Factorisation of Belyi like polynomial over finite fields

Gabriel Soranzo

2022

Section 1

Introduction

Objectives
Why?
Lattice associated to some irreducible polynomial
Main idea
Definition of the lattice

First properties of the lattices L_{p}
The order of L_{p}
Comparison with the
factorisation of $X^{n}-1$
The degree of L
Find lattices of given order o
Step 1: the minimal ordinate
Digress: the order of $1-x$
Step 2; the abscissa of the minimum ordinate vector
Algorithm to find all lattice of

Factorisation with

G. Belyi (1951-2001)

Objectives

We are going to explain how factorising over finite fields \mathbb{F}_{p} the polynomials $\mu_{a, b}=X^{a}(1-X)^{b}-1$.

■ They are already general algorithms for that! But:

- We are looking for an "understanding factorisation": what is the logic behind the scene
■ We are looking for a "by hand" algorithm: no big resultant or gcd method

Why?

- Factorisation of $X^{a}(1-X)^{b}-1$ over \mathbb{F}_{p}, why?

Lattice associated to some irreducible polynomial
Main idea
Definition of the lattice
Factorisation of
$x^{2}(1-x)^{2}-1$
First properties of the lattices L_{p} The order of L_{R} Comparison with the factorisation of $X^{n}-$ Thie degree of L

Find lattices of given order o
Step 1: the minimal ordinate Digress: the order of 1 Step 2: the abscissa of the minimum ordinate vector

- Because it gives the factorisation of the Belyi polynomials $\beta_{a, b}=X^{a}(1-X)^{b}-\frac{(a+b)^{a+b}}{a^{a} b^{b}}$ over \mathbb{F}_{p} : as $\lambda_{a, b}=\frac{(a+b)^{a+b}}{a^{a} b^{b}}$ is in \mathbb{F}_{p} the there is an integer k such that $\lambda_{a, b}^{k}=1$ so that the factors of $\beta_{a, b}$ are in the factors of $\mu_{k a, k b}$. Why are we looking for factorisation of $\beta_{a, b}$ over \mathbb{F}_{p} ?
- Because (with Hensel lemma and work on models) it can give factorisation of $\beta_{a, b}$ over \mathbb{Q}_{p}.
Why are we looking for factorisation of $\beta_{a, b}$ over \mathbb{Q}_{p} ?
■ Because it can (with Krasner lemma) give the local Galois group of the Belyi polynomials $\beta_{a, b}$
Why are we looking for the local Galois groups of $\beta_{a, b}$?
- Because it can maybe give (indication on) the global Galois group of $\beta_{a, b}$, and so on the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the vertices of the children drawing given by $\beta_{a, b}$.

Section 2

Lattice associated to some irreducible polynomial

Lattice associated to some irreducible polynomial
Main idea
Definition of the lattice
Factorisation of
First properties of the lattices L_{P} The order of L_{p}
Comparison with the factorisation of X The degree of L

Find lattices of given order o
Step 1: the minimal ordinate
Digress: the order of $1-$
Step 2; the abscissa of the minimum ordinate vector Algorithm to find all lattice of order o

What is the main idea of the factorisation of the polynomials $\mu_{a, b}=X^{a}(1-X)^{b}-1$?
\rightarrow We are going to use lattices.

Main idea from factorisation of $X^{n}-1$

How do we factor polynomial $\varphi_{n}=X^{n}-1$ in \mathbb{F}_{p} ?
Factorisation of $X^{n}-1$

$$
X^{n}-1=\prod_{k \mid n} \Phi_{k}
$$

(This is in fact not an irreducible factorisation because the Φ are in general not irreducible in \mathbb{F}_{p} but it is conveniente to give the idea.)

By associating to each cyclotomic polynomial Φ_{k} a 1-dimensional lattice $L_{k}=k \mathbb{Z}$ we can reformulate this by:

Factorisation of $X^{n}-1$ - version 2

$$
X^{n}-1=\prod_{n \in L_{k}} \Phi_{k}
$$

Main idea: appication to $\mu_{a, b}$

The idea is to make the same thing as this new version factorisation theorem:

$$
\text { Factorisation of } X^{n}-1 \text { - version } 2
$$

$$
X^{n}-1=\prod_{n \in L_{k}} \Phi_{k}
$$

but with $\mu_{a, b}=X^{a}(1-X)^{b}-1$.
Difference between $X^{n}-1$ and $X^{a}(1-X)^{b}-1$: there is 2 parameters a and b.
So to each irreducible polynomial Φ of \mathbb{F}_{p} a 2-dimensional lattice L_{Φ} such that

Factorisation of $X^{a}(1-X)^{b}-1$

$$
X^{a}(1-X)^{b}-1=\prod_{(a, b) \in L_{\phi}}
$$

Definition of the lattice

Let $P \in \mathbb{F}_{p}[X]$ an irreducible polynomial. We note L_{P} the following subset of \mathbb{N}^{2} :

$$
L_{P}=\left\{(a, b) \in \mathbb{N}^{2}|P| X^{a}(1-X)^{b}-1\right\}
$$

Let $x \in \overline{\mathbb{F}_{p}}$. We note L_{x} the following subsect of \mathbb{Z}^{2} :

$$
L_{x}=\left\{(a, b) \in \mathbb{Z}^{2} \mid x^{a}(1-x)^{b}=1\right\}
$$

Fondamental observation

The subset L_{x} of \mathbb{Z}^{2} is a lattice.
Second observation
For all x root of P we have $L_{P}=L_{x} \cap \mathbb{N}^{2}$.

An example

Introduction

Objectives

Lattice associated to some irreducible polynomial Main idea

Definition of the lattice
Factorisation of

First properties of the lattices L_{p}
The order of L_{p}
Comparison with the factorisation of X
The degree of L_{x}
Find lattices of given order o

Step 1: the minimal ordinate
Digress: the order of $1-$
Step 2; the abscissa of the minimum ordinate vector

Here the example of the lattice associated to the polynomial Φ_{4} in \mathbb{F}_{3}

Lattice associated to Φ_{4} in \mathbb{F}_{3}

Factorisation of $X^{a}(1-X)^{b}-1$

In termes of lattices L_{P} we can reformulate the problem of the factorisation of $\mu_{a, b}=X^{a}(1-X)^{b}-1$ in the following form:
Lattice associated to some irreducible polynomial

Definition of the latice
Factorisation of $x^{2}(1-x)^{b^{\circ}}-1$

First properties of the lattices L_{P} The order of L_{F} Comparison with the factorisation of $X^{n}-1$

Section 3

First properties of the lattices L_{P}

What does the lattices L_{P} look like?

We are going here to explain the order of x and $p^{f}-1$-periodicity.

The order of L_{P}

As it is well known all irreducible polynomial P is a factor of some cyclotomic polynomial Φ_{k} where we will call k the order of P. As a result, for all root x of P :

$$
\begin{aligned}
(a, 0) \in L_{P} & \Longleftrightarrow x^{a}=1 \\
& \Longleftrightarrow k \mid a
\end{aligned}
$$

hence $L_{P} \cap(\mathcal{O} x)=\operatorname{ord}(P) \mathbb{Z}$.
So we can find the order of P from its lattice: we call k the order of the lattice L_{p}.

Consequence

As a result, our method generalize the method of factorisation for the $X^{n}-1$:

$$
\begin{aligned}
& X^{n}-1 \in L_{\phi} \\
\Longleftrightarrow & X^{n}(1-X)^{0}-1 \in L_{\phi} \\
\Longleftrightarrow & X^{n}(1-X)^{0}-1 \in L_{\phi} \cap(O x) \\
\Longleftrightarrow & n \in \operatorname{ord}(\phi) \mathbb{Z}
\end{aligned}
$$

Hence, as we know, the factors of $X^{n}-1$ are all the irreducible polynomials of order dividing n.

Difference with the factorisation of $X^{n}-1$

Lattice associated to some irreducible polynomial
Main idea
Definition of the lattice

The situation is not so comfortable for the general case because contrary to the 1-dimensional case, we will see that not all lattices are of the form L_{p}. These sorts of lattices could be named the effective lattices (modulo p). So the central question is:

Central question

How to find what lattices are effective?
We will see now a reason why not all lattices are effective through the definition of the degree of effective lattices.

The degree of L_{x}

Let x be some root of Φ_{ℓ} (ie $x \in \overline{\mathbb{F}_{p}}$ is of order ℓ) then $x \in \mathbb{F}_{p^{f}}$ with

$$
f=\operatorname{deg}\left(\Phi_{\ell, i}\right)=\operatorname{ord}_{\ell}(p)=\inf \left\{q \text { such that } \ell \mid p^{q}-1\right\}
$$

As the degree f only depends on ℓ and as ℓ can be seen on the lattice L_{x} (intersection with $(O x)$) then the degree f can be read on the lattice L_{x}. So we can speak of the degree of L_{x}.

What are the other geometric implication of the degree? As the order of x is ℓ then $x^{\ell}=1$ hence:

$$
\begin{aligned}
(a, b) \in L_{x} & \Rightarrow x^{a}(1-x)^{b}=1 \\
& \Rightarrow \forall q, x^{a}(1-x)^{b} \times x^{\ell}=1 \\
& \Rightarrow \forall q, x^{a+q \ell}(1-x)^{b}=1 \\
& \Rightarrow \forall q,(a+q \ell, b) \in L_{x}
\end{aligned}
$$

The degree of L_{x}
hence L_{x} is ℓ-periodic horizontally.
We do not know the order ℓ^{\prime} of $1-x$ a priori. But with the same reasoning we will obtain that L_{x} is ℓ^{\prime}-periodic vertically.
As x and $1-x$ are all in $\mathbb{F}_{p^{f}}^{*}$ hence ℓ and ℓ^{\prime} divide $p^{f}-1$. So globally the lattice L_{x} is $p^{f}-1$-periodic.

Consequence: not all lattices are effective

As said before not all lattices verify this property. If we take $v_{1}=\binom{\ell}{0}$ for the first vector basis for L_{x}, the
$p^{f}-1$-periodicity constrains $v_{2}=\binom{a}{b}$ to verify $b \mid p^{f}-1$ which is not the case for all lattices.

Example

With $p=3$. Consider the lattice L generates by the vectors
$v_{1}=\binom{4}{0}$ and $v_{2}=\binom{2}{3}$. The degree associated to the order $k=4$ is $f=2$ because $4 \mid p^{2}-1$ and $4 \nmid p-1$. But $3 \nmid p^{2}-1$.

Section 4

Find lattices of given order o

How to find all the lattice of a given order o ?

We have seen that $L_{x} \cap(O x)=\operatorname{ord}(x) \mathbb{Z}$ and the $p^{f}-1$ periodicity: Let's understand b_{0} and a.

Step 1: The minimal ordinate - Definition

We want to find what lattices are effective and more precisely, given an order $o \in \mathbb{N}$, find all the lattices L_{x} where $\operatorname{ord}(x)=o$ ie all effective lattices L such that $L \cap(O x)=o \mathbb{Z}$.
Let $v_{1}=\binom{0}{0}$ and $v_{2}=\binom{a}{b_{0}}$ be vector of L_{x} with b_{0} is positive minimal. They will be a basis for L_{x}.
In this section we will obtain the number b_{0} which could be name the minimal ordinate.

Step 1: The minimal ordinate - To the formula

■ For example if $o=p^{f}-1$ ie $L=L_{x}$ with \times primitive. Then here $b_{0}=1$ because we can find the number a such that $x^{a}(1-x)=1 \Longleftrightarrow x^{a}=\frac{1}{1-x}$ (because x is primitive).
■ In general for an order o| $p^{f}-1$ we have $G_{x}=\langle x\rangle$ is equal to $K_{o}=\left\{y \in\left(\mathbb{F}_{p^{f}}\right)^{*} \mid y^{o}=1\right\}$. The number b is the smallest number such that $\left(\frac{1}{1-x}\right)^{b} \in G_{x}$ ie such that $(1-x)^{b} \in G_{x}$ ie such that $(1-x)^{b o}=1$ ie such that ord $(1-x) \mid$ bo

Step 1: The minimal ordinate - The formula

We've seen, with $o^{\prime}=\operatorname{ord}(1-x)$ that

$$
b_{0}=\inf \left\{b \text { such that } o^{\prime} \mid b o\right\}
$$

as a result
Formula for b_{0}
The minimal positive ordinate for a effective lattice of order o is

$$
b_{0}=\frac{\operatorname{Icm}\left(o, o^{\prime}\right)}{o}=\frac{o^{\prime}}{\operatorname{gcd}\left(o, o^{\prime}\right)}
$$

Step 1: The minimal ordinate - Consequences

As a result

- If $\operatorname{ord}(1-x) \mid \operatorname{ord}(x)$ ie $o^{\prime} \mid o$ (for example if x is primitive ie $\left.\operatorname{ord}(x)=p^{f}-1\right)$ then $\operatorname{lcm}\left(o, o^{\prime}\right)=o$ so that $b_{0}=\frac{\operatorname{lcm}\left(o, o^{\prime}\right)}{o}=\frac{o}{o}=1$.
- If o^{\prime} and o are coprime then $\operatorname{lcm}\left(o, o^{\prime}\right)=o o^{\prime}$ so that $b_{0}=\frac{\operatorname{lcm}\left(o, o^{\prime}\right)}{o}=o^{\prime}$ and $a=0$ (because $\binom{0}{o^{\prime}}$ is on the lattice): it's a rectangular lattice.
Resuming,

Conclusion

The minimum ordinate b_{0} of an effective lattice L_{x} can be calculated directly from $\operatorname{ord}(x)$ and $\operatorname{ord}(1-x)$ ie from horizontal and vertical order of L_{x}.

Digress: the order of $1-x$

Lattice associated to some irreducible polynomial
Main idea
Definition of the lattice

First properties of the lattices L_{P} The order of L_{F} Comparison with the factorisation of X

Step 1: the minimal ordinate
Digress: the order of $1-x$ Step 2; the abscissa of the minimum ordinate vector

What can wee tell about the order of $1-x$?
First observation
The order of $1-x$ depends only of the minimal polynomial of x. More precisely: it is the order of $\Phi_{x}(1-X)$

Consequence

The orders of x and $1-x$ have the same degree.
For example it is not possible in \mathbb{F}_{3} to have ord $(x)=4$ and $\operatorname{ord}(1-x)=2$ because the order of 4 if $2\left(4 \mid 3^{2}-1\right)$ but the order of 2 is $1\left(2 \mid 3^{1}-1\right)$.

Note on $\operatorname{ord}(x)$ and $\operatorname{ord}(1-x)$

Second observation

The order of $1-x$ doesn't only depend of ord (x).
For example: in \mathbb{F}_{3}
■ With $\Phi_{8,1}=X^{2}-X-1$ we have $\Phi_{8,1}(1-X)=\ldots=\Phi_{8,1}(X)$ so that for any root x of $\Phi_{8,1}$ we have $\operatorname{ord}(x)=\operatorname{ord}(1-x)=8$.

- With $\Phi_{8,2}=X^{2}+X-1$ we have $\Phi_{8,2}(1-X)=\ldots=\Phi_{4}(X)$ so that here $\operatorname{ord}(x)=8$ but $\operatorname{ord}(1-x)=4$.

Step 2: abscissa of minimum ordinate vector

Lattice associated to some irreducible polynomial
Main idea
Definition of the lattice
Factorisation of
First properties of
the lattices L_{P}
The order of L_{p}
Comparison with the
factorisation of X
The degree of L
Find lattices of given order o

Step pa the minimal ordinate

Step 2: the abscissa of the minimum ordinate vector

Given an effective lattice L_{x}
we have an unique basis $v_{1}=\binom{0}{0}$,
$v_{2}=\binom{a}{b_{0}}$ with b_{0} the minimal ordinate of the lattice and $0 \leq a<0$. We have seen how to find b_{0}

$$
\text { from } o=\operatorname{ord}(x) \text { and } o^{\prime}=\operatorname{ord}(1-x)
$$

$$
b_{0}=\frac{\operatorname{lcm}\left(o, o^{\prime}\right)}{o^{\prime}}=\frac{o^{\prime}}{\operatorname{gcd}\left(o, o^{\prime}\right)}
$$

The question is now: how to find a ?

Step 2: miscellaneous observations

- First observation: we can reasonate on L_{1-x} (symetric of L_{x}) to show that the minimal abscissa a_{0} is

$$
a_{0}=\frac{o}{\operatorname{gcd}\left(o, o^{\prime}\right)}
$$

As a result a is a multiple of $\frac{0}{\operatorname{gcd}\left(o, o^{\prime}\right)}$.

- Second observation: as $x^{a}(1-x)^{b_{0}}-1=0$ ie $X^{a}(1-X)^{b_{0}}-1=0$ in $\mathbb{F}_{q}=\mathbb{F}_{p}[X] /(\phi(X))$ (where we note ϕ for the minimum polynomial of x) as $\operatorname{deg}(\phi)=f$ and $\phi \mid X^{a}(1-X)^{b_{0}}-1$ then $f \leq a+b_{0}$ so $a \geq f-b_{0}$.
- Third observation: as $x^{\circ}=1$ then we can get $a<0$

Basic constrains on a
The number a is a multiple of $\frac{o}{\operatorname{gcd}\left(o, o^{\prime}\right)}$ and $f-b_{0} \leq a<0$.

Step 2: last observation

Lattice associated to some irreducible polynomial

Main idea
Definition of the lattice Factorisation of

First properties of the lattices L_{P}
The order of L_{F}
Comparison with the factorisation of X^{n}

The degree of L.
Find lattices of given order o

Step 1: the minimal ordinate
Digress: the order of 1 -
Step 2: the abscissa of the minimum ordinate vector

Last observation observation: contrarily to b_{0}, we can't calculate a directly from o and o^{\prime} as the following lattices in \mathbb{F}_{3} show:

$L_{26,1}=L_{x^{3}-x^{2}+1}$

$L_{26,2}=L_{x^{3}-x+1}$

Step 2: let's set the frame

\triangle Change of letter: the lattices of order o are lattices of the form L_{z} where $z \in \mathbb{F}_{p^{f}}$ where f is the degree of the minimal polynomial of z.
Let $\mathbb{F}_{p^{f}}=\mathbb{F}_{p}[X] /(P)$ where P is a primitive irreducible polynomial ie $x=X \bmod P$ generates the cyclic group $\mathbb{F}_{p^{f}}^{*}$.
In other words the map $\alpha \mapsto x^{\alpha}$ gives an isomorphism $\mathbb{Z}_{p^{f}-1} \xrightarrow{\sim} \mathbb{F}_{p^{f}}^{*}$.
Its inverse will be noted $\log _{x}: \mathbb{F}_{p^{f}}^{*} \xrightarrow{\sim} \mathbb{Z}_{p^{f}-1}$.

Step 2: switching to $\mathbb{Z}_{p^{f}-1}$

First properties of the lattices L_{P}

We can now traduce the problem in $\mathbb{Z}_{p^{f}-1}$: if $z=x^{\alpha}$,

$$
\begin{aligned}
z^{a}(1-z)^{b}=1 & \Longleftrightarrow a \log _{x}(z)+b \log _{x}(1-z) \equiv 0 \bmod p^{f}-1 \\
& \Longleftrightarrow a \alpha+b \log _{x}\left(1-x^{\alpha}\right) \equiv 0 \bmod p^{f}-1
\end{aligned}
$$

Here the number $b=b_{0}$ being known, the only unknown is a.

To solve

Find a in $\mathbb{Z}_{p^{f}-1}$ such that $a \alpha+b_{0} \log _{x}\left(1-x^{\alpha}\right) \equiv 0$

Step 2: the key function ψ

A remark: we see here that all depend on the map

$$
\alpha \mapsto \alpha^{\prime}=\psi(\alpha)=\log _{x}\left(1-x^{\alpha}\right)
$$

This map is the traduction of $z \mapsto 1-z$ in $\mathbb{F}_{p^{f}}^{*}=\mathbb{Z}_{p^{f}-1}$:

$$
\begin{array}{cc}
\mathbb{Z}_{p^{f}-1} & \stackrel{\psi}{\longrightarrow} \mathbb{Z}_{p^{f}-1} \\
\stackrel{\imath}{\downarrow} & \\
\mathbb{F}_{p^{f}}^{*} \xrightarrow{\downarrow} \xrightarrow{\downarrow} & \mathbb{F}_{p^{f}}^{*}
\end{array}
$$

Step 2: solving the problem in $\mathbb{Z}_{p^{f}-1}$

Returning to our problem: find $a \in \mathbb{Z}_{p^{f}-1}$

$$
\begin{aligned}
z^{a}(1-z)^{b_{0}}=1 & \Longleftrightarrow a \log _{x}(z)+b_{0} \log _{x}(1-z) \equiv 0 \\
& \Longleftrightarrow a \alpha+b_{0} \log _{x}\left(1-x^{\alpha}\right) \equiv 0 \\
& \Longleftrightarrow a \alpha+b_{0} \psi(\alpha) \equiv 0 \bmod p^{f}-1
\end{aligned}
$$

Finding a is in fact equivalent to solve a Bezout equation of unknown a and q :

$$
a \alpha+q\left(p^{f}-1\right)=-b_{0} \psi(\alpha)
$$

Hence the map ψ permits to abstract us from the field structure (it put it in a black box) and stay in the cyclic group $\mathbb{Z}_{p^{f}-1}$ where the equation $X^{a}(1-X)^{b}=1$ is not else but a Bezout equation.

Algorithm to find all lattice of order 0

Lattice associated to

Section 5

Factorisation with the lattices

We have found all the lattices of given order o, so all the lattices of given degree f by considering all order of given degree f.
This gives tables of all possible lattices.
We will see now how uses theses tables to factor "by hand" the polynomials $X^{u}(1-X)^{v}-1$.

Factorisation with lattices: using the table

Lattice associated to some irreducible polynomial
Main idea
Definition of the lattice

First properties of the lattices L_{P} The order of L_{p} Comparison with the factorisation of X The degree of t

Find lattices of given order o
Step 1: the minimal ordinate Digress: the order of 1 Step 2; the abscissa of the minimum ordinate vector

- Given $\mu_{u, v}=X^{u}(1-X)^{v}-1$, we know that the degree of factors of $\mu_{u, v}$ is less than $u+v$ so that its order must divide a $p^{f}-1$ with $f \leq u+v$:
a priori we must have the database of all lattices of orders dividing the $p^{f}-1$ for $f \leq u+v$.
(We will see that we can a little reduce this table but it will stay big)
- For each possible $f \leq u+v$ and for each effective lattice L of degree f we must check if $(u, v) \in L$.
■ Remark: we can easily show $\mu_{u, v}$ has factors with power only if $(u+v)^{u+v}=u^{u} v^{v}$ in \mathbb{F}_{p} and in this case there is a square linera factor $X-\frac{u}{u+v}$. We can so easily count the total degree of the factors and know when $\mu_{u, v}$ is totally factorised without always go through $f=u+v$.

Presentation of the tables

For each degree f we give a table

	1	\cdots
1	$\left((o, 0),\left(a, b_{0}\right)\right)$	\cdots
b_{0}	$\left(\left(o^{\prime}, 0\right),\left(a^{\prime}, b_{0}^{\prime}\right)\right)$	\cdots
\cdots	\cdots	\cdots

The table needn't contain all a_{0} and b_{0} for a given (u, v) because for (u, v) to be in the lattice $\mathbb{Z}\binom{0}{0}+\mathbb{Z}\binom{a}{b_{0}}$ we must have $b_{0} \mid v$ and for symetric reason $a_{0} \mid u$. A remark: our table above do not mention the irreducible factor. We could track this in the table by computing the minimal polynomials, but we are mainly interested in the repartition of degrees and orders.

Verify the belonging of a lattice

For each $\left(a_{0}, b_{0}\right)$ such that $a_{0} \mid u$ and $b_{0} \mid v$ we have to verify if (u, v) is in on of the lattice of the cell.
The following figure show that it is in a given lattice $\left((o, 0),\left(a, b_{0}\right)\right)$ if and only if $o \left\lvert\, \frac{v}{b_{0}} a-u\right.$.

Factorisation with the lattices
Using the table

An example

$\mu_{2,3}=X^{2}(1-X)^{3}-1$.
We first verify if $(u+v)^{u+v}=u^{u} v^{v}$ to know if there is ramification: no, because here $v^{v}=0$.
We consider first the degre 1 factors given by the following table:

	1
1	$((2,0),(1,1))$

$$
3\binom{1}{1}-\binom{2}{3}=\binom{1}{0} \notin\binom{2}{0} \mathbb{Z}
$$

An example: degree 2

Then for the degree 2 :

	1	2
1	$((8,0),(5,1))$	$((8,0),(6,1))$
2	$((4,0),(3,2))$	

There are two lattices to consider:

- Lattice $((8,0),(5,1))$:

$$
3\binom{5}{1}-\binom{2}{3}=\binom{13}{0} \notin\binom{8}{0} \mathbb{Z}
$$

- Lattice $((8,0),(6,1))$:
$3\binom{6}{1}-\binom{2}{3}=\binom{16}{0} \in\binom{8}{0} \mathbb{Z}$
■ We do not consider the lattice $((4,0),(3,2))$ because here $b_{0}=2 \nmid 3$

An example: degree 3

First properties of the lattices L_{P}
The order of L_{P}
Comparison with the factorisation of X^{n} -

As we found a degree 2 factor there is only one degree 3 factor left to find. The following table show the possible degree 3 effective lattices with a_{0} and b_{0} lower than 10.

	1	2
1	$((13,0),(8,1))$	
	$((13,0),(5,1))$	$((26,0),(10,1))$
	$((26,0),(9,1))$	$((26,0),(2,1))$
	$((26,0),(3,1))$	
2	$((13,0),(1,2))$	
	$((13,0),(8,2))$	

- Lattice ((13, 0), (8, 1)):

$$
3\binom{8}{1}-\binom{2}{3}=\binom{22}{0} \notin\binom{13}{0} \mathbb{Z}
$$

■ Lattice ((13, 0), (5, 1)):

$$
3\binom{5}{1}-\binom{2}{3}=\binom{13}{0} \in\binom{13}{0} \mathbb{Z}
$$

An example: conclusion

Introduction

Objectives

Conclusion: the polynomial $\mu_{2,3}=X^{2}(1-X)^{3}-1$ has two factors, one factor of degree 2 and order 8 , and a factor of degree 3 and order 13.

