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Introduction
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Objectives

We are going to explain how factorising over finite fields I,
the polynomials i, = X2(1 — X)b — 1.

m They are already general algorithms for that! But:

m We are looking for an "understanding factorisation”:
what is the logic behind the scene

m We are looking for a "by hand” algorithm: no big
resultant or gcd method



m Factorisation of X?(1 — X)? — 1 over F,, why?
m Because it gives the factorisation of the Belyi polynomials

atb atb
Bab = X3(1 - X)b — (a;bb),, over F,: as A\, p = (a;bb)b is
in ¥, the there is an integer k such that )\’a‘b =1 so that
the factors of /3,1 are in the factors of pi, kb.

Why are we looking for factorisation of 3, 5 over IF,?

m Because (with Hensel lemma and work on models) it can
give factorisation of /3, , over Q.
Why are we looking for factorisation of 3, , over Q,?

m Because it can (with Krasner lemma) give the local Galois
group of the Belyi polynomials /3, s,
Why are we looking for the local Galois groups of 3, 5?

m Because it can maybe give (indication on) the global Galois

group of 3,5, and so on the action of Gal(Q/Q) on the
vertices of the children drawing given by 3, .



Section 2

Lattice associated to some irreducible
polynomial

Lattice associated to
some irreducible

it What is the main idea of the factorisation of the
polynomials 41, p = X3(1 — X)b —17

> We are going to use
lattices.
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Main idea from factorisation of X" — 1

How do we factor polynomial ¢, = X" — 1 in F,?

Factorisation of X" — 1

X" —1=]] o«
k|n

(This is in fact not an irreducible factorisation because the  are
in general not irreducible in F, but it is conveniente to give the
idea.)

By associating to each cyclotomic polynomial ®, a 1-dimensional
lattice Ly = kZ we can reformulate this by:

Factorisation of X" — 1 - version 2
X"—1= H P

neLy




Main idea: appication to i,

The idea is to make the same thing as this new version
factorisation theorem:

Factorisation of X" — 1 - version 2

X"—1= ] o«

nely

but with 11,5 = X?(1 — X)? — 1.

Difference between X" — 1 and X?(1 — X)? — 1: there is 2
parameters a and b.

So to each irreducible polynomial ® of F, a 2-dimensional lattice
Lo such that

Factorisation of X?(1 — X)? —1

X(1-xyP-1= J] ¢
(a,b)EL¢



Definition of the lattice

Let P € F,[X] an irreducible polynomial. We note Lp the
following subset of N?:

Lp = {(a,b) € N?| P|X?(1 — X)P — 1}
Let x € F,. We note L, the following subsect of Z?:

L = {(a,b) € Z2| x*(1 — x)b = 1}

Fondamental observation

The subset L, of Z?2 is a lattice.

Second observation

For all x root of P we have Lp = L, N N2.




An example

Here the example of the lattice associated to the
polynomial ®4 in I3
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Lattice associated to ®4 in F3



Factorisation of X?(1 — X)? —1

In termes of lattices Lp we can reformulate the problem of
the factorisation of 11,5 = X?(1 — X)? — 1 in the following
form:

Factorisation of X?(1 — X)? —1

Find all the irreducible factors of p, p is equivalent to find
all the lattices Lp such that (a, b) € Lp.

If we know all the lattices Lp, factoring the polynomials
X?(1 — X)b — 1 comes down to an easy belonging to
lattices problem.

The program is so the following:

Project

Find all the lattices Lp.



First properties of
the lattices Lp

Section 3

First properties of the lattices Lp

What does the lattices Lp look like?

-1
Basis 2 periodicity

---------------

---------

_________

We are going here to explain the order of x and
pf — 1-periodicity.



The order of Lp

As it is well known all irreducible polynomial P is a factor
of some cyclotomic polynomial &, where we will call k the
order of P. As a result, for all root x of P:

(a,0) e lp <= x? =1
<~ k|a
hence Lp N (Ox) = ord(P)Z.

So we can find the order of P from its lattice: we call k the
order of the lattice Lp.



Consequence

As a result, our method generalize the method of
factorisation for the X" — 1:

X"—1el,
= X"(1-X)P"—-1€el,
= X"(1-X)°~-1€L,n(0x)
<= n € ord(¢)Z

Hence, as we know, the factors of X" — 1 are all the
irreducible polynomials of order dividing n.




Difference with the factorisation of X" — 1

The situation is not so comfortable for the general case
because contrary to the 1-dimensional case, we will see that
not all lattices are of the form Lp. These sorts of lattices
could be named the effective lattices (modulo p).

So the central question is:

Central question

How to find what lattices are effective?

We will see now a reason why not all lattices are effective
through the definition of the degree of effective lattices.



The degree of L,

Let x be some root of ®, (ie x € F, is of order ¢) then
X € pr with

f = deg(®y,;) = ordy(p) = inf{q such that ¢|p? — 1}

As the degree f only depends on £ and as ¢ can be seen on
the lattice Ly (intersection with (Ox)) then the degree f
can be read on the lattice L. So we can speak of the
degree of L.



The degree of L,: geometric view

What are the other geometric implication of the degree?
As the order of x is £ then x! = 1 hence:

(a,b) € Ly = x*(1-x)P =1
=Vg, x¥*(1-x)Pxx' =1
= Vg, x*t9(1-x)P =1
=Vq, (a+ql,b) € Ly

hence Ly is ¢-periodic horizontally.

We do not know the order ¢/ of 1 — x a priori. But with the
same reasoning we will obtain that L, is ¢'-periodic
vertically.

As x and 1 — x are all in IF:, hence ¢ and ¢ divide pf — 1.

So globally the lattice L, is pf — 1-periodic.



Consequence: not all lattices are effective

As said before not all lattices verify this property. If we take

vi = ( é > for the first vector basis for L, the

a

b

pf — 1-periodicity constrains v, = ) to verify b|pf —1
which is not the case for all lattices.

Example

With p = 3. Consider the lattice L generates by the vectors

Vi = ( 3 ) and v» = ( g ) The degree associated to

the order k = 4 is f = 2 because 4|p?> — 1 and 4{p — 1.
But 31 p? — 1.
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Find lattices of given order o

How to find all the lattice of a given order o7
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We have seen that L, N (Ox) = ord(x)Z and the pf — 1
periodicity: Let's understand by and a.



Step 1: The minimal ordinate - Definition

We want to find what lattices are effective and more
precisely, given an order o € N, find all the lattices Ly
where ord(x) = o ie all effective lattices L such that
LN (Ox) = oZ.
Letv1:<8>andv2:(;o
is positive minimal. They will be a basis for L.

In this section we will obtain the number by which could be
name the minimal ordinate.

be vector of L, with by




Step 1: The minimal ordinate - To the formula

m For example if o = pf — 1 ie L = L with x primitive.
Then here by = 1 because we can find the number a

1
such that x?(1 — x) =1 < x? = > (because x
— X

is primitive).
m In general for an order o|p” — 1 we have G, = (x) is
equal to K, = {y € (Fr)*|y° = 1}. The number b is

1 b
the smallest number such that <1> € Gy ie such

that (1 — x)? € G, ie such that (1 — x)®° = 1 ie such
that ord(1 — x)|bo



Step 1: The minimal ordinate - The formula

We've seen, with o' = ord(1 — x) that
bo = inf{b such that o’ | bo}

as a result

Formula for by

The minimal positive ordinate for a effective lattice of order

ois
lem(o, o) o'
bo p— =
o gcd(o, o)

Step 1: the minil ate pf —1

ord(1 —z) §o




Step 1: The minimal ordinate - Consequences

As a result

m If ord(1 — x)|ord(x) ie o’|o (for example if x is primitive ie
ord(x) = p’ — 1) then lem(o, 0') = o so that
bO _ lcm(o,o/) —9°_1.

o o

m If o’ and o are coprime then lem(o, 0’) = 00’ so that
’
by = % = 0’ and a = 0 (because < g, ) is on the

lattice): it's a rectangular lattice.
Resuming,

Conclusion

The minimum ordinate by of an effective lattice L, can be calculated

directly from ord(x) and ord(1 — x) ie from horizontal and vertical
order of L.




Digress: the order of 1 — x

What can wee tell about the order of 1 — x?

First observation

The order of 1 — x depends only of the minimal polynomial
of x. More precisely: it is the order of ®,(1 — X)

Consequence

The orders of x and 1 — x have the same degree.

For example it is not possible in F3 to have ord(x) = 4 and
ord(1 — x) = 2 because the order of 4 if 2 (4|32 — 1) but
the order of 2 is 1 (2|3 — 1).



Note on ord(x) and ord(1 — x)

Second observation

The order of 1 — x doesn't only depend of ord(x).

For example: in F3

m With ¢3,1 = X2 — X — 1 we have ¢’8,1(1 — X) =...= ¢3,1(X)
so that for any root x of ®g; we have ord(x) = ord(1 — x) = 8.
m With &g, = X? + X — 1 we have ®go(1 — X) = ... = ®4(X) so

that here ord(x) = 8 but ord(1 — x) = 4.

Digress: the order of 1 — x

hN W s w e N ®
.
.
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Lg1=Lx2_x_1 Lgr = Lx2yx_1



Step 2: abscissa of minimum ordinate vector

Given an effective lattice L,

: . 0
ord(l - ) ¢ ¢f we have an unique basis v; = < 0 )

Vo = ( bao > with by the minimal

- o
b= o T

; ordinate of the lattice and 0 < a < o.
—ﬂ) We have seen how to find bg
' from o = ord(x) and o’ = ord(1 — x)

lem(o, o) o

b = =
0 o’ ged(o, o)

The question is now: how to find a?



Step 2: miscellaneous observations

m First observation: we can reasonate on L;_, (symetric of L) to
show that the minimal abscissa ap is

o o
0= ged(o, 0')
As a result a is a multiple of 2.

m Second observation: as x’(1 — x)? —1=0e
X?(1— X)% —1=0in Fy = F,[X]/(6(X)) (where we note ¢
for the minimum polynomial of x) as deg(¢) = f and
B|X*(1 = X)) —1then f < a+ bysoa>f— b

m Third observation: as x° = 1 then we can get a < o

: Basic constrains on a

The number a is a multiple of Wz’o,) and f — bp < a< o.




Step 2: last observation

Last observation observation: contrarily to by, we can't
calculate a directly from o and o’ as the following lattices
in [F3 show:

Step 2: the
minimum o

12385678 09101112131415161718192021 22324252 12345678 0101112131415161718192021 223242526

Ly = Lis_yoqq Logo = Lys_yt1



Step 2: let's set the frame

A\ Change of letter: the lattices of order o are lattices of
the form L, where z € Ipr where f is the degree of the
minimal polynomial of z.

Let F,r = Fp[X]/(P) where P is a primitive irreducible
polynomial ie x = X mod P generates the cyclic group
IF:,.

In other words the map o — x® gives an isomorphism
Lpi 1 = Fr.

Its inverse will be noted log, : F:f 5 Lipf_1-



Step 2: switching to Z,r_4

We can now traduce the problem in Z,¢_,: if z = x“,

22(1-2)>=1 <= alog,(z) + blog,(1 —z) =0mod p — 1
< aa+blog (1—x*)=0 mod p’ —1

Here the number b = by being known, the only unknown is a.

To solve
Find a in Z,r_; such that aa + bg log, (1 — x*) =0



Step 2: the key function v

A remark: we see here that all depend on the map
a— o =P(a) = log, (1 — x*)

This map is the traduction of z+— 1 —z in F;f = ZLpr_1:

prfl L) prfl

| |

F*, —— s F*,
p P



Step 2: solving the problem in Z,r_;

Returning to our problem: find a € Zr_

22(1-z)* =1 < alog,(z) + by log,(1 —2z) =0
< aa+ bylog, (1 —x*)=0
— aa+ by(a)=0 mod pf —1

Finding a is in fact equivalent to solve a Bezout equation of
unknown a and g:

ao + Q(Pf —1) = —bop(a)

Hence the map v permits to abstract us from the field
structure (it put it in a black box) and stay in the cyclic
group Z,r_; where the equation X7(1 — X)P =1is not
else but a Bezout equation.



Algorithm to find all lattice of order o

Calculate the degree f of o: f = ord,(p)

Find all elements of order o in Z,r_; (to be precise we

must find a list a elements not conjugate in ]pr)
For each element « of the list, calculate o/ = ¢(«).
Calculate o' = ord(a/) and by = 2o
Find with Bezout the smallest positive a such that

/

ac+q(p" — 1) = —boo’

Algorithm to find all lattice of



Factorisation with
the lattices

Section 5

Factorisation with the lattices

We have found all the lattices of given order o, so all the
lattices of given degree f by considering all order of given
degree f.

This gives tables of all possible lattices.

We will see now how uses theses tables to factor " by hand”
the polynomials X“(1 — X)¥ — 1.




Factorisation with lattices: using the table

m Given p,, = X"(1 — X)" — 1, we know that the degree of
factors of (i, is less than u + v so that its order must
divide a pf — 1 with f < u+ v:

a priori we must have the database of all lattices of orders
dividing the pf —1forf <u-+v.

(We will see that we can a little reduce this table but it will
stay big)

m For each possible f < u+ v and for each effective lattice L
of degree f we must check if (u,v) € L.

m Remark: we can easily show p,,, has factors with power
only if (u+ v)“tV = u“v¥ in Fp, and in this case there is a
square linera factor X — —*—. We can so easily count the
total degree of the factors and know when 1, , is totally
factorised without always go through f = u+ v.

Using the table



Presentation of the tables

For each degree f we give a table

a0 1

1 ((o,O),(a, bO))
((2',0), (', bp))

bo

The table needn't contain all ag and by for a given (u, v)
. : o a
because for (u, v) to be in the lattice Z ( 0 ) +7Z ( b )
0
we must have by|v and for symetric reason ap|u.
A remark: our table above do not mention the irreducible
factor. We could track this in the table by computing the
minimal polynomials, but we are mainly interested in the
repartition of degrees and orders.



Verify the belonging of a lattice

For each (ag, bp) such that ag|u and bg|v we have to verify
if (u,v) is in on of the lattice of the cell.

The following figure show that it is in a given lattice
((0,0), (a, bo)) if and only if o[ -a — wu.




An example

We want modulo 3 to factor the polynomial
H23 = X2(1 — X)3 —1.

We first verify if (u+ v)“"" = u“v" to know if there is
ramification: no, because here vV = 0.

We consider first the degre 1 factors given by the following

1 (1)-(5)=(6)#(5)2

1] ((20), 1 1)




An example: degree 2

Then for the degree 2:

1 2

0), (5, 1)) | ((8 0), (6, 1))
0), (3, 2))

((8,
((4,

There are two lattices to consider:
m Lattice ((8,0),(5,1))

3(i><><>()

m Lattice ((8,0),(6,1)):

(1) (2> ( )<(¢)?

m We do not consider the lattice ((4,0),(3,2)) because
here bp =213



An example: degree 3

As we found a degree 2 factor there is only one degree 3
factor left to find. The following table show the possible
degree 3 effective lattices with ag and by lower than 10.

1 2
((13,0), (8, 1))

((13,0), (5, 1)) | (26, 0), (10, 1))
((26,0), (9, 1)) | ((26,0), (2, 1))
((26, 0), (3, 1))
(( )
(« )

13, 0), (1, 2
13, 0), (8, 2

N

m Lattice ((13,0),(8,1)):
(1) (5)= (%) (%)
m Lattice ((13,0),(5,1)):
:)=(7)

(1) (5)-(



An example: conclusion

Conclusion: the polynomial 23 = X?(1 — X)3 — 1 has two
factors, one factor of degree 2 and order 8, and a factor of
degree 3 and order 13.
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