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A century-long debate on bodily states and emotions persists. While the involvement of
bodily activity in emotion physiology is widely recognized, the specificity and causal
role of such activity related to brain dynamics has not yet been demonstrated. We
hypothesize that the peripheral neural control on cardiovascular activity prompts and
sustains brain dynamics during an emotional experience, so these afferent inputs are
processed by the brain by triggering a concurrent efferent information transfer to the
body. To this end, we investigated the functional brain–heart interplay under emotion
elicitation in publicly available data from 62 healthy subjects using a computational
model based on synthetic data generation of electroencephalography and electrocardiog-
raphy signals. Our findings show that sympathovagal activity plays a leading and causal
role in initiating the emotional response, in which ascending modulations from vagal
activity precede neural dynamics and correlate to the reported level of arousal. The sub-
sequent dynamic interplay observed between the central and autonomic nervous sys-
tems sustains the processing of emotional arousal. These findings should be particularly
revealing for the psychophysiology and neuroscience of emotions.

emotion j heart-rate variability j EEG j brain–heart interplay j causal theory

“What Is an Emotion?” by William James (1), published more than a century ago,
started the scientific debate on the nature of emotions. However, a shared and defini-
tive theory of emotions is not in place yet, and the very definition of emotions and
their nature is still a matter of debate. While more “classical” theories point to emo-
tions as “the functional states of the brain that provide causal explanations of certain
complex behaviors—like evading a predator or attacking prey” (2), other theories sug-
gest how they are constructions of the world, not reactions to it (3). Namely, emotions
are internal states constructed on the basis of previous experiences as predictive schemes
to react to external stimuli.
The role of bodily activity in emotions is often questioned. Despite the vast litera-

ture showing bodily correlates with emotions, a long-lasting debate about the relation-
ship between bodily states and emotions persists (4). For instance, a feeling is defined
as the subjective metarepresentation and labeling of physiological changes (such as an
increase in heart rate, the increase of blood pressure, or changes in peristalsis) (5) that
are strictly related to the body state on the one hand and to emotions on the other. To
this extent, emotions are complex psychological phenomena in which feelings are inter-
preted and labeled. In a particular psychopathological condition known as alexithymia,
individuals experience difficulties in experiencing and understanding emotions to vari-
ous degrees (6). Indeed, some of these patients can perceive the physical changes con-
nected to a feeling but are unable to label it as emotion, so that emotional experience is
described only as its physical counterpart [e.g., described an experience as “I have my
heart beating too fast” instead of “I’m fearful” (7)]. From a biological point of view the
way in which physical changes become feelings and emotions is based on the interplay
between the central and the autonomic nervous systems.
The central nervous system (CNS) communicates with the autonomic nervous sys-

tem (ANS) through interoceptive neural circuits that contribute to physiological func-
tions beyond homeostatic control, from the emotional experience and the genesis of
feelings (8) to decision making (9, 10). The debate about the role of the ANS in emo-
tions can be condensed into two views: specificity or causation (4). The specificity view
is related to the James–Lange theory, which states that bodily responses precede emo-
tions’ central processing, meaning that bodily states would be a response to the envi-
ronment, followed by an interpretation carried out by the CNS that would result in
the feeling felt. However, causation theories represent an updated view of the
James–Lange theory, suggesting that peripheral changes influence the conscious
emotional experience; from a biological point of view this may reflect the fact that
autonomic nervous signals from the body do influence perceptual activity in the brain
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(11, 12). In this regard, subjective perception may be influ-
enced or shaped by ascending communication from visceral
inputs to the brain (13–15).
Functional models of CNS and ANS interplay have

described bidirectional dynamics in emotions (16–18). In par-
ticular, the functional brain–heart interplay (BHI) involves
brain structures that comprise the central autonomic network
(CAN), which has been described as being in charge of auto-
nomic control (19, 20). Moreover, the default mode network
(DMN) has been found to be involved in autonomic control
(21) and tasks of self-related cognition and interoception (22,
23), suggesting that the DMN participates in both ascending
and descending communications with the heart. Finally, the
constructed emotion theory suggests how DMN together with
other intrinsic networks is crucial in the genesis of emotion and
emotional experience (3).
Psychophysiological studies have uncovered several correlates

of different autonomic signals in the brain during emotional
experiences (24–27). To understand these correlations and the
functional interactions between the heart and brain, various sig-
nal processing methods have been proposed to investigate func-
tional BHI through noninvasive recordings (28). The study of
emotions using these methods comprises the analysis of
heartbeat-evoked potentials (29), nonlinear couplings (30), and
information transfer modeling (31). However, the causative
role of bodily inputs remains unknown (4) and, more specifi-
cally, the temporal and causal links between cortical and
peripheral neural dynamics in both ascending and descending
directions, i.e., from the brain to the body and from the body
to the brain, are still to be clarified.
In this study, we take a step forward in answering these sci-

entific questions and investigate whether peripheral neural
dynamics play a causal role in the genesis of emotions. We
applied a mathematical model of functional BHI based on syn-
thetic data generation (SDG) (32), estimating the directionality
of the functional interplay using simultaneous electroencepha-
lography (EEG) and electrocardiography (ECG) recordings
gathered from healthy subjects undergoing emotion elicitations
with video clips, the publicly available DEAP and MAHNOB
datasets (33, 34). ECG series were analyzed to derive heart-rate
variability (HRV) series, which result from the concurrent activity
of the sympathetic and parasympathetic (vagal) branches of the
ANS acting to regulate the heartbeat. We hypothesize that, from a
neurobiological point of view, feelings and subsequent emotional
experiences arise from the mutual interplay between brain and
body, particularly in which the CNS integrates the afferent ANS
information outflow, namely from-heart-to-brain interplay, which
actually triggers a cascade of cortical neural activations that, in
turn, modulate directed neural control onto the heart, namely
from brain-to-heart interplay.

Materials and Methods

Dataset Description. This study comprised the analysis of male and female
healthy human volunteers from two publicly available datasets undergoing
video stimulations with affective content and physiological signals acquisition.
Dataset I. The DEAP dataset for emotion analysis (33) is available at http://www.
eecs.qmul.ac.uk/mmv/datasets/deap/. The dataset consisted of 32 subjects who
underwent video visualizations. Data were collected at 512 Hz using 32-channel
EEG and three-lead ECG. Additional physiological signals were not considered in
this study. Data from all subjects were used (age range, 19 to 27 y; median,
27 y; 16 females).

The dataset consisted of 40 video trials from music videos (SI Appendix,
Fig. S1). Videos had a duration of 60 s and were presented after an initial resting

period of 120 s. Trials have a pad of 5 s at the beginning and 3 s at the end. In
this study, the trials were compared to the average initial 120 s rest period.
Dataset II. The MAHNOB–HCI dataset of emotion elicitation (34) is available at
https://mahnob-db.eu/hci-tagging/. The dataset consisted of 30 subjects who
underwent video visualizations. Data were collected at 256 Hz using 32-channel
EEG and three-lead ECG. Additional physiological signals were not considered in
this study. A total of 27 subjects participated in the study (age range, 19 to 40 y;
median, 26 y; 15 females). Data from individual trials involved a different num-
ber of subjects, which ranged between 25 and 27, either because physiological
data were not available at the moment (accessed 7 May 2020) or the quality of
their ECG was not sufficient to properly identify R-peaks.

The dataset consists of 20 video trials from movies (SI Appendix, Fig. S1). Vid-
eos had a duration of 35 to 117 s and were presented between neutral videos
of ∼20-s duration. Trials had a pad of 30 s at the beginning and end. In this
study, the trials were compared to the average 30-s rest period before each trial.

Subjective ratings of the emotional experience in the two datasets rely on the
circumplex model of affect, which considers a two-dimensional approach to clas-
sify emotions: valence related to pleasantness and arousal related to intensity. In
this view, emotions can be determined by a linear combination of these two
dimensions. We subdivided the trials of the datasets into three groups of emo-
tions, based on group median valence and arousal from the self-assessment
scores (SI Appendix, Tables S2–S5): pleasant (high valence and high arousal),
unpleasant (low valence and high arousal), and low arousal unrelated to valence.
For both datasets, the thresholds to define valence and arousal levels were
selected independently for the low vs. medium vs. high levels comparison
(SI Appendix, Table S1A) and the low vs. high levels comparison (SI Appendix,
Table S1B).

EEG Processing. The aim of the EEG preprocessing was to obtain a clean and
artifact-free EEG to consecutively compute the EEG spectrogram. The entire pro-
cess involves frequency filtering, large artifact removal, eye movements, cardiac-
field artifact removal, and interpolation of contaminated electrodes. The process
was performed using MATLAB R2018b (MathWorks) and Fieldtrip Toolbox (35).
EEG data were bandpass-filtered with a Butterworth filter of order 4, between
0.5 and 45 Hz. Large artifacts were removed using wavelet-enhanced indepen-
dent component analysis (Wavelet-ICA) (36), which were identified using auto-
mated thresholding over the independent component and multiplied by 50 to
remove only very large artifacts. EEG data were reconstructed, and ICA was rerun
to identify eye movements and cardiac-field artifacts from the EEG data. The pro-
cess involved one lead from the ECG as an additional input in the ICA to ease
the process of finding cardiac artifacts. Once the ICA components with eye move-
ments and cardiac artifacts were visually identified, they were set to zero to
reconstruct the EEG series. Individual electrodes were examined under two crite-
ria in the case of noise remnants in the EEG data. Electrodes were marked as
contaminated if their area under the curve exceeded three SDs of the mean of
all electrodes. The remaining electrodes were compared with their weighted-by-
distance-correlation neighbors using the standard Fieldtrip neighbor’s definition
for a 32-electrode Biosemi system. If a channel resulted in a weighted-by-distance
correlation coefficient of less than 0.5, it was considered contaminated. A maxi-
mum of three electrodes were discarded per recording by the first criterion, and
a maximum of six altogether using the two criteria. After analyzing the EEG elec-
trodes under the second criterion, more than six electrodes were marked as
contaminated; only the electrodes with lower correlation coefficients with the
neighbors were discarded until only six electrodes were discarded. The contami-
nated electrodes were replaced by the neighbor’s interpolation, as implemented
in Fieldtrip. Electrodes were rereferenced offline using a common average (28).

The EEG spectrogram was computed using a short-time Fourier transform
with a Hanning taper. The calculations were performed with a sliding time win-
dow of 2 s with a 50% overlap, resulting in a spectrogram resolution of 1 s and
0.5 Hz. Successively, time series were integrated within five frequency bands:
delta (δ; 0 to 4 Hz), theta (θ; 4 to 8 Hz), alpha (α; 8 to 12 Hz), beta (β; 12 to
30 Hz), and gamma (γ; 30 to 45 Hz).

ECG Processing. The goal of the ECG preprocessing was to obtain R-peak
timing occurrences and consecutively compute low- and high-frequency HRV
components. The whole process involves frequency filtering, R-peak detection,
correction of misdetections, and determination of whether the recording is of
optimal quality to be considered in the study. ECG data were bandpass-filtered
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using a Butterworth filter of order 4, between 0.5 and 45 Hz. Heartbeats from
QRS waves were identified in an automated process based on a template-based
method for detecting R-peaks (28). Misdetections were corrected first by visual
inspection of detected peaks and the respective interbeat interval histogram and
then automatically using a point-process algorithm (37). Recordings presenting
segments with unintelligible R-peaks were disqualified from the analysis.

The HRV series were studied in the low-frequency (LF: 0.04 to 0.15 Hz) and
high-frequency (HF: 0.15 to 0.4 Hz) ranges to quantify the sympathovagal and
parasympathetic activity from the ANS, respectively. Once the heartbeats were
detected from the ECG, the HRV series were constructed as the interbeat interval
duration time course. Consecutively, the HRV series were evenly resampled
at 4 Hz using spline interpolation. The HRV power was computed using a
smoothed pseudo-Wigner–Ville distribution (38). The pseudo-Wigner–Ville algo-
rithm consists of a two-dimensional Fourier transform with an ambiguity function
kernel to perform two-dimensional filtering. The ambiguity function comprises
ellipses whose eccentricities depend on the parameters ν0 and τ0, setting the
filtering degrees of the time and frequency domains, respectively, and an addi-
tional parameter λ was set to control the frequency filter roll-off and kernel tail
size (38). The following parameters were considered in this study: v0 = 0.03,
τ0 = 0.06, and λ = 0.3 (32, 38).

Computation of Directional, Functional BHI. Functional BHI was assessed
using the SDG model (32), whose software implementation is publicly available
at https://github.com/CatramboneVincenzo/Brain-Heart-Interaction-Indexes. The
model provides a time course of the estimated coupling coefficients between
the different heart and brain components studied separately for both possible
modulation directions.
Functional interplay from the brain to the heart. This was quantified through
a model able to generate synthetic heartbeat intervals based on an integral
pulse frequency modulation model, which is parameterized with Poincar�e plot
features (39). The synthetic heartbeats were modeled as Dirac functions δ(t), gen-
erating an impulse at the timings of heartbeat occurrences tk , as presented in
Eq. 1. Heartbeat generation is triggered by the integral of a reference heart rate
μHR and a modulation function mðtÞ, as shown in Eq. 2, where a new R-peak is
generated when the integral function reaches a threshold value of 1.

xðtÞ ¼ ∑
N

k ¼ 1
δðt � tkÞ [1]

1 ¼ ∫
tkþ1

tk

½ μHR þ mðtÞ� dt [2]

The modulation function mðtÞ is represented as a summation of two oscillators
on behalf of the sympathetic and parasympathetic autonomic outflows, as pre-
sented in Eq. 3. The oscillators are centered at the frequencies ωs and ωp, with
amplitudes defined by CS and CP indicating time-varying coupling constants,
representing the sympathetic and parasympathetic activities, respectively. The
coupling constants are defined in Eqs. 4 and 5, where the parameters L and W
are the length and width of the Poincar�e plot (39) and γ ¼ sinðωp=2μHRÞ �
sinðωs=2μHRÞ.

mðtÞ ¼ CSðtÞ � sinðωs tÞ þ CPðtÞ � sinðωp tÞ [3]

�
CS
CP

�
¼ 1

γ

sinðωp = 2μHRÞ ωs μHR
4 sinðωs = 2μHRÞ

�
ffiffiffi
2

p
ωs μHR

8 sinðωs = 2μHRÞ
�sinðωs = 2μHRÞ ωp μHR

4 sinðωp = 2μHRÞ

ffiffiffi
2

p
ωp μHR

8 sinðωp = 2μHRÞ

2
6664

3
7775
�
L
W

�
[4]

The model considers the interaction from the CNS as the ratio between the cou-
pling constants (i.e., CS and CP) and the EEG power in the previous time window
Powerfðt� 1Þ at a defined frequency band f (i.e., δ, θ, α, β, and γ). Therefore,
the BHI coefficients SDGbrainf !LF and SDGbrainf !�HF are defined by Eqs. 5 and
6, respectively.

SDGbrain!LFðtÞ ¼ CSðtÞ = Powerf ðt� 1Þ [5]
SDGbrain!HFðtÞ ¼ CPðtÞ = Powerf ðt� 1Þ [6]

Functional interplay from the heart to the brain. The functional interplay
from the heart to the brain is quantified through a model based on the genera-
tion of synthetic EEG series using an adaptive Markov process (40), as shown in

Eq. 7. The model estimates the modulations to the brain expressed by the coeffi-
cient Ψf using least squares in an exogenous autoregressive process, as shown
in Eq. 8, where f is the main frequency in a defined frequency band, θf is the
phase, κf is a constant, and εf is a Gaussian white noise term.

EEGðtÞ ¼ ∑
fn

f¼ f1

Powerf ðtÞ � sinðωs tþ θf Þ [7]

Powerf ðtÞ ¼ κf � Powerf ðt� 1Þ þ Ψf ðt� 1Þ þ εf [8]
Therefore, the Markovian neural activity generation within a specific EEG channel
and frequency band uses its previous neural activity and heartbeat dynamics as
inputs for EEG data generation. The coupling coefficients SDGheart!brain can be
derived from the contribution of heartbeat dynamics HRVX (with X as LF, HF, or
their combination) and the exogenous term of the autoregressive model:

SDGX !brainðtÞ ¼ Ψf ðtÞ = HRVX ðtÞ: [9]
For this study, the model computed the coefficients using a 15-s-long time win-
dow with a 1-s step to estimate the coefficients. The central frequencies used
were ωs ¼ 2π � 0:1 rad=s and ωp ¼ 2π � 0:25 rad=s, in which 0.1 Hz
and 0.25 Hz correspond to LF and HF band central frequencies, respectively.

As a noise-control measure, we performed a simulation study aimed to assess
the aforementioned SDG model sensitivity to random input variability. In particu-
lar, we randomly selected real physiological signals comprising series of EEG
power in the θ band, series of LF and HF powers from heartbeat dynamics, and
RR series and randomly added variability through white random noise ε at
increasing variance σ. Variances were proportional to the original variances of
the series, and this proportionality coefficients ranged in ϕ ∈ [0.2 0.5 1 2 5 10].
The new series, represented as PSD1θ, PSD

1
HF , PSD

1
LF , RR

1 respectively, are mathe-
matically expressed as

PSD1θ ¼ PSD0θ þϕiσPSD0θ ε [10]

PSD1HF ¼ PSD0HF þϕiσPSD0HF
ε [11]

RR1 ¼ RR0 þϕiσRR0

10
ε: [12]

Results of the simulation study are shown in SI Appendix, Figs. S10–S13 and
indicate that the brain–heart coupling decreases in all functional directions as
the variability of additive noise increases.

EEG Correlates of Attention. In order to disentangle the role of attention pro-
cesses from the emotional experience in the investigation of functional BHI cou-
pling, we estimated two EEG-based correlates of attention. One attention marker
is based on central-right alpha power (41) that has been shown to correlate with
the subjective experience of attention as estimated through self-ratings and
pupil diameter (41). The second attention marker is based on frontal beta power
(42) and has been validated in a spatial attention task (42).

Statistical Analysis. The samples were described groupwise using the median,
and the related dispersion measures were expressed as median absolute devia-
tion. Statistical analyses included the Spearman correlation coefficient, Friedman
tests, and cluster-based permutation test. Spearman correlation was performed
groupwise over individual electrodes to determine the relationships between the
group-median brain–heart coupling coefficients and associated valence or
arousal dimensions. Spearman P values were derived using a Student’s t distri-
bution approximation. Friedman tests were performed to assess statistical
changes in the BHI coupling coefficients per EEG electrodes, on different time
windows, and considering different types of trials (pleasant, unpleasant, or neu-
tral). The significance level of the P values was corrected per the Bonferroni rule,
considering the multiple comparisons performed for the 32 EEG electrodes, with
an uncorrected statistical significance set to α = 0.05.

Cluster-based permutation tests (43) were performed over the coupling coef-
ficients between the averaged rest period and the trial of emotion elicitation in
their total duration. The comparisons were performed for LF!brain, HF!
brain, brain!LF, and brain!HF indices, where the brain part comprises 32
EEG electrodes, the time course, and the five frequency bands studied. The non-
parametric cluster-based permutation tests include a preliminary mask defini-
tion, identification of candidate clusters, and computation of cluster statistics
with Monte Carlo P value correction. The preliminary mask was computed by
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performing a paired Wilcoxon test for individual samples defined in space, time,
and frequency. If a sample obtained a P value lower than α = 0.01, the sample
was considered part of the preliminary mask. Candidate clusters were formed
first on individual timestamps and separately for each frequency band. The iden-
tification of neighbor electrodes was based on the default electrodes’ neighbor-
hood definition for a 32-electrode Biosemi system in the Fieldtrip Toolbox. A
minimum cluster size of the three electrodes was imposed. Adjacent candidate
clusters on time were wrapped if they had at least one common channel. Adja-
cent candidate clusters on frequency were wrapped if they had at least one pair
(channel, timestamp) in common. The overall minimum duration of the cluster
was set at 2 s. Cluster statistics were computed from 10,000 random partitions.
The data points defined by the cluster’s mask in the space, time, and frequency
dimensions were averaged. The samples of the two experimental conditions
(rest and emotion elicitation) were placed in a single set. Therefore, samples
from the two conditions were randomly selected, and a nonparametric Wilcoxon
test was performed over the random partition. The proportion of random parti-
tions that resulted in a lower P value than the observed one was considered as
the Monte Carlo P value. The cluster’s Monte Carlo P value was considered to be
significant at α = 0.01. The cluster statistic considered is the Wilcoxon’s Z-value
obtained from the test on the averaged data points defined by the mask, and
the resulting P value is reported as well. If more than 1, the cluster with the
highest absolute Z-value was considered.

Results

Resting State vs. Emotion Elicitation. We computed the BHI
coupling coefficients at individual EEG electrodes for all trials and
resting sessions. The output of the model was the time course of the
coupling for all combinations of brain oscillations (delta, theta,
alpha, beta, and gamma) and HRV LF and HF components. Fig. 1
shows the number of trials in the two datasets in which the heart-
to-brain or brain-to-heart interplay coefficients presented a signifi-
cant change with respect to the resting state, in accordance with a
nonparametric cluster-based permutation analysis; SI Appendix,
Figs. S3 and S4 show the scalp distribution of such significant BHI
coupling coefficients. Thirty-nine out of the 40 trials in the DEAP
dataset and 17 out of 20 trials in the MAHNOB dataset presented
a significant cluster in either the ascending or descending directions
(SI Appendix, Tables S6–S11). HF-to-brain and brain-to-HF cou-
pling coefficients were more sensitive markers of emotion elicitation
than LF-to-brain and brain-to-LF. Ascending sympathovagal activ-
ity (LF power) tends to sustain EEG oscillations in the theta, alpha,

and beta bands, while ascending vagal activity (HF power) sustains
EEG oscillations at all frequencies, with a reduced number of trials
associated with the gamma band. Such ascending HF-to-brain
interplay presented overall higher amplitude over the midline fron-
tal and occipitoparietal electrodes. In the brain-to-heart interplay,
the LF band is considerably less coupled to the brain than the HF
band, which is modulated by EEG oscillations at all frequency
bands. The descending brain-to-heart interplay presented coupling
coefficients with a lower amplitude during emotion elicitation,
especially over the central regions, at all EEG frequency bands.

Since significant changes in BHI coupling for emotion elici-
tations are associated mainly with cardiac vagal activity, for the
sake of conciseness the results presented below refer to cardiac
HF power. Further experimental results on cardiac LF power
are reported in SI Appendix.

Correlation Analysis between Emotion Self-Assessment
Scores and Directional BHI Coefficients. We explored group-
wise correlations between the BHI coupling coefficients and per-
ceived (self-reported) arousal and valence. Especially in the DEAP
dataset, we found that ascending vagal activity (HF power) modu-
lation to EEG oscillations in the delta, theta, and gamma bands
correlate with the reported arousal scores (Fig. 2A, arousal). Alter-
nately, nonsignificant and lower Spearman correlation coefficients
were associated with valence scores (Fig. 2A, valence). HF-to-delta
interplay was significantly correlated in the occipitoparietal, left-
central, and frontal electrodes. HF-to-theta was correlated in the
occipitoparietal and frontal electrodes, and HF-to-gamma over
both temporal regions. On the other hand, single-system estimates
related HF power, and EEG power in the delta, theta, and
gamma bands did not significantly correlate with perceived arousal
(SI Appendix, Fig. S5). The BHI coupling coefficients and arousal
scores were compared to two different neural correlates of atten-
tion: marker 1 based on central alpha power (41) and marker 2
based on frontal beta power (42). Fig. 2C shows that none of the
markers correlated with BHI coupling coefficients, and only
marker 2 slightly anticorrelated with the arousal scores (though in
a nonstatistically significant fashion provided a correction for
multiple comparisons). As shown in Fig. 2D, none of the two
attention markers may discern emotional valence groups as SDG
coefficients do (Wilcoxon paired test on: unpleasant vs. neutral,
P = 0.0346, Z = 2.1130; pleasant vs. unpleasant, P = 0.0004,
Z = 3.4967; pleasant vs. neutral, P < 0.0001, Z = 4.0951).

The aforementioned results suggest that subjective emotional
arousal modulates ascending functional BHI coupling whose
changes are not related to attention.

Directional BHI at Different Arousal and Valence Levels. We
investigated statistical differences between low, medium, and
high arousal and valence for the directional BHI coupling coef-
ficients. The low, medium, and high valence/arousal groups
were selected based on the group-median values from the self-
assessment scores. The trials between the low-medium and
medium-high values were not considered for further analyses to
avoid overlap between the levels of valence/arousal (SI Appendix,
Table S1A). In Fig. 3 the results of the Friedman test for HF-to-
brain and brain-to-HF are shown for the three levels of arousal.
The results indicate that in both datasets there is a relatively higher
relation to changes in arousal for ascending BHI with respect to
descending coupling coefficients, since this variability with respect
to arousal in the DEAP dataset is stronger and significant after
multiple comparison corrections.

In Fig. 4 the results of the Friedman tests for HF-to-brain and
brain-to-HF couplings are shown for the three levels of valence.

Fig. 1. Polar histograms showing the number of trials in the two datasets
(60 trials) in which the respective heart-to-brain and brain-to-heart compo-
nents showed a significant change in the cluster-based permutation analy-
sis with respect to the resting state. The radial axis indicates the trials’
count, and the angle axis indicates the EEG frequency band. (Left) Heart-to-
brain interplay and (Right) brain-to-heart interplay (see SI Appendix, Fig. S2
for polar histograms of pleasant, unpleasant, and neutral trials).
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Fig. 2. Correlation analysis between ascending BHI coupling coefficients and self-reported arousal and neural correlates of attention. Each point corre-
sponds to the group-median calculated per trial. Individual values were previously normalized (max-min norm) within all trials for each subject. (A) Correla-
tion between trials’ median arousal and HF-to-brain median coefficients. Colormaps indicate the magnitude of correlation coefficients, and thick electrodes
indicate significant correlation corrected for multiple comparisons among electrodes (P < 0.05/32). (B) Scatter plot of perceived arousal and HF!δ, HF!θ,
and HF!γ coupling coefficients in the electrodes where a significant correlation was found. (C) Scatter plot of attention markers and perceived arousal and
HF!θ coupling coefficient. Attention marker 1 is computed from EEG alpha power in channel C4 and CP2 (41). Attention marker 2 is computed from EEG
beta power in frontal electrodes (42). (D) Group-median ± median absolute deviation (MAD) time course from the trial video onset of the attention marker 1
(Left), attention marker 2 (Middle), and HF!θ interplay (Right), separated for emotional valence. The HF!θ time course corresponds to the average among
all electrodes with a significant correlation with arousal, as shown in A.
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The results indicate that there is no strong relation to the variabil-
ity of valence as shown for arousal in Fig. 3. In fact, we can observe
only a small significant cluster in HF-to-theta in the DEAP dataset
and another in HF-to-beta in the MAHNOB dataset.
Qualitatively, the aforementioned results indicate that

changes in the reported arousal are associated with a stronger
modulation of BHI, as expressed in the SDG coupling coeffi-
cients, rather than changes in the reported valence, especially in
the functional modulation from the heart to the brain.
To further investigate the BHI modulation occurring along the

valence and arousal dimensions, we performed a statistical analysis
on selected trials to compare the levels of arousal at an equal
valence, and to compare levels of valence at equal arousal. To do
so, we performed a cluster permutation analysis in the spatial
dimension. In the MAHNOB dataset the coupling coefficients
do not discriminate between low and high arousal or valence. In
the DEAP dataset, the results indicate that the ascending HF-to-
brain coupling repeatedly showed differences between levels of
arousal, for either a low or high valence, whereas the levels of
valence do not show significant differences as shown in Fig. 5.

Temporal Dynamics of the Directional Brain–Heart Coeffi-
cients under Emotion Elicitation. We further investigated the
overall variability of the BHI coupling coefficients over time. To
this end, we performed groupwise Friedman tests to compare the
resting state and emotion elicitation at different latencies, among
all-trials-median. These results indicate that significant changes
occurred among the conditions especially in the ascending direction
in the delta, theta, alpha, beta, and gamma bands, with a strong
agreement in HF-to-theta in midline parieto-occipital scalp region
in the DEAP and MAHNOB datasets. The descending interplay
presented a major variability on time over the HF-to-theta and
HF-to-alpha on central scalp regions (SI Appendix, Fig. S6).
In Fig. 6 the group-medians time course of all trials average

are aligned in the trial offset and separated for both datasets.
The displayed BHI components correspond to the SDG coeffi-
cients presenting a strong variability on time in ascending and
descending interplay, as measured with Friedman test (SI
Appendix, Fig. S6). HF-to-theta interplay indicates an overall

increase in the SDG coefficient amplitudes during the video
visualization, whereas theta-to-HF in the opposite direction
presents a decay toward the video end (to see other examples,
see SI Appendix, Fig. S15).

The BHI temporal dynamics show that the physiological
processes involved in emotion elicitation cause changes in both
heart-to-brain and brain-to-heart interplay, with an anticorrelated
behavior during the video visualization period. Major differences
were found in the interval 20 to 30 s with respect to the trial onset
in both datasets, indicating that after 20 s there is an increase in
the variability of the SDG coefficients (SI Appendix, Fig. S7).

Fig. 7 shows an overall representation of the DEAP dataset,
in which the trials’ counts (separated as unpleasant, pleasant,
and neutral) presented a significant change in relation to the
resting state at different latencies in the cluster-based permuta-
tion analysis. It should be noted that it was not possible to draw
an analogous figure for the MAHNOB dataset because different
videos had different durations. It can be observed that the
20- to 30-s latency presents major differences between unpleas-
ant, pleasant, and neutral trials, as reported above. We can also
observe that the pleasant and unpleasant emotions present more
trials with a significant change overall when compared to the
neutral trials. Importantly, heart-to-brain interplay tends to
occur earlier compared to the brain-to-heart interplay. However,
brain-to-heart interplay tends to last longer toward the end of
the video visualization. Although cardiac vagal activity sustains
the BHI coupling throughout the elicitation, LF power as mod-
ulated by overlapped sympathetic-vagal activity is involved espe-
cially in the ascending pathway, as observed mainly in pleasant
and unpleasant trials in later stages of video clip visualizations.

Finally, here we show two examples to better illustrate the
brain-heart dynamics contrasting high-arousing, pleasant and
unpleasant emotional elicitation (to visualize a single subject
example see SI Appendix, Fig. S8). Fig. 6 shows the evolution
of SDG coefficients at different latencies (to visualize an exem-
plary case for the SDG time courses for one subject see SI
Appendix). In SI Appendix, Fig. S16A, we observed an example
taken from the DEAP dataset corresponding to an extract of
the music video “The One I Once Was,” by the Norwegian

Fig. 3. Scalp distribution of the Friedman test statistics for the HF-to-brain
and brain-to-HF comparison between three levels of arousal. Trials for
each group of arousals were averaged separately for the two datasets. Col-
ormaps indicate the amplitudes of the respective Friedman statistic and
thick electrodes indicate significance (P < 0.05/32).

Fig. 4. Scalp distribution of the Friedman test statistics for the HF-to-brain
and brain-to-HF comparison between three levels of valence. Trials for
each group of arousals were averaged separately for the two datasets. Col-
ormaps indicate the amplitudes of the respective Friedman statistic and
thick electrodes indicate significance (P < 0.05/32).
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band Mortemia. We placed this music video in the group of
unpleasant trials based on the valence and arousal self-
assessment performed by the subjects in this study. The video
starts with a close-up of an executioner where activation is
immediately observed on the parietal scalp region in the HF-
to-brain interplay, followed by an overall scalp change from the
brain-to-HF interplay. The video continues with the execution
of a man, in which the whole process causes an overall activa-
tion of the scalp in the HF-to-brain interplay, still focused on
parietal electrodes. Around the 30th second, the man is executed,
and a higher coupling appears on frontal electrodes in the HF-to-
brain interplay, an overall scalp activation of lower amplitude
appears in the LF-to-brain interplay, and the brain-to-HF inter-
play is maintained with a stronger coupling on central electrodes.
The video is followed by a deceased man accompanied by two

nuns and a cemetery scene, where a decrease in the coupling
coefficients is observed with the HF-to-brain, which lasts longer.

In SI Appendix, Fig. S16B, we observed an example taken from
the MAHNOB dataset corresponding to an extract of the 2003
film Love Actually, a romantic comedy by Richard Curtis. We
placed this trial in the group of pleasant trials based on valence and
arousal self-assessments performed by the subjects of this study.
The video starts with a priest finishing a wedding ceremony; when
the applause and instrumental wedding music begin, the man
kisses the bride, and activation on the parietal region in the HF-to-
brain interplay is observed. LF-to-brain interplay appears in the left
frontal scalp region when a short dialogue occurs, followed by the
start of choral music and progressively appearing musicians from
random positions inside the church, playing a cover version of “All
You Need Is Love” by The Beatles. During the music, strong

Fig. 5. Comparison of HF-to-brain interplay
between emotion groups: pleasant, unpleas-
ant, and neutral from the DEAP dataset. The
comparison corresponds to the average in
time and average among the selected trials
with equal arousal or valence (SI Appendix,
Table S1B). The comparisons were performed
per channel and frequency band separately.
The statistical comparison corresponds to one-
dimensional cluster permutation analysis with
alpha level for the preliminary mask set at P <
0.05. Thick electrodes indicate clustered effects
at P < 0.05 after 10,000 random permutations.
Scalp topographies indicate the Z-value obtained
from the pairwise Wilcoxon test.

Fig. 6. Overall changes in the BHI during
emotion elicitation in the HF-to-theta and
theta-to-HF coefficients. Group-median ± MAD
time course among subjects. All trials were
averaged per each subject before computing
the group medians. The trials were combined
with respect to the video offset.
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activations in the frontal and parietal electrodes are observed in the
HF-to-brain interplay, finishing with a guitar solo in which a
brain-to-HF interplay is observed as well.
Results in SI Appendix, Fig. S16 are replicated in SI Appendix,

Fig. S9 by considering different length of resting state.
At the end of this section, we remark that ascending BHI

coupling (heart-to-brain) is the first in coming with respect to the
descending (brain-to-heart) functional information exchange.

Discussion and Conclusion

This study aimed to tackle the question, What is the role of
cardiac ANS activity in emotional processing? The ANS activ-
ity, controlling heartbeats and other visceral activities, has been
widely associated with emotional processing (44) leading to a
century-long debate on the role of the ANS in feelings (4).
Recent studies have uncovered that ascending inputs from the

Fig. 7. BHI time course trial visualization. The scalp topographies displayed correspond to HF-to-brain, LF-to-brain, brain-to-HF, and brain-to-LF. Colormaps
indicate the number of videos in which the 5-s group-median SDG coefficients during the emotion elicitation have been found significant compared to the
rest coupling coefficients previously subtracted per subject.
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heart are involved in essential aspects of cognition, such as sub-
jective perception, self-awareness, and consciousness (15, 45,
46). We used a mathematical modeling approach (32) to quan-
tify the directional interplay between the physiological compo-
nents gathered from the brain and the heart during emotion
elicitation. The results show that cardiac parasympathetic activ-
ity plays a causal role in the processing of emotional arousal,
sustaining both ascending and descending brain–heart interac-
tions. To the best of our knowledge, major novelties of the cur-
rent study with respect to prior state of the art are related to 1)
the uncovering of the directed functional interplay between
central and peripheral neural dynamics during an emotional
elicitation, using ad-hoc mathematical models for synchronized
EEG and ECG time series; 2) the uncovering of temporal
dynamics of cortical and cardiovascular neural control during
emotional processing in both ascending, from the heart to the
brain, and descending, from the brain to the heart, functional
directions; and 3) the experimental support for causation theo-
ries of physiological feelings.
In the frame of investigating the visceral origin of emotions,

main findings of this study suggest that ascending BHI cou-
pling initiates emotional processing and is mainly modulated
by the subjective experience of emotional arousal. Such a rela-
tionship between arousal and ascending BHI may not be
related to the attention levels, as controlled with two different
neural correlates of attention. The main interactions begin
through afferent vagal pathways (HF power) sustaining EEG
oscillations, in which the theta band was repeatedly found
related to major vagal modulations. In turn, with a later onset,
this ascending modulation actually triggers a cascade of cortical
neural activations that, in turn, modulate directed neural con-
trol onto the heart, namely from-brain-to-heart interplay. Con-
current bidirectional communication between the brain and
body occurs throughout the emotional processing at specific
timings, reaching a maximum coupling around 15 to 20 s from
the elicitation onset, involving both cardiac sympathetic and
vagal activity. Note that the simulation study reported in Mate-
rials and Methods demonstrates that nonspecific/causal changes
in the variability of a single physiological signal do not modify
per se the SDG-based estimation of functional BHI coupling,
which is modulated by concurrent dynamical, nonrandom
changes in both EEG and heartbeat series.
The observed ascending pathway of vagal activity toward

cortical brain signals uniquely suggests that emotion processing
is an integration of physiological inputs in the brain rather than
an interpretation of physiological changes. The variation of the
parasympathetic tone has been described before to be related to
processes of fluctuations in attention and emotional processing
(47). These autonomic markers have shown their capacity to cor-
relate with emotions as subjectively described in healthy subjects
(44) as well as under pathological conditions (48). The autonomic
outflow has been previously correlated to behavior in polyvagal
theory (49), describing neural circuits involved in homeostatic reg-
ulation and adaptation. Polyvagal theory describes the interaction
of sympathetic and parasympathetic nervous systems, in which the
parasympathetic branch is associated with emotion regulation
because of its behavioral correlates with reactivity, the expression
of emotion, and self-regulation skills (49). The mediating role
of the vagus nerve during emotional processing fits with the com-
munication loops observed in the BHI in our results. However,
beyond mediation, we observed that parasympathetic activity ini-
tiates emotional processing. The observed ascending pathway of
vagal activity toward the brain corroborates previous findings that
heartbeats shape brain dynamics (12, 50). Therefore, this could

imply emotions are not the result of an interpretation of periph-
eral physiological changes but rather an integration of these inputs
in the brain, from the visual, auditory, and somatosensory percep-
tion stages. Subjective emotional experiences might emerge from
the ongoing evolution of this integration process.

The causal nature of ANS activity in feelings is consistent
with physiological modeling and experimental data, as neuro-
visceral integration models indicate that neural circuits integrate
central and autonomic responses related to emotions, with
dynamic contextual adaptations (16, 21, 51). In theoretical
developments, the specific role of bodily signals in subjectivity
and consciousness has been conceived in different ways from
the causation viewpoint. The somatic marker hypothesis of
Damasio (5) affirms that the metarepresentation of bodily states
constitutes an emotional feeling, generating a gut feeling, which
influences cognitive processes. For some authors, visceral activ-
ity might provide information for the foundation of emotions
(13, 18). For others, visceral activity is considered a central fac-
tor, where the neural monitoring of ascending visceral inputs is
inherent for subjective perception, emotions, and consciousness
(15, 52).

We showed that vagal modulations to the EEG theta oscilla-
tions primarily occurred during emotion elicitation, and these
modulations were correlated with the perceived (reported)
arousal but not with valence. These results are in line with an
increasing amount of literature failing to highlight differences
between neural concomitants of positive and negative valence.
In contrast with the classical theories of emotions, studies on
autonomic (53) and central nervous system (54, 55) dynamics
failed to disentangle negative and positive valence, while spe-
cific differences in arousal were found independently of valence.
Such results can be explained within the context of the valence
general affective workspace hypothesis (56). Accordingly, valence
is neither mapped in the brain across a monotonic dimension
(from positive to negative) nor in valence-specific areas (54). On
the contrary, several brain areas related to emotional regulation
and expression seem to belong to a general workspace. In such a
workspace, the neurons’ firing indicates the presence of valence
while the context in which they fire establishes the positive or neg-
ative valence.

The groupwise arousal was related to delta and theta bands
in the frontal and occipitoparietal scalp regions as well as to the
gamma band in temporal areas. To verify whether the results
were related exclusively to the BHI, we performed the same
analysis separately for brain and heart components, confirming
that arousal changes cannot be explained by changes in cardiac
parameters or EEG power by themselves. Moreover, the investi-
gation of EEG correlates of attention through different bio-
markers demonstrated that BHI coupling coefficients may not
be related to attentional processes of the emotional elicitation.

The interactions between EEG activity and heart rate have
been described previously in machine-learning studies, showing
that the combination of these features in classifiers provides
additional information related to consciousness and emotions
(46, 57). Consistent with previous studies, BHI can describe
certain cognitive states which cannot be explained by changes
in cardiac parameters by themselves (22, 29, 58, 59). In partic-
ular, the relationship between heartbeat dynamics and theta
band was previously described in the resting state, showing that
heartbeats may induce theta synchronizations in defined brain
networks (60). In this study, we showed that the theta band is
actively modulated by vagal inputs under emotion elicitation
(61). These results support the hypothesis that the peripheral
inputs contribute to a first-person point of view for conscious/
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subjective experiences (15). However, the relationship between
the objective evaluation of psychophysiological parameters and
the subjective experience has always to be taken with extreme
caution. Furthermore, the functional BHI do not explain
entirely the variance of arousal scores but the gap between sub-
jective experience and the description of objective physiological
changes remains to be bridged.
Theta activation has been repeatedly reported in different

paradigms, such as the visualization of emotional faces (62) and
emotional content in films (63). Our results corroborate a pre-
vious report (64) in which the midline frontal theta is associ-
ated with states of high arousal and high valence, followed by
synchronization with posterior scalp areas. Previous studies
have described that changes in theta are related to the level of
arousal perceived (63, 65), although our results did not show a
relationship in the theta band per se but rather in its afferent
modulation from HF oscillations. The other EEG bands related
to arousal were delta and gamma; however, few studies have
reported such relations. The delta band has shown a potential
involvement in emotional processing (66), and the close rela-
tionship between the theta and delta bands during emotional
processing has been previously described as well (67). With
respect to the gamma band, we believe that the arousal relation
with the ascending modulations in temporal lobes could be
somehow related to previous evidence linking theta and gamma
bands, as an arousal-dependent synchronization (62).
Descending modulations were suppressed during the emotion

elicitation tasks, particularly in the HF oscillations. The observed
modulation involved a wide part of the EEG spectrum, from the
alpha to the gamma band, with the alpha range being the most
influential. The variations in brain-to-heart coefficients were stron-
ger in the central scalp regions, with a slight extension toward the
parietal and temporal areas, in contrast to the relation of alpha
oscillations in emotions reported in other studies where it is
related mainly to changes in frontal and prefrontal lobe activity
(68). Less evidence is reported about beta and gamma oscillations
in emotions; however, these higher frequencies are reported as a
synchronized or desynchronized activity with respect to alpha (69)
or theta bands (62). We could not distinguish the different types
of emotions using information from the descending pathway, as
we did not find associations with arousal or valence. However, we
found that descending modulations were decreased in most of the
trials compared to the resting state. Furthermore, descending
changes were more delayed compared to the ascending pathway.
This order of events strengthens the idea of a visceral origin of
emotions. Studies on the somatosensory experience of feelings
state that bodily sensations are felt in different body parts as a
function of the type of emotions felt (70). In fact, the experience
of others’ emotions may be closely related to the activity in the
somatosensory cortex as well (71). The specific role of the
descending pathway remains to be further investigated to deter-
mine whether it relates to bodily reexperiencing or to aspects other
than the emotion itself but rather more general aspects, such as
perception, attention, or memory (72, 73).
Several studies focused on BHI, feelings, and emotions in

different paradigms have been conducted. To date, available
evidence on BHI, feelings, and emotions describes dynamic
and nonlinear interactions (16, 27, 30, 31). Further evidence
exists in studies on heartbeat-evoked potentials; nevertheless,
there is a lack of convergence in these results (29). For instance,
some studies have tried to describe emotions by analyzing
heartbeat-evoked potentials, for instance to explain valence (74,
75). In another study, heartbeat-evoked potentials were corre-
lated with alpha power during the task with audiovisual stimuli

(76). However, as mentioned above, our results show that the
SDG model in ascending modulations relates to the specific
perceived arousal, and alpha activity is more related to the
descending pathway. It remains unclear whether BHI measured
from heartbeat-evoked potentials in healthy participants actu-
ally explains a part of valence, arousal, or other subjective aspects
involved in emotion, such as ownership, motivation, dominance,
or abnormalities in emotional processing. The most recent evi-
dence in pathological conditions suggests a relationship between
disrupted emotion recognition and heartbeat-evoked potentials,
indicating that altered interoceptive mechanisms may interfere in
priming emotions (50).

Affect (including valence and arousal) is an important com-
ponent of emotion: Since the Schachter and Singer experiment
the role of arousal in the onset of emotions was considered cen-
tral (77). In this sense, the fact that physical arousal is the
starter of the emotional reaction finds some confirmation in
our results. However, the distinction between arousal (and
affect in general) and emotions is underappreciated (2). Accord-
ing to several theoretical positions including the recent theory
of constructed emotions (3, 78), affect is a component of emo-
tions but not specific to a given emotion. Typically affect is
defined as the “basic sense of feeling, ranging from unpleasant
to pleasant (valence), and from idle to activated (arousal)” (79).
Emotions integrate affect in a more complex mental phenome-
non including, memory, other cognitive functions, and behav-
ioral responses. Therefore, our results can be related not only to
the entire emotional processing of arousal but also to affect-
related aspects of a subjective experience. This would also
explain why we were not able to differentiate different emo-
tional states through a BHI analysis. While this may represent a
limitation in the attempt to describe emotions through objective
parameters, it also poses a step forward in the attempt to disentan-
gle affect from emotion. In this regard, it is also important to note
that the present research highlights the physiological components
involved in the processing of a subjective experience. The lack of
specificity of the physiological feelings and functional BHI indi-
rectly supports that emotions correspond to predictive schemas
arising from the integration of external and internal information
that could also involve past experiences (3).

We repeatedly found two well-defined scalp regions in the
midline frontal and occipitoparietal electrodes in which ascend-
ing BHI coefficients were concisely related to affect. These
results suggest the possibility of multiple brain nodes participat-
ing in the ongoing process. Neuroimaging studies have shown
evidence of the DMN and the processing of self-relevant and
affective decisions (23), with the main nodes in the medial pre-
frontal cortex and posterior cingulate cortex. The fact that BHI
is related to the DMN, in aspects including autonomic regula-
tion (21) and interoception in self-related cognition (22), sug-
gests that it may also be involved in emotional processing. The
DMN, which is usually associated with passive states (80),
presents an activation/deactivation behavior that seems to be
related to the switch between inward mental activity and out-
ward goal-directed activity (81). How the switching activity
occurs is yet to be completely understood, but increasing evi-
dence supports that the monitoring of the peripheral neural
activity by the DMN may turn the brain to a goal and exter-
nally oriented mode in specific circumstances (81). Cardiac
outputs might contribute to such a switch since they indirectly
modulate DMN activity through projections to serotonergic
raphe nuclei and noradrenergic locus coeruleus (82). While
interoception might be mapped elsewhere in the cortex (pri-
mary and secondary sensory cortex and insula, among others)
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(14, 18), DMN might receive interoceptive information to pro-
mote its deactivation and desynchronization as a part of the
process that leads to the goal-oriented response. In this regard,
having DMN node activations as a function of the level of
arousal may imply that the higher the arousal, the higher the
system is directed from inward out. The idea that peripheral
physiological reactions trigger the DMN switch and contribute
to the start a of goal-oriented response is in line with classical
theories stating that emotions are a complex reaction to
respond to relevant external stimuli (83). It is also interesting
to note that the CAN and DMN share a part of the brain
structures, for example the medial prefrontal cortex. As a par-
tially alternative framework of interpretation, it is interesting to
note that the DMN has been also described as a network for
integration and online updating of experiences (3, 84). Indeed,
bridging the internal state with external relevant information is
expected to occur during the emotional experience.
The interplay between the CNS and ANS involves not only

the brain and heart but also other bodily signals, such as elec-
trodermal activity, breathing, gastrointestinal activity, or pupil
diameter (85). We believe that the proposed analysis can be
enriched in future work at a multisystem level. Furthermore,
even though we employed two large and publicly available data-
sets (33, 34), one may argue about how our results are bound
to the specific emotional elicitation (video presentation) and
how BHI might vary according to different emotional elicita-
tion techniques, which represent an interesting further line of
investigation. Note that resting state periods were used as a
control for some of our emotional processing study. In the
MAHNOB dataset, data analysis on neutral videos was not per-
formed because of their short duration (up to 20 s), and the
dataset does not provide continuous recordings for different
videos. This constitutes a study limitation as neutral videos
may allow for a better disentangling of emotion properties
(valence, arousal) as compared with the many differences that
exist between rest periods and videos. Moreover, results on
DEAP and MAHNOB datasets show some differences espe-
cially related to the magnitude and distribution over the scalp
of the statistical indices. Some important factors that may lead
to such differences include that the DEAP dataset is stored as a
continuous recording throughout sessions, whereas MAHNOB
recordings are separated per trial and were preprocessed inde-
pendently; the DEAP dataset has shorter intervals between
emotional trials of different length than MAHNOB, which
implies fewer recovery periods for the neurophysiological
responses. Note that our claim does not point to a specific scalp
distribution of the BHI coupling indices, but our main finding
indicates that subjective emotional arousal modulates ascending
functional BHI coupling. Concerning the timing, while the
SDG model cannot assess spontaneous neural responses in a
millisecond resolution, as heartbeat-evoked potentials do, it has
the advantage of assessing ongoing, continuous, and bidirec-
tional modulations.
The tight relationship between well-being and autonomic

function is evidenced in cases of dysfunctional BHI in psycho-
pathological conditions (86). Promising developments may lead

to a better understanding of emotional processing and bodily
states, as clinical applications involving the analysis of
brain–heart interactions have brought overall important advan-
ces (46, 87, 88). Beyond mental and neurological health, a vast
amount of evidence shows that other bodily activities actively
react as a function of ongoing brain activity, including gut
activity, endocrine responses, and inflammation (14), indicating
the importance of neural homeostasis in the human body. Our
results may be expanded to better clarify the role of the BHI in
the mutual vulnerability between mental and physical condi-
tions and thus provide a psychophysiological model of how
physical health may contribute to mental health risk factors,
and vice versa.

The use of secondary, previously released, data raises the
issue of challenges and problems with the preregistration pro-
cess and the other standard polices to ensure good research
practices. While, in a strict sense, preregistration has been
developed and widely used for primary data, the use of second-
ary data poses several difficulties with standard preregistration
as recently discussed (89, 90). While a general agreement on
the most correct approach is still lacking, a relevant suggestion
is to declare the working hypothesis in advance (90). Such
statements have been done in previous scientific peer-reviewed
publications from the authors, in which it is stated that ascend-
ing afferents to the brain play a role in shaping perception, con-
sciousness, and emotions (43, 46, 52, 61, 91). Moreover, the
use of public data and the availability of our analysis pipeline
comes with the advantage that our results can go through a
complete replication analysis. Finally, the available pipeline
could be used for future replication studies undergoing prereg-
istration or published as registered report (90).

In conclusion, we have shown experimentally how the
dynamic interplay between the central and autonomic periph-
eral nervous systems sustains emotional experiences through
specific timings and cortical areas. During emotional elicitation,
we have shown how autonomic dynamics on cardiovascular
control initiate the physiological response to emotion in the
direction of the CNS, possibly belonging to the DMN and
CAN. This activity is correlated with arousal. Our results add
new momentum to the theory of emotions, suggesting that
peripheral neural dynamics of the cardiovascular ANS may trig-
ger the emotional process at the brain level.
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