𝑘) can be time-varying. In the case of abrupt leakage, the hole330

area is zero before the leakage start-time 𝑇0, and becomes 𝐴 after that time:331

𝐴(𝑘) =

0 𝑘 < 𝑇0

𝐴 𝑘 ≥ 𝑇0

(3)332

In the case of incipient leak, we assume that the leak hole area 𝐴(𝑘) gradually increases after 𝑇0,333

until it reaches 𝐴 at time 𝑇𝑝:334

𝐴(𝑘) =


0 𝑘 < 𝑇0

𝐴

(
𝑘−𝑇0
𝑇𝑝−𝑇0

)
𝑇0 ≤ 𝑘 < 𝑇𝑝

𝐴 𝑘 ≥ 𝑇𝑝

(4)335

Regarding the leak time profile, the following assumptions were made: i) background leaks can336

exist from the beginning of the dataset and continue until the end, or they can start at any given337
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time; ii) there are no large pipe bursts which have started before the simulation time; iii) background338

leaks can evolve into bursts (incipient leaks); e.g., a background leak which may have started as a339

small crack on a pipe may evolve into a large burst due to the stress applied on the pipe by pressure340

transients.341

Leakage reporting342

In practice, large leakages are easier to identify and fix, as they will be reported at some point343

by consumers or the utility staff. For the dataset leakages, we assume that large pipe-bursts are344

detected and fixed by the water utility, if they reach a flow magnitude larger than 𝑙 𝑗 at time 𝑇𝑙 . The345

time of detection 𝑇𝑑 is a time instance selected randomly during a maximum period of one (1)346

week after 𝑇𝑙 . The repair time 𝑇𝑟 is also defined as a time instance defined randomly, within one (1)347

week after 𝑇𝑑 . After the leak is fixed, the area of the leak hole becomes zero, i.e., 𝐴(𝑘) = 0, 𝑡 > 𝑇𝑟 .348

Specifically, large and some medium-size leakages (above 15 𝑚3/ℎ) are fixed by the water utility349

after a reasonable time selected in random, with maximum delay of 2 months.350

Leakage event simulation351

All the leakage characteristics, were selected randomly, with certain constraints and assump-352

tions:353

• Based on the size of the network, statistically around 15 leakages (background and burst)354

events should appear each year in the network, with maximum 20 events. Eventually, we355

assume to have 14 events in the year 2018, and 19 events in the year 2019. Four (4)356

background leaks in the year 2018 continued in the year 2019. Only large pipe-bursts are357

detected and fixed by the water utility.358

• We assume that at most 2 pipe bursts can coexist in the network during the examined periods.359

This is to enforce a wider spreading of the leaks during the year.360

• We assume that a leakage can be detected by an L-Town staff using acoustic loggers, within361

300 meters radius of its location. This is used in the evaluation of leakage isolation, and is362

based on actual feedback received bywater utility operators from the original city considered363
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for the L-Town benchmark.364

• We assume that in case leakages exist with overlapping detecting radius, there is a minimum365

2 week different between their start time. This is to ensure separability of the alerts during366

the evaluation phase.367

The final leakage locations for year 2018 and 2019 are found in the Fig. 5 and Fig. 6 respectively.368

The time profile of the leakages in 2019 is depicted in Fig. 7.369

The BattLeDIM Datasets370

The BattLeDIM datasets are composed of the following files, which are openly accessible via371

the Zenodo platform (see “Data Availability Statement” section) under the FAIR principles:372

• Configuration files: The dataset configuration file indicates the simulation period as well373

as the characteristics of the 33 simulated leakages as part of BattLeDIM. It also specifies374

the sensors to be included in the SCADA datasets. (File format: YAML)375

• SCADA datasets: These correspond to the SCADAmeasurements during the 2-year period376

between 2018-01-01 00:00 until 2019-12-31 23:55, at 5-minute time steps. The SCADA377

datasets are comprised of the water tank level, the flow sensors, the AMR measurements378

and the pressure sensors. (File format: CSV)379

• Leakages: Table of times with respect to the leakage events of BattLeDIM, indicating their380

outflows in 𝑚3/ℎ. (File format: CSV)381

• Fixed Leakages reports: This includes the repair times of pipe bursts that have been fixed382

in 2018 by the water utlity. (File format: TXT)383

• Network models: Two network models are provided. i) The “real” model is the one used to384

generate the 2-year datasets, along with all the demand patterns. It contains the real network385

parameters and consumer demands. It does not contain any leakages. The real network386

should be considered as “unknown” ii) The “nominal” model should be used as the “known”387

model. This network is provided with nominal parameters for all the system elements. The388

nominal base demands for each node are based on average historical metered consumption.389
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Weekly demand profiles for three consumer types (residential, commercial and industrial)390

are also provided, however they do not capture the yearly seasonality. Furthermore, the391

EPANET model parameters may be different from the actual network parameters (e.g.,392

diameters, roughness coefficients), and this difference is no greater than 10% of the nominal393

values. (File format: INP)394

LIMITATIONS395

The main challenge in developing effective leakage diagnosis algorithms is for them to be396

applicable in real systems and be able to deal with the problems arising from the scarcity and397

reliability of the data collected from the field. The aim of the proposed benchmark is to offer a398

realistic simulation scenario, built upon the expertise of practitioners, which closely resembles real399

conditions. It has the advantage that all the parameters and aspects of the system operation are400

known, and thus it can be used to compare and evaluate different methodologies. However, it has401

limitations and differences from real systems which are stated in this section to advice caution to402

researches and practitioners when using the benchmark.403

The realistic demands included in this benchmark were generated by analyzing demands from404

real networks into their components and reproducing them by randomizing the components as405

described in (Vrachimis et al. 2018c). Real network demands may vary compared to the proposed406

approximations. Moreover, pressure-driven analysis is used to make the demands more realistic;407

however, we note that more research may be needed in selecting appropriate values for the pressure-408

driven analysis parameters.409

A realistic leakage modeling approach was followed in this work by modeling pressure-410

dependent leakages on pipes, while the leakage function is constructed such as to exhibit time-411

variability with respect to the orifice size. However, the function describing leakage flow may vary412

in practice, because data collection about the size of leaks found in the field is a challenging task.413

More realistic leakage functions, than the one used in equation (2), have been proposed in recent414

literature (van Zyl et al. 2017; Kabaasha et al. 2020) and may be considered in future versions of415

this benchmark.416
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A decision was made in the creation of this benchmark to not include sensor time-delays417

and errors. This was taken consciously to avoid an extra dimension of complexity to a difficult418

competition problem, which includes large model uncertainties and small number of sensors419

compared to the system size. Moreover, we wanted the participants to focus on leakage diagnosis420

methodologies and not on methodologies for data validation. However, data acquired from real421

sensors may include significant errors and a number of measurements may need to be discarded422

and reconstructed. The real-time processing of data may be impeded by measurements arriving at423

later time-steps or never arriving at all.424

This benchmark does not take into account events that may happen during and after repair425

works. Typically, repairs require the isolation of network sections by closing valves, an action that426

may cause pressure increase in the network. A typically observed phenomenon is the increase of427

leakage flows in other parts of the network during repairs or, in the worst cases, new pipe bursts. The428

risk of causing new leakages during repairs was not taken into account and should be considered429

when using this benchmark to test leakage diagnosis methodologies designed for application on430

real systems.431

The reward for detecting leakages is based only on the value of water lost. However, the reward432

could be higher if indirect costs due to water losses were taken into account. The indirect costs433

include the acceleration of pipe deterioration, as well as third party damages. Such effects are434

usually accounted for in the cost of water, however they are difficult to quantify and were not435

considered in the benchmark.436

COMPETING LEAKAGE DETECTION AND ISOLATION METHODS437

In the following paragraphs we provide a short overview of the methodologies proposed by the438

competing teams.439

The Cheng00 team (Cheng et al. 2020) resorted to a three-stage approach involving simulation,440

ensemble multivariate change point detection (EMCPD), and statistical analysis. Pressure and flow441

residual time series are first obtained by comparing the SCADA datasets with those of simulated442

normal operation, produced with the provided benchmark model. The residuals are then analyzed443
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with EMCPD to obtain a rough estimate of the occurrence of leak events in space and time. The444

final localization is performed after interpolating nodal pressures around likely candidate positions445

and by isolating the most likely sites with a two-sample one-sided Student’s t-test.446

The DandW team (Huang et al. 2020; Huang et al. 2022) proposed a methodology that treats447

each area of the L-Town network in Fig. 1 separately. Thismethods exploits the provided benchmark448

model to estimate expected sensor readings during normal operations and compute the residuals449

with respect to the provided SCADA data. Sensitivity vectors are then computed for each pipe as450

the Jacobian matrix of nodal pressures to pipe flows. The angle method, which involves calculating451

the angle between the residual vectors and the sensitivity vectors, is then used to isolate leaky pipes.452

These are characterized by having the smallest angles.453

The Leakbusters team (Daniel et al. 2020; Daniel et al. 2022) tackled the challenge with a454

high-resolution pressure-driven method for leakage identification and localization composed of455

two sequential modules. In the first module, linear regression models are calibrated using data456

with no leaks to predict pairwise sensor pressure readings. When fed with new SCADA data, the457

reconstruction error between predicted and observed readings is tracked to identify the start time458

of a potential leak and the location of its nearest sensor. The second module uses the start time and459

most affected sensors reported by the first module to pinpoint leaky pipes relying on an initial set460

of candidate pipes and the application of a simulation-based optimization framework with iterative461

linear and mixed-integer linear programming.462

The CIACUA team (Saldarriaga et al. 2020) approached the BattLeDIM problem by resorting463

to anomaly detection analysis and a simulation-optimization framework involving EPANET and464

Genetic Algorithms (GA). Anomaly detection analysis was first carried out by comparing SCADA465

data and the output of EPANET models. If the error between any observed and predicted signals466

passed a certain threshold, simulation-based optimization with GA was used to find which location467

would best explain such discrepancy, thus identifying the leaking pipe. Emitter equations were468

used to simulate leaks in the EPANET model.469

The Tsinghua team (Wang et al. 2020; Wang et al. 2022) employed a hybrid approach where470
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statistical methods are used in combination with hydraulic modelling. Their scheme comprises471

three stages. In the estimation stage Empirical Model Decomposition (EMD) and Vector Auto472

Regressive models are used to estimate expected flow and pressure in normal conditions. The473

residuals between these expected values and observed SCADA data are further processed in the474

identification stage to place leaks in time, and infer their size. In the final localization stage, leaking475

pipes are isolated by a double comparison between observed and simulated (EPANET) pressure476

data for the week with the suspected leak and the one preceding it.477

The Under Pressure team (Steffelbauer et al. 2020; Steffelbauer et al. 2022) also employed a478

hierarchical approach made of 3 stages. Similar to the Tsinghua team, in the first stage demand479

calibration for the entire network was inferred from AMR data on Zone C using EMD. The authors480

also performed a calibration of the roughness coefficient using weighted least squares problem with481

bounded constraints. The second stage of Under Pressure’s approach entails the creation of a dual482

hydraulic model for leak detection. In this dual model, the pressure drops due to a leak translate483

into additional outflows to virtual reservoirs connected to the pressure measurement nodes. These484

time series, and the derived residuals, have a much better signal-to-noise ratio which facilitates485

detection and localization. This is done in the third stage, where leaks are first identified in time486

with the help of change detection methods (CUSUM, likelihood-ratio) and GA. The leaking pipe487

is then isolated based on the computation of Pearson correlation between residuals of virtual leak488

flows and pipe sensitivities, similar to what done by the DandW team.489

Fuzzy methods are at the core of the Zhiyun Shuiwu team (Zhang et al. 2020). In the first490

stage, Deep FuzzyMapping is used to calibrate model demands from observations. Secondly, leaks491

are identified in time based on anomalies between observed and modeled pressure values and an492

analysis of the most affected nodes. Localization is finally performed based on fuzzy similarity493

between real bursts characteristics and pipe network characteristics.494

The IRI team (Romero et al. 2020; Romero-Ben et al. 2022) devised a data-driven approach for495

Area A of L-Town due to the high density of pressure sensors. On the other hand, a model-based496

approach is used for both Area B and Area C to respectively overcome the lack of pressure sensors497
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and exploit the availability of AMRs. In the data-driven approach, graph-based interpolation is first498

performed to estimate the state of the entire network from available data of leaky and non-leaky499

scenarios. The selection of candidate leak location is then performed by nodal pressure comparison500

between these estimated states. In the model-based approach, EPANET simulations are carried out501

after inferring the demands for Area B and Area C. The results of the simulations with leaks added502

at different locations are compared against the SCADA data to find the most likely placement for503

the leak.504

The KU Hydrosystems team (Min et al. 2020) proposed a two-stage method where leak iden-505

tification in time and space is tackled separately using a data-driven and a model-based approach.506

After pre-processing the data and performing feature selection, the detection of the leak in time507

is performed jointly by resorting to k-means clustering. Leak locations are then identified via a508

comparison between real data and the output of multiple simulations using a calibrated EPANET509

model accounting for leaks (with emitter coefficients). The initial calibration is performed with510

the Harmony Search algorithm in order to find optimal values of roughness coefficients and nodal511

demands.512

InfraSense Labs (Blocher et al. 2020) devised a method involving three main steps. Firstly,513

the daily demand profiles are partitioned into clusters using the k-means algorithm. The clusters514

correspond to days with similar flow patterns so that variations in the derived clusters can be used to515

identify changes in demand that may be attributed to leaks. Leaks are then detected by comparing516

the difference between expected demands (derived from flow profiles of five preceding days based517

on cluster membership) and observed flows. If the residuals indicate the presence of a leak, hot-518

spots are localized by solving a regularized inverse problem that includes a pressure-driven model519

for the leak flow.520

DHI China (Liu et al. 2020) proposed a method that relies on genetic algorithms and Machine521

Learning (ML) techniques. GA is used to calibrate the provided nominal model, whose demand522

patterns are defined based on the analysis of the provided AMR data. Leak detection in time is523

done with the use of both Deep Learning methods (an LSTM neural network) and gradient boosted524
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trees (LightGBM). GA-based simulation-optimization (with EPANET) is employed to localize the525

leaky pipe, similar to what done by other teams.526

The Multiple Leaks Detection and Isolation Framework (MLDIF) proposed by the Tongji team527

(Li and Xin 2020) consists of three stages as “calibration-identification-localization”. First, a528

model calibration stage is performed to get a calibrated hydraulic model using a time-period where529

little or no leakages are assumed to exist. Any pre-existing leakages in the selected time-period are530

incorporated into the calibratedmodel, which is then used to estimate the overall yearly leakage flows531

and to predict nodal pressures under a ‘leak-free’ scenario. Then, the pressure residuals between532

observed and predicted pressure are processed by integrating STL decomposition method and the533

K-means clustering method to identify different leak scenarios during the analysis period. Finally,534

by adding no-repaired but identified leaks to the calibrated hydraulic model in the localization stage,535

a new and simple leakage scenario is reconstructed to facilitate leakage localization. Therefore,536

the pipe with the highest probability of leakage can be isolated by a step-wise method based on537

matching degrees between the actual leakage feature and the simulated leakage features.538

The Wu BSY team (Wu and He 2020) presented an integrated data analysis with hydraulics-539

based modeling approach consisting of three main steps: i) data pre-processing to prepare for540

analysis, where flow and pressure time-series are decomposed to get rid of trend and seasonality541

using the Seasonal-Trend decomposition procedure ; ii) data analysis for leakage event detection,542

where the decomposed time-series are analyzed using Statistical Process Control methods; and iii)543

model analysis, where simulation-based optimization in Bentley WaterGEMS, a hydraulic model544

calibration tool, is used to localize the leaky pipes using a pressure-driven approach where the545

emitter coefficients and locations are the parameters to be optimized.546

The CUBALYTICS team (Bhowmick and Seifert 2020) also devised an approach combining547

data-driven methods with hydraulic simulations. This method is based on the computation of an548

anomaly matrix (AM) for leak detection and localization. This matrix is created by first applying549

statistical methods to identify anomalies in the Master Data Set, i.e., the overall table having550

timestamps as indexes and sensor readings as columns. The AM is a binary matrix (1 = anomaly551
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detected), obtained from the previous operation after keeping only the rows for which there is at552

least an anomaly. Leaks are identified in time by analyzing contiguous rows in the AM having553

multiple anomalies. The list of nodes, i.e., the headers of all columns with non-zero entries, is554

checked to find valid node combinations identifying potential leaky pipes. The isolated pipe for555

each leak is selected after comparison with pressure-driven simulations.556

Decision trees are at the core of the methodology of the Artesia team (Adanza Dopazo 2020).557

The approach consists of three main steps. In the first step, data normalization and feature558

engineering is performed to extract minimum and maximum daily peaks, as well as averages for559

different parts of the day for all pressure, water level and flow sensors. Decision trees are then560

trained on this refined dataset to predict the mean night pressure values expected for each pressure561

sensor. The mean pressure during the night is chosen as the target to predict since pressure during562

this time of the day is more steady and less affected by randomness. In the last stage, the differences563

between predicted and observed mean night pressure values in the test dataset are used to identify564

leaks in time, while comparison of results across neighboring pressure sensors is used to improve565

localization.566

The DHI Singapore team (Tan et al. 2020) employed WNTR, a Python wrapper of EPANET, to567

generate extra data for training a deep neural network (DNN) using Tensorflow. Before generating568

the leak events, the team calibrated the provided nominal model to find optimal values of pipe569

diameters, roughness coefficient, as well as determining optimal seasonality of residential and570

commercial demands. Calibration was performed using GA and the 2018 pressure readings.571

The DNN development dataset is generated from 400 simulations with random leaks at different572

locations, with different start time and duration. A five hidden layer DNN is trained on this data573

to isolate the leaky location having as inputs the readings from the 33 pressure sensors. After its574

validation, the DNN is tested on the competition dataset.575

The UNIFE team (Marzola et al. 2020; Marzola et al. 2022) adopted a pragmatic approach576

to detect and localize leakage events, based on the analysis of the SCADA data and the use of577

the provided hydraulic model of the network. After inferring demand patterns for the entire578
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network based on the provided AMR data, the hydraulic model is calibrated (roughness and579

diameters) to realistically represent the hydraulic behaviour of the network. The observed inflows580

and water demands are then analysed to identify leakage number, entity and time of occurrence with581

engineering judgment. Each identified leakage is then spatially localised through an enumerative582

procedure. This is done by i) performing simulation after assigning the leakage to each pipe of583

the network in turn, ii) assessing the error in terms of differences between observed and simulated584

pressures, and iii) selecting the pipe characterized by the lowest error.585

The FluIng team (Barros et al. 2020) resorted to a mixed approach using signal processing for586

leak identification, and simulation-based optimization for leak localization. The first phase of leak587

identification entails the use of blind source separation to decompose each measured flow time588

series into a main signal, primarily related to water consumption, and a "noisy" signal in which589

leak events are more visible. Change detection is then performed on this noisy component to detect590

leaks in time. Localization of leaky pipes is then carried out with a two-steps approach based on591

Particle Swarm Optimization where i) the provided nominal model is first calibrated in an offline592

fashion, and ii) leak locations are inferred via iterative online fine tuning of nodal demands.593

Analysis of methodologies594

Table 1 summarizes the key elements of each method, highlighting similarities and differences595

between them. The general features which are listed in Table 1 and their use as part of the different596

methodological approaches is described in Table 2.597

In general, the solutions proposed may be comprised of one or more of the following parts:598

the detection procedure, the localization approach, and the calibration method. Each methodology599

utilized various tools in order to solve each problem. For example, some model-based approaches600

relied on the use of nominal water network models provided (such as the EPANET L-Town model).601

To accommodate the differences between the measurements and the nominal model, calibration602

methods were used to design a more accurate representation, by updating the demands and certain603

pipe parameters. The calibrated model can be used to create datasets describing the operation of604

the system under normal and faulty operation conditions, e.g., using the EPANET libraries. This605
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can allow the comparison of the computed pressure residuals with the observed pressure sensor606

measurements.607

Another approach is to consider the mathematical model of the system, to create a pressure608

sensitivity matrix, through a linearization of the hydraulic equations. Using the above, residuals609

can be computed, using model-based approaches which compare simulation-based estimations and610

SCADA measurements, as well as by using model-free approaches. The residuals, as well as other611

relevant time-series, can be analyzed using change detection techniques (CUSUM, angle method612

etc.), time series analysis and signal processing, empirical method decomposition, regression613

analysis, hypothesis testing and other statistical approaches. More advanced statistical approaches,614

such as machine learning, and computational intelligence methods based on fuzzy systems, have615

also been proposed.616

A subset of methodologies considers optimization formulations, which may rely on simula-617

tions to evaluate the objective functions, or on explicit mathematical formulations which can be618

solved using Integer/Dynamic/Mixed Integer Programming. Where this is not possible due to the619

complexity of the optimization formulation, meta-heuristics (such as genetic algorithms or particle620

swarm optimization) can be used. Finally, it’s important to note that some approaches analyzed the621

AMR-area in a different way, by creating a model of the water demands in the area, to exploit the622

additional information provided due to the significant penetration of the smart meters.623

EVALUATION PROCEDURE624

Participants were required to submit their results in the format specified in a template file,625

which includes the location and start time of each detected leakage event. The start time of a626

leakage is specified in the ISO 8601 time format YYYY-MM-DD hh:mm. The location of the627

leakage is specified by the link ID, as defined in the EPANET model of the network “L-Town.inp”.628

Participants were allowed to specify any number of leaks.629

Competition evaluation criteria630

Evaluation of participant results follows a pure economic approach. The water utility of L-Town631

calculates the profit from water saved in a single year from successful detections. The utility also632

24 Vrachimis et al., May 24, 2022



considers the cost of the repair crew every time it is sent to search for a leakage.633

A correct detection is one that points at a link ID which is inside a predefined pipe length634

radius around the leak location, and the given leakage start time is during the lifetime of the same635

leakage. The predefined pipe radius is defined by the capability of the close range equipment used636

by the repair crew (e.g. acoustic sensors) to exactly pinpoint the location of the leakage in a single637

workday.638

The scoring methodology is described here in detail. Given a user defined set of detections639

D and the set of leakages L (2019 BattLeDIM dataset), the total score 𝑆 is calculated using the640

following rules:641

1. True detection (True Positive): A given detection 𝑖 ∈ D is considered a True Detection

of a leakage 𝑗 ∈ L if the detection time 𝑡𝑖
𝑑
and the distance 𝑥𝑖 𝑗 ≥ 0 from the center of the

isolated link to the leak location, satisfy the following conditions:

𝑡
𝑗
𝑠𝑡 ≤ 𝑡𝑖𝑑 ≤ 𝑡

𝑗

𝑒𝑛𝑑
, (5a)

𝑥𝑖 𝑗 ≤ 𝑥𝑚𝑎𝑥 , (5b)

where 𝑡 𝑗𝑠𝑡 and 𝑡
𝑗

𝑒𝑛𝑑
are the start and end time of leakage 𝑗 respectively, and 𝑥𝑚𝑎𝑥 is the642

predefined pipe length radius around the leak location.643

2. False detection (False Positive): False detections are the detections which do not satisfy644

the True detection condition above.645

3. Missed detection (False Negative): Missed detections are the set of leakages in L which646

have not been detected by any detection in D (includes 4 leakages starting in 2018 and 19647

leakages starting in 2019).648

4. Order of evaluation: Detections in D are evaluated in chronological order, i.e., from the649

earliest detection to the latest detection, against all leakages inL. Note that detections given650

by participants which are outside the year 2019 are ignored.651

5. Repeated detections: Once a leak is detected, it is added to the list Ld. Successful652
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detections of leaks in Ld are given a score of zero (0), i.e., repeated detections of the same653

leakage are ignored.654

6. Multiple detections: A single detection may detect only one leakage, even if more than655

one leakage is in the detection area. Note that detection of multiple leakages is limited due656

to the leakage placement algorithm used to create the dataset. In the case of the existence657

of multiple leakages in the detection radius of detection 𝑖, e.g., leakage 𝑗 ∈ {1, . . . , 𝑚},658

only the leakage closest to the detected link is considered to be discovered. The discovered659

leakage 𝑙 ∈ L in the case of multiple true detections is given by:660

𝑙 =
{
𝑗 : 𝑥𝑖 𝑗 = min

(
𝑥𝑖 𝑗 , 𝑗 ∈ {1, . . . , 𝑚}

)}
(6)661

7. Profit from water saved: The profit 𝑝𝑖𝑤 (euro) from water saved by detection 𝑖, for a662

detected leakage 𝑗 , is calculated as follows:663

𝑝𝑖𝑤 =
©«
𝑡
𝑗

𝑒𝑛𝑑∑︁
𝑘=𝑡𝑖

𝑑

𝑞 𝑗 (𝑘)Δ𝑡
ª®®¬ 𝑐𝑤, (7)664

where by detection 𝑖, 𝑞 𝑗 (𝑘) is the flow rate of leakage 𝑗 at each discrete time step 𝑘 , Δ𝑡 is665

the duration of the discrete time step and 𝑐𝑤 is the cost (euro) of water per cubic meter.666

8. Repair crew cost: All detections in D are associated with a utility repair crew cost. The667

repair crew checks for leakages only within a predefined radius of 𝑥𝑚𝑎𝑥 from the given668

location. The repair crew cost for a given detection 𝑖 is assumed to be proportional to the669

distance 𝑥𝑖 𝑗 from the leakage j and is calculated as follows:670

𝑐𝑖𝑟 =


−
(

𝑥𝑖 𝑗
𝑥𝑚𝑎𝑥

)
𝑐𝑟 , 𝑥𝑖 𝑗 < 𝑥𝑚𝑎𝑥

−𝑐𝑟 , 𝑥𝑖 𝑗 ≥ 𝑥𝑚𝑎𝑥

(8)671

where 𝑐𝑖𝑟 is the repair crew cost for detection 𝑖, and 𝑐𝑟 is the maximum repair crew cost for672

a given leakage search assignment.673
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9. Total score: The total score 𝑆 for a given set of detections D is given by:674

𝑆 =
∑︁
𝑖∈D

𝑠𝑖 =
∑︁
𝑖∈D

(
𝑝𝑖𝑤 + 𝑐𝑖𝑟

)
, (9)675

where 𝑠𝑖 is the score per given detection 𝑖.676

The parameters of maximum detection radius 𝑥𝑚𝑎𝑥 , cost of water per cubic meter in euro 𝑐𝑤677

and the maximum repair crew cost 𝑐𝑟 are given in Table 3. The cost of water is selected assuming678

a water utility which operates in Cyprus. The maximum repair crew cost is calculated assuming679

a three-person repair crew searching for the leakage location for a whole 8-hour workday, with an680

hourly rate of approximately 20 euro per hour. The maximum detection radius is selected assuming681

the repair crew is able to search using acoustic sensors a maximum pipe length of 1 𝑘𝑚 in a single682

workday. In order for this distance to be translated into a radius, an average of three pipe branches683

emerging around any given location is assumed. The maximum score in this problem, given the684

parameters of Table 3 and the leakages existing in the dataset, is achieved when all leakages are685

detected at their exact start time and location, while no false detections are given. The “perfect”686

score of the competition was calculated using equation (9) to be e523,124.687

For illustration purposes, an example of the evaluation function is shown in Fig. 8, where688

all possible values of the detection score are plotted for detecting a leakage with constant flow of689

𝑞(𝑘) = 100 𝑚3/ℎ. The evaluation parameters were arbitrarily chosen as follows: cost of water690

𝑐𝑤 = 1 euro/𝑚3, max crew cost 𝑐𝑟 = 500 euro/detection and max detection distance 𝑥𝑚𝑎𝑥 = 50𝑚.691

Alternative evaluation criteria692

The evaluation methodology used in this competition has some disadvantages which arise from693

using a score which is proportional to the amount of water saved from each successfully detected694

leakage. Specifically, the current methodology favors the detection of large and abrupt leakages as695

well as leakages which start early in the dataset.696

To avoid this issue, an alternative evaluation approach is demonstrated which takes into account697

the total volume of water lost from each leakage, given in Fig. 9. The volumes are derived by698
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calculating the area under the leakage flow curves of Fig. 7. It can be observed from Fig. 9 that699

each leakage will be rewarded differently since the reward for each detection directly relates to the700

water volume loss of each leakage.701

This alternative evaluation approach alters the reward function of (7) which calculates the profit702

from each detected leakage, by normalizing the profit by the volume of the corresponding leakage.703

Specifically, given detection 𝑖 which successfully detects leakage 𝑗 , the profit from water saved704

(euro) is calculated as follows:705

𝑝𝑖𝑤 =
𝑣
𝑗
𝑠

𝑣 𝑗
𝑣𝑚𝑐𝑤 (10)706

where 𝑣 𝑗
𝑠 is the volume of water saved given detection 𝑖, 𝑣 𝑗 is the total volume of water loss from707

leakage 𝑗 , and 𝑣𝑚 is the mean volume of water loss of all leakages in the dataset. The mean leakage708

volume 𝑣𝑚 is calculated for this dataset to be 𝑣𝑚 = 28432 𝑚3.709

Notice that using the normalized reward function, the maximum reward for each detected710

leakage is 𝑣𝑚𝑐𝑤. The most obvious drawback of this alternative evaluation approach is that the711

Economic score loses its literal meaning.712

COMPETITION RESULTS AND DISCUSSION713

Team rankings are defined by calculating the Economic score of the results submitted by each714

team. The Economic score of each team is given in Fig. 10(a), where the names of the teams715

have been substituted by generic labels, specifically the letters A–R. It is interesting to note that716

the Economic score does not necessarily reflect the ranking when the True Positive Rate (TPR)717

and False Positives (FP) of each submitted result is considered. The TPR and FP of each team are718

illustrated in Fig. 10(b) and Fig. 10(c) respectively.719

The winning teams of the BattLeDIM competition, were the 6 teams with the highest economic720

score and with the highest true-positive rate. The name of these teams are provided in Table721

4, along with their Pareto ranking. For instance, “Tongji-Team” and “Under Pressure” are non-722

dominated solutions and are ranked to the first Pareto front with an economic score of e264,873723

and e260,562, and a True Positive Rate of 56.52% and 65.22%, respectively. The “Perfect” score724
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of the competition was e523,124 (no time delay in detection, no false positives, exact position),725

which implies that the best solutions in BattLeDIM achieved a score around 50%.726

Evaluation parameter sensitivity analysis and alternative criteria results727

The sensitivity of the total score to the cost of water per cubic meter in euro 𝑐𝑤 is evaluated728

here in order to analyze the effect that different assumptions on cost may have on the ranking of729

solutions provided. The cost of water affects the Economic score the most since this is proportional730

to the amount of water lost from leakages, while it does not affect the number of True Positives731

or False Positives achieved by each team. Five different water prices were used to re-evaluate the732

competition results ranging from 0.40 e/𝑚3 to 1.20 e/𝑚3.733

The sensitivity analysis results are illustrated in Fig. 12. The results indicate that the increasing734

water price favors teams which had a larger number of False Positives and of which the Economic735

score was affected due to the cost of sending out repair crews. This result draws the conclusion that,736

given a difficult challenge such as the BattLeDIM problem, the cost of water should be taken into737

account when deciding how conservative a leakage diagnosis methodology should be. Another738

interesting observation is that the first five teams do not change rank with the increasing water price739

since they outperform the rest of the methodologies in the TPR metric.740

Moreover, the results using the alternative evaluation criteria described in Section 7 are shown741

in Fig. 13. It can be observed that the normalized score rankings follow more closely the rankings742

of the True Positive Rates, except in the cases where the corresponding teams have a high number743

of False Positive detections.744

Discussion745

The BattLeDIM competition provides valuable insights on the state-of-the-art in leakage de-746

tection and isolation methods, their limitations as well the different ways that the results should be747

evaluated. For instance, by analyzing the methodological approaches followed by the top teams,748

as shown in Table 1, it is apparent that different approaches have been used by the teams, and the749

robustness of each approach to different evaluation functions may vary. Some of the observations750

are discussed below:751
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• Most top-scoring teamsmake use of a nominalmodel, of which the parameters are calibrated752

in some form using sensor data, to construct a water distribution model which describes753

the normal operation of the system (such as Tsinghua, Under Pressure, IRI and UNIFE),754

by incorporating existing leakages into the calibrated node demands. This allows the755

computation of the expected flows and pressures at different locations in the network.756

Moreover, they also consider theAMRmeasurements separately from the rest of the network,757

and use them to estimate/calibrate demands.758

• For the detection of events, model-based residuals along with some form of a change759

detection algorithm (e.g., Leak-Busters, UNIFE, Under Pressure) or time-series/signal pro-760

cessing (e.g., Tongji) analysis was preferred by most of the top-scoring teams. Some of761

these residuals were also utilized for localization purposes (e.g., IRI, Tsinghua).762

• For the leak isolation, top-scoring teams used some form of optimization framework, to763

identify the most likely leakage point (e.g., Leak-Busters, Tsinghua, IRI and Tongji).764

• Some solutions, had a high True Positive Rate, but with a significantly higher number of765

False Positives (210) with respect to the other participants (such as team ‘E’ in Fig. 10).766

Based on the BattLeDIM assumptions for the cost of water and staff cost, this solution767

received a low score. However, sensitivity analysis of the result indicates that, for higher768

cost of water, this solution could have received a higher rank. This indicates that it may be769

beneficial to accept higher number of false positives, if the cost of water lost is significantly770

higher than the staff cost.771

CONCLUSIONS AND OPEN CHALLENGES772

In this paper we presented the results from the “Battle of the Leakage Detection and Isola-773

tion Methods” (BattLeDIM), an open competition which aimed to objectively compare different774

methodologies in their ability of detecting and isolating leakage events within a virtual water775

distribution system. For the purposes of this work, a new benchmark network was introduced,776

“L-Town”, based on a realistic water distribution system. Moreover, a synthetic 2-year SCADA777

benchmark dataset was generated with leakages of various types and magnitudes, which can be778
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used by the research community to develop leakage diagnosis methodologies, keeping in mind the779

limitations of this benchmark mentioned in Section 5. An economic objective metric was defined780

to evaluate the different solutions, considering realistic operational costs. In total, 18 teams from781

the academia and the industry participated in the BattLeDIM competition. The teams used various782

methodologies, including model-based and model-free approaches, simulation and optimization783

tools, machine learning and others; these techniques are summarized in Table 2. We presented the784

evaluation methodology and discussed its limitations.785

Overall, the competition demonstrated that multiple technologies could be used for solving the786

problem and that there is potential for significant improvement, since the top solutions achieved787

50% of the maximum possible score. However, it is important to make a distinction between the788

‘maximum possible score’ and the ‘maximum feasible score’ in this problem: the former is the789

score achieved when all leakages are detected perfectly without false positives, while the latter790

is the maximum score that can be achieved by any methodology given the limited information791

provided about the problem. The methodology to calculate the maximum feasible score for the792

BattLeDIM benchmark is an open research question. Since the goal of this benchmark is to recreate,793

as realistically as possible, a real-world problem, the development of such methodology will be794

useful in determining the conditions that should exist in real systems to make it at least theoretically795

feasible to achieve a certain performance in leakage diagnosis. Many factors are in play that affect796

the maximum feasible score, such as the selected water network, the size of leakages and the797

magnitude of the considered uncertainty. Moreover, it is safe to say that the maximum feasible798

score will change by varying some parameters of the BattLeDIM problem to make it even more799

realistic; for example, including sensor noise and missing measurements in the dataset.800

In closing, the BattLeDIM competition demonstrated the need for open benchmarks, which can801

assist the research community towards reproducibility and open science.802
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FEATURE DESCRIPTION

Use nominal model Making use of the provided EPANET model for L-Town
Model calibration Nominal model calibration of demands and/or pipe parameters
AMR based demands Use of AMR data to model demand patterns
Normal operation dataset and/or
dual model

Use of a (calibrated) EPANET model to create dataset under normal operations (no leak) and/or a normal
operation model

Areas treated differently Whether the algorithms treat different areas of the network separately
Pressure Sensitivity Matrix Linearization of hydraulic equations
Pressure reconstruction/comparison Reconstruction/comparison of pressure of neighboring nodes

Residuals - Model-based Residuals computed between simulated readings from available nominal model simulations and observed
SCADA

Residuals - Model-free Residuals computed between predicted readings from model-free approach and observed SCADA
Change Detection Technique to identify abrupt change in residuals/observations in time (CUSUM, angle method)
Time Series Analysis/Signal
Processing/EMD

Methods pertaining to TSA/SP such as Empirical Model Decomposition, spectral methods used at different
stages of the algorithm

Statistical Methods Methods based on comparison with statistical distribution of the observed data, hypothesis testing, linear
regression, etc.

Machine Learning and Soft
Computing Includes supervised/unsupervised machine learning (also feature engineering), fuzzy methods

Simulation-based optimization Use of an optimization method with objective function based on simulation via hydraulic model
Simulating leaks Use of an EPANET model to simulate leaks
Mathematical Programming Methods including Integer Programming, Dynamic Programming, Mixed Integer Programming
Meta-heuristics Global optimization methods such as Genetic Algorithms, Harmony Search and Particle Swarm Optimization
Ad-hoc/Engineering judgement Techniques that cannot be framed in the methods above or methods based on engineering common sense

TABLE 2. Explanation of features included in the methodologies of the competing teams.
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Parameter Value Description
𝑥𝑚𝑎𝑥 300 (Meters) Maximum detection radius
𝑐𝑤 0.80 (Euro) Cost of water per 𝑚3
𝑐𝑟 500 (Euro) Maximum repair crew cost

TABLE 3. Parameters used in the evaluation procedure.
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Team Name (Label) Pareto Rank True Positive Rate False Positives Count Economic Score (Euro)
Tongji-Team (L) 1 56.52% 3 e264,873
Under Pressure (O) 1 65.22% 4 e260,562
IRI (H) 2 43.47% 1 e210,772
Leakbusters (K) 2 47.83% 7 e195,490
Tsinghua (M) 3 47.83% 5 e167,981
UNIFE (N) 4 43.47% 4 e127,626
PERFECT - 100% 0 e523,154

TABLE 4. BattLeDIM competition results and ranking of top 6 participating teams.
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Fig. 1. The L-Town Benchmark Network.
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Fig. 2. Demand signal decomposition using Fourier Series.
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Fig. 3. Location of pressure sensors in the L-Town network.
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Fig. 4. Location of AMRs (nodes with red colour) in “Area C” of the L-Town network.
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Fig. 5. Location of leakages in 2018 dataset.
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Fig. 6. Location of leakages in 2019 dataset.
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Fig. 7. Evolution of leakages in 2019 dataset.
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Fig. 8. Example of the scoring function for a true detection: 𝑞(𝑘) = 100 𝑚3/ℎ (leakage flow),
𝑐𝑤 = 1 euro/𝑚3 (water cost), 𝑐𝑟 = 500 euro/detection (max crew cost)
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Fig. 9. Total volume of water lost from each leakage in the BattLeDIM problem, sorted chrono-
logically and identified by the corresponding link ID.
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Fig. 10. (a) Final scores of the BattLeDIM competition: Team rankings are based only on the
Economic score. The ‘Perfect’ score is the theoretical upper bound; (b) Team scores with respect
to the True Positive Rate metric; (c) Team scores with respect to the number of False Positives.
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Fig. 11. Multi-parameter score (Economic score and True Positive Rate) of the submitted results.
The best scores are in the upper-right corner of the graph.
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Fig. 12. Sensitivity analysis of the Economic score with respect to the price of water: (a) 0.40,
(b) 0.60, (c) 0.80, (d) 1.00, (e) 1.20 Euro. Note that the True Positive Rates (TPR) and number of
False Positives (FP) remain the same in these scenarios.
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Fig. 13. (a) Alternative Economic Score and ranking of teams in the BattLeDIM competition using
the alternative evaluation criteria in which the leakage volume is normalized; (b) True Positive Rate
score; (c) Number of False positives.

57 Vrachimis et al., May 24, 2022


	Topology and structure
	Water demand modelling
	Simulation and dataset generation engine
	Nominal and Real models
	Sensors and Telemetry
	Leakage modelling
	Leakage reporting
	Leakage event simulation
	The BattLeDIM Datasets
	Analysis of methodologies
	Competition evaluation criteria
	Alternative evaluation criteria
	Evaluation parameter sensitivity analysis and alternative criteria results
	Discussion

