
 

 

Modeling Crash Severity and Collision 
Types Using Machine Learning 

 

Project No. 20SAUTSA36 

Lead University: University of Texas at San Antonio  

 

Final Report 

January 2022 



i 

 

Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the facts 
and the accuracy of the information presented herein. This document is disseminated in the 
interest of information exchange. The report is funded, partially or entirely, by a grant from the 
U.S. Department of Transportation’s University Transportation Centers Program. However, 
the U.S. Government assumes no liability for the contents or use thereof. 

Acknowledgements 

The authors would like to thank Transportation Consortium of South-Central States (Tran-
SET) for providing the essential platform and financial support to make this research possible. 
Also, the authors would like to thank all the Project Monitoring Committee (PMC) members 
for their time and constructive comments and recommendations for the progress of the project. 



ii 

TECHNICAL DOCUMENTATION PAGE 
1. Project No. 20SAUTSA36 2. Government Accession No. 

 

3. Recipient’s Catalog No. 

 
 

4. Title and Subtitle 5. Report Date 

January 2022 
Modeling Crash Severity and Collision Types Using Machine 
Learning  
 

6. Performing Organization Code 

7. Author(s) 

Dr. Amit Kumar, University of Texas at San Antonio (UTSA) 
Hari Krishnan Melempat Kalapurayil, UTSA 

8. Performing Organization Report No. 

 

9. Performing Organization Name and Address 

Transportation Consortium of South-Central States (Tran-SET) 

10. Work Unit No. (TRAIS) 

 
University Transportation Center for Region 6 
3319 Patrick F. Taylor Hall, Louisiana State University, Baton Rouge, 
LA 70803 

11. Contract or Grant No. 

69A3551747106 

12. Sponsoring Agency Name and Address 

United States of America 
Department of Transportation 

13. Type of Report and Period Covered 

Final Research Report  
Aug. 2020 – Jan. 2022 

Research and Innovative Technology Administration 14. Sponsoring Agency Code 

 
 

15. Supplementary Notes 

Report uploaded and accessible at Tran-SET's website (http://transet.lsu.edu/). 

16. Abstract 

Traffic safety analysis is the fundamental step for reducing economic, social, and environmental cost incurred due to 
traffic accidents. The essence of traffic safety is understanding the factors affecting crash occurrence, injury severity and 
collision type and their underlying relationships and predict-prevent future crash instances. Crash injury severity studies 
in past have utilized numerous statistical, econometric and Machine Learning (ML) and Artificial Intelligence (AI) tools 
to extract the underlying relationship between the crash causal factors and the consequent severity or collision type. The 
study aims to explore the Multi-Label Classification (MLC) tool from the domain of Artificial Intelligence (AI) for 
classification problems in the setting of traffic safety. MLC finds its application primarily in protein function, semantic 
scene, and music categorization problems. In the real world, multiple heterogenous subjective factors decide the extent 
of damage/severity of a particular crash instance. Theoretically, the traffic collision type and crash severity type can be 
correlated, and thus, it is intuitive to model them simultaneously. The ability of MLC to categorize an entity under 
analysis to more than one labels, correlated or uncorrelated, provides the approach an edge over the single-class (binary) 
or multi-class classification approach. The MLC based classification model was calibrated and tested using the historical 
crash data extracted for the state of Texas. The selection of study area was based on a link-level unsupervised principal 
component analysis-based clustering approach. Similar clustering approach was also tested at the county-level to 
understand the spatial behavior and thus transferability of the MLC approach to other key cities in the state. The 
performance of the proposed approach was tested, compared, and quantified with the conventional binary/multi-class 
classification tools used in the traffic safety domain. Inferences from the preliminary numerical analysis indicates that 
the proposed multi-label classification approach has promising performance compared to the traditional classification 
approaches, specifically found in traffic safety literatures. 

 

17. Key Words 

Crash injury severity, Machine Learning, Artificial 
Intelligence, Multi-Label Classification   

18. Distribution Statement 

No restrictions. This document is available through the 
National Technical Information Service, Springfield, VA 
22161. 

 

19. Security Classif. (of this report) 

Unclassified 

20. Security Classif. (of this page) 

Unclassified 

21. No. of Pages 

55 

22. Price 

 
Form DOT F 1700.7 (8-72) Reproduction of completed page authorized. 



iii 

 

SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3

MASS 
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 Celsius oC 

or (F-32)/1.8 

ILLUMINATION 
fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS 
lbf poundforce   4.45    newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2



iv 

TABLE OF CONTENTS 

TECHNICAL DOCUMENTATION PAGE .................................................................................. ii 

TABLE OF CONTENTS ............................................................................................................... iv  

LIST OF FIGURES ....................................................................................................................... vi  

LIST OF TABLES ........................................................................................................................ vii  

ACRONYMS, ABBREVIATIONS, AND SYMBOLS .............................................................. viii 

EXECUTIVE SUMMARY ........................................................................................................... ix  

1. INTRODUCTION ...................................................................................................................... 1  

2. OBJECTIVES ............................................................................................................................. 1  

3. LITERATURE REVIEW ........................................................................................................... 2  

3.1. Conventional ML Classification Algorithms ................................................................... 4 

3.2. Multi-label Classification ................................................................................................. 5 

3.3. MLC Strategies ................................................................................................................ 6 

3.4. Clustering Analysis Segmenting crash cluster groups ..................................................... 7 

4. METHODOLOGY ................................................................................................................... 10  

4.1. Learning Algorithms ...................................................................................................... 11 

4.1.1. Binary Relevance .................................................................................................... 11 

4.1.2. Classifier Chains ..................................................................................................... 11 

4.1.3. Multi-label k-Nearest Neighbors (ML-kNN) .......................................................... 12 

4.1.4. Evaluation Metrics .................................................................................................. 13 

4.2. Spatial Transferability .................................................................................................... 14 

4.3. Study Area and Period.................................................................................................... 16  

4.4. Data and Data Source ..................................................................................................... 18 

4.5. Model Specification ....................................................................................................... 19 

5. ANALYSIS AND FINDINGS ................................................................................................. 25  

5.1. Classification Model Performance ................................................................................. 25 

5.2. Agglomerative Hierarchical Clustering Results ............................................................. 30  

6. CONCLUSIONS....................................................................................................................... 33  

6.1. Future Direction ............................................................................................................. 33 

REFERENCES ............................................................................................................................. 34  



v 

APPENDIX A: Classification Performance Evaluation [Conventional Models] ......................... 38  

APPENDIX B: Classification Performance Evaluation [Proposed Models] ................................ 40 

APPENDIX C: Agglomerative Hierarchical Clustering ............................................................... 42  



vi 

LIST OF FIGURES 

Figure 1. Multi-Label Classification-Traffic Safety Analogy ........................................................ 2  

Figure 2. Challenges dealing with traffic safety data ..................................................................... 3  

Figure 3. Few MLC algorithms ...................................................................................................... 6  

Figure 4. Crash Events .................................................................................................................. 10  

Figure 5. MLC Performance Evaluation ....................................................................................... 13  

Figure 6. County-Level PCA Based Clustering Framework Approach ....................................... 16 

Figure 7. Population Estimate ....................................................................................................... 17  

Figure 8. Traffic exposure and average crash rates for the Texas counties .................................. 17  

Figure 8. Primary Study Area ....................................................................................................... 18  

Figure 10. Database Management Framework ............................................................................. 19  

Figure 11. Target Distribution ...................................................................................................... 22  

Figure 12. Target Modifications ................................................................................................... 22  

Figure 13 Overview of Tested Models ......................................................................................... 24 

Figure 14 Prediction Performances ............................................................................................... 29  

Figure 15. Summary of Cluster Features ...................................................................................... 32  

Figure 16 Dendrogram Spatial mapping of cluster members ....................................................... 43 

 

 



vii 

LIST OF TABLES 

Table 1. Risk Factors for Road Crash Injuries ................................................................................ 3 

Table 2. Overview of some Classification Tools ............................................................................ 5 

Table 3 Summary of Some Multi-Label Learning Algorithms ...................................................... 7  

Table 4. Example-based Performance Metrics ............................................................................. 14  

Table 5. Categorical Risk Factors ................................................................................................. 20  

Table 6. Numeric Risk Factors ..................................................................................................... 21  

Table 7. Model Specifications ...................................................................................................... 23  

Table 9. Cluster Stability .............................................................................................................. 30  

Table 10 Clustering Data .............................................................................................................. 42  

 

 



viii 

ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

Notation Mathematical Description 

χ d- dimensional instance space ℝ𝒅(𝒐𝒓 ℤ𝒅) 

ƴ Label space with q possible class labels ൛𝒚𝟏, 𝒚𝟐, . . . . , 𝒚𝒒ൟ 

x d-dimensional feature vector (𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒅)𝒕 (𝒙 ∈ 𝝌) 

Y Label set associated with x (𝒀 ⊆ ƴ) 

 𝒀ഥ Complimentary set of 𝒀 in ƴ 

Ɗ Multi-label training set {(𝒙𝒊, 𝒀𝒊)} | 𝟏 ≤  𝒊 ≤  𝒎 

Ѕ Multi-label test set {(𝒙𝒊, 𝒀𝒊)} | 𝟏 ≤  𝒊 ≤  𝒑 

h (∙) Multi-label classifier 𝒉: 𝝌 →  𝟐ƴ, where h(x) returns the set of proper labels for x 

f (∙ , ∙) Real-valued function 𝒇: 𝝌   ƴ →  ℝ, where f (x, y) returns the confidence of y being proper label of x 

𝒓𝒂𝒏𝒌𝒇(∙,∙) 𝒓𝒂𝒏𝒌𝒇(𝒙, 𝒚) returns the rank of 𝐲 in ƴ, in descending order induced from f (x, ∙) 

t (∙) threshold function 𝒕: 𝝌 →  ℝ, where 𝒉(𝒙) = {𝒚 | 𝒇(𝒙, 𝒚)} > 𝒕(𝒙), 𝒚 ∈  ƴ} 

| ∙ | | A | returns the cardinality of set A 

⟦ ∙ ⟧ ⟦ 𝝅 ⟧ returns 1 if predicate 𝝅 holds, and 0 otherwise 

ϕ (∙, ∙) ϕ (Y, y) returns +1 if 𝐲 ∈  𝐘, 𝐚𝐧𝐝 − 𝟏 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞 

Ɗ𝒋 Binary training set ൛൫𝒙𝒊, 𝝓(𝒀𝒊, 𝒚𝒋൯ൟ | 𝟏 ≤  𝒊 ≤  𝒎  derived from Ɗ for the 𝐣𝐭𝐡 class label 𝐲𝐢 

Ψ (∙, ∙, ∙) Ψ (Y, 𝒚𝒊, 𝒚𝒌) returns +1 if  𝐲𝐢 ∈  𝐘 and 𝐲𝐢 ∉  𝐘, 𝐚𝐧𝐝 − 𝟏 if  𝐲𝐣 ∉  𝐘 and 𝐲𝐤 ∈  𝐘 

 Ɗ𝒋𝒌 Binary training set {(𝒙𝒊, 𝜳൫𝒀𝒊, 𝒚𝒋, 𝒚𝒌൯) | 𝝓 (𝒀𝒊, 𝒚𝒊) ≠ 𝝓 (𝒀𝒊, 𝒚𝒌), 𝟏 ≤  𝒊 ≤  𝒎 } derived from Ɗ for the 
label pair (𝒚𝒊, 𝒚𝒌) 

 𝝈𝒚(∙) Injective function 𝝈ƴ =  𝟐ƴ →  ℕ mapping from the power set of ƴ to natural numbers ( 𝛔ƴ
ି𝟏 being the 

corresponding inverse function) 

 Ɗƴ
ற  Multi-class (single label) training set ൛൫xi, σƴ(Yi)൯ൟ | 1 ≤ i ≤ m   derived from Ɗ 

Ɓ Binary learning algorithm [complexity: 𝐅Ɓ(𝐦, 𝐝) for training: 𝐅Ɓ
ᇱ (𝐝) for (per-instance) testing] 

Μ 
Multi-class learning algorithm [complexity: 𝑭𝜧(𝒎, 𝒅, 𝒒) for training: 𝑭𝜧

ᇱ (𝒅, 𝒒) for (per-instance) 
testing] 



ix 

EXECUTIVE SUMMARY 

Road safety is an important part of the social and economic wellbeing of the society. Across the 
globe, people use traffic infrastructures to carry out their day-to-day activities. Fatalities and 
injuries resulting from motor vehicle crashes presents an important public health concern globally. 
Traffic crashes are an important source of non-recurrent congestions, causing delays to travelers 
in a transportation network. The United States’ annual average cost of road crashes is estimated to 
be around $230.6 billion or around $820 per person (1). In the year 2017, Texas recorded 1.38 
death per 100 million miles traveled (2). The objective of traffic safety analysis is to ensure that 
people arrive at their destination without any abnormal incident or crash. In the context of traffic 
safety, understanding the factors affecting crash occurrence, injury severity and collision type and 
their underlying relationships help us in predicting future crashes, its severity and collision type 
under given circumstances. Naturally, crash analysis is complex due to the presence of human 
behavior element, which is difficult to predict and model due to the high subjective variations in 
people’s decision making. This research primarily endeavors to analyze traffic crashes as multi-
label classification problem where an instance can be mapped to multiple labels. In other words, 
the model proposed in this study can predict or classify the traffic crash based on the severity and 
collision type simultaneously through an application of supervised Machine Learning (ML) 
classification tool namely Multi-Label Classification (MLC) system from the domain of Artificial 
Intelligence. The study also incorporates an unsupervised ML tool namely, Principal Component 
Analysis (PCA) based clustering technique for the grouping of instances at the link-level and at 
the county level, to test the natural groups in the data and spatial transferability of the proposed 
approach. From theoretical point of view, the cluster information is extremely useful when it 
comes to spatial comparison of region in terms of attributes that controls the safe operation of both 
humans and autonomous driving features. In particular, the study tests popular multilabel learning 
algorithms for this simultaneous classification. The study compares the performance of proposed 
approach with other conventional ML classification tools used in the past for crash classification 
in terms of labelling accuracy and computational efficiency. The classification performance of all 
the conventional and proposed classification algorithms considered in this study has been 
benchmarked and compared in terms of prediction performance and computational efficiency. 
Though more comprehensive training and testing is required, the numerical result from this study 
indicates that the proposed approach has a promising overall classification performance compared 
to traditional multiclass traffic crash injury classification approaches. The numerical results and 
outputs from the PCA based clustering analysis of the counties in Texas with respect to crash and 
other related data proved to more than just auxiliary, as many essential inferences and information 
needed for both, pre and post modelling phase of MLC analysis was obtained from this. The 
insights from these safety analysis and model outputs will help in identifying critical 
locations/links in a transportation network. The information about critical links can be used for 
optimal positioning of troopers, and in prioritizing the location for frequent surveillance by traffic 
management centers. In particular, the model can be used for predicting the probable locations of 
crashes and severity types. This will allow troopers to position themselves in strategic locations. 
As troopers will be nearby to incident location, they are more likely to reach the incident spot in 
smaller time and help stabilize the victim in their golden hour. This will also help in clearing the 
traffic in shorter time thereby saving fuel and reducing air pollution due to congestion built by 
incident which otherwise may be for prolonged time. It can also help in better planning for incident 
management and in optimal allocation of resources/funds.  
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1. INTRODUCTION 

Road safety is a collective responsibility that requires synergy between road users, decision-
making by government, industry, non-governmental organizations, and international agencies. 
Fatality rate of  traffic crashes on roadways is 12.4 deaths per 100,000 inhabitants, and motor 
vehicle crashes are a leading cause of death in the United States, with  over 100 people dying every 
day (1, 3). In 2015, more than 2.5 million drivers/passengers were admitted in emergency room 
for crash related injury treatment. For crashes that occurred in 2017, the cost of medical care and 
productivity losses associated with occupant injuries and deaths from motor vehicle traffic crashes 
exceeded $75 billion (4, 5). In 2018, the estimated total police-reported motor vehicle crashes that 
involved towing of at least one passenger vehicle involved in the crash was around 2,811,185 and 
resulted in over 1,489,413 known injuries. Among these crashes, 2.7 percent (74,604) were crashes 
with injury levels rated serious or above, 33.3 percent (935,120) were crashes with moderate or 
minor injury levels, and 50.9 percent (1,429,853) were crashes with no injury (6, 7). The estimated 
economic loss of all motor vehicle crashes for the state of Texas for 2019 was around 
$39,200,000,000 (2). Crash frequency prediction and risk analysis has become very popular ever 
since the safety was regarded as top priority aspect for Transportation planning and management. 
Every year, the U.S. federal government provides approximately $579 million to states for traffic 
safety programs (8). 

Crash-related fatalities and injuries can only be prevented by a joint involvement from multiple 
sectors (transportation agencies, police, health departments, education institutions) that oversee 
road safety, vehicles, and the drivers themselves. Effective interventions include design of safer 
infrastructure and incorporation of road safety features into land-use and transport planning; 
improvement of vehicle safety features; improvement of post-crash care for victims of road 
crashes, and improvement of driver behavior, such as setting and enforcing laws relating to key 
risk factors and raising public awareness (9, 10). One of the fundamental approach by which Vision 
Zero strategy aims to eliminate all traffic fatalities and severe injuries, while increasing safe, 
healthy, equitable mobility for all is to analyze the historical crash data which involves collecting, 
analyzing, and using data to understand trends and potential disproportionate impacts of traffic 
deaths on certain populations (11, 12). In summary, crash data is important for (10, 13): 

 Award and target state and federal highway safety funding, 

 Focus on local and state law enforcement efforts, 

 Enforce existing laws to ensure driver/vehicle compliance, 

 Conduct problem identification and the development of resolutions for safety programs, 

 Make key legislative decisions that impact citizen safety on roadways, 

 Identify high crash locations and make engineering and construction improvements to 
roadways, 

 Educate the public on safety issues (i.e., seat belt use, aggressive driving, and speeding), 

 Improve Emergency Medical Services (EMS) through processes such as training EMS 
personnel or the deployment of EMS units. 

The analysis of traffic safety often involves categorization or classification problems. Data 
classification is one of the central ML tasks. Though ML classification algorithms are usually 
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designed and employed for single label classification tasks, most real-world problems are 
multilabel in nature, where an instance can have more than one class label. Literature in traffic 
safety domain presents two classification systems. First, categorizes crash data based on the crash 
severity type as: no injury, possible injury, non-incapacitating injury, incapacitating injury, and 
fatal injury. Second classify crash based on collision type (rear end, side swipe etc.). A common 
approach is to find the frequency of crashes for severity types and collision types separately (14). 
This study is motivated by the fact that traffic collision type and crash severity type may be 
correlated, hence it is intuitive to model them simultaneously (14). Modeling them separately may 
necessitate the need for a more complex model structure to account for cross-model-correlations 
(14–16). This research endeavors to analyze traffic crashes as multi-label classification problem 
where an instance can be mapped to multiple labels. In other words, the model proposed in this 
study can predict or classify the traffic crash based on the severity and collision type 
simultaneously through an application of machine learning tool namely Multi-Label Classification 
(MLC) system from the domain of Artificial Intelligence.  

 
Figure 1. Multi-Label Classification-Traffic Safety Analogy 

 

The overall structure of the report is as follows: The next section of the report covers the 
primary and secondary objectives/outcomes from the project, which is followed by literature 
review and analysis methodology respectively. Final sections of the report discuss the numerical 
results which is followed by conclusions that explains the preliminary inferences and significance 
of the performance of the proposed algorithms. 
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2. OBJECTIVES 

This study aims at classifying the collision type and crash severity type simultaneously while 
capturing the correlation among them. The study reviewed past literature to understand the state 
of art and practice of crash classification. The study utilizes the past crash data from Texas cities 
for crash analysis and numerical analysis. The main objective of this project is to explore the 
Machine Learning Multi-Label Classification tool for classification problems in the context of 
traffic safety simultaneous classification of collision type and crash injury type. The ability of 
MLC to categorize an entity under study to more than one labels simultaneously provides it an 
edge over the traditional classification approaches that classify collision type and crash injury types 
separately. Underlying correlation between the injury severity type and collision type is leveraged 
using the AI tool to develop a robust classification model, and the performance of the proposed 
tool will be benchmarked with the conventional tools. This includes development of a person-level 
crash injury severity database using the past five-year historic motor vehicle crashes for the 
nominated target areas. Study objectives are:  

 Generate the database for the predictive model framework  
 Perform correlation analysis between the crash collision and injury severity type for:  

o Most severe injury person  
o Driver  
o Passenger  

 Feature selection/extraction  
 Numerical experiments:  

o Conventional models  
o Proposed MLC model  

 Performance evaluation and comparison, and 
 Result documentation.  

 An auxiliary objective has been added to support the primary analysis and future direction 
of the project. Specifically, for checking similarity within counties (natural groups) and spatial 
transferability of models, an unsupervised clustering technique, namely Hierarchical clustering has 
been added for the crash data, aggregated to the county level resolution. Attaining these objectives 
shall allow the research team to identify interaction of on-system and off-system segments and 
intersections crashes based on the collision and injury severity types and the type of person 
involved in the crash. 
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3. LITERATURE REVIEW 

Crash frequency prediction and risk analysis has become very popular ever since the safety was 
regarded as top priority aspect for Transportation planning and management. Every year, the U.S. 
federal government provides approximately $579 million to states for traffic safety programs (8). 
Spatially aggregated crash analysis is a critical point of interest for state and federal safety and 
planning agency as many factors affecting crashes operate at a spatial scale (e.g. land-use policy, 
demographic characteristics and highway infrastructure functional class) (17). Recent 
developments in the subfield of spatial traffic crash analysis have enabled researchers to better 
understand regional crash frequency and the rate of dependency of respective causal factors. In 
road traffic crash, risk is a function of four elements– the amount of movement or travel within the 
system by different users or a given population density, the underlying probability of a crash, given 
a particular exposure, the probability of injury, given a crash and the outcome of injury. 

 The primary factors contributing to the increase in global road crash injuries is the growing 
number of motor vehicles. The problem is not just the growth in numbers and increase in exposure 
to the risk but also ensuring that appropriate road safety measures accompany this growth. The 
motor vehicle, along with the subsequent growth in the number of motor vehicles and in road 
infrastructure, has brought societal benefit but it has also led to societal cost, to which road traffic 
injury contributes significantly. Without proper planning, growth in the number of motor vehicles 
can lead to problems for pedestrians and cyclists. In fact, where there are no facilities for 
pedestrians and cyclists, increasing numbers of motor vehicles generally lead to reductions in 
walking and cycling. Speeding, drunk driving, distractions and cellphones, weather, red light 
accidents, time and day, driver fatigue etc. are some of the primary precursors of traffic incidents. 
The historic crash data analysis also exposed interesting evidence on the effect of gender on 
crashes. In majority of car accidents, males have been shown to have the highest risk of being 
subjected to high injury from crashes. From 1975-2015 the number of males died in a car accident 
was more twice the number of females. In 2015, over 71% of car accident deaths were males. This 
is a similar trend over the past decade where over 350,000 people were killed in a car accident (18, 
19). In the context of traffic safety, understanding the factors affecting crash occurrence, injury 
severity and collision type and their underlying relationships help us in predicting future crashes, 
its severity and type under given circumstances. Road traffic crash results from a combination of 
factors related to the components of the system comprising roads, the environment, vehicles and 
road users, and the way they interact. Some factors contribute to the occurrence of a collision and 
are therefore part of crash causation. Other factors aggravate the effects of the collision and thus 
contribute to severity. Other factors may not appear to be directly related to road traffic injuries. 
Some causes are immediate, but they may be underpinned by medium-term and long-term 
structural causes. Identifying the risk or threat factors that contribute to road traffic crashes is 
important in identifying interventions that can reduce the risks associated with those factors. Risk 
factors and relation to traffic crashes are summarized and presented in Table 1. Due to its 
importance, there has been extensive research utilizing various statistical models to expose the 
association between risk factors and injury severity. Studies in past have utilized numerous 
statistical, econometric and ML tools that fit the data under investigation to extract the underlying 
relationship between the crash factors and crash and/or collision type.  
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Table 1. Risk Factors for Road Crash Injuries 

Factors influencing 
exposure to risk 

Risk factors influencing 
crash involvement 

Risk factors influencing 
crash severity 

Risk factors influencing 
post-crash outcome of 
injuries 

 economic factors such 
as level of economic 
development and 
social deprivation 

 demographic factors 
such as age and sex 

 insufficient attention 
to integration of road 
function with decisions 
about speed limits, 
road 
layout and design 

 land-use planning 
practices which 
influence length of trip 
and mode of travel 

 mixture of high-speed 
motorized traffic with 
vulnerable road users 

 

 inappropriate and 
excessive speed 

 fatigue 
 being a young male 
 having youths driving 

in the same car 
 being a vulnerable 

road user in urban and 
residential areas 

 travelling in darkness 
 vehicle factors – such 

as braking, handling 
and maintenance 

 defects in road design, 
layout, and 
maintenance, which 
can also lead to unsafe 
behavior by road users 

 inadequate visibility 
because of 
environmental factors 
(making it hard to 
detect vehicles and 
other road users)  

 poor eyesight of road 
users 

 human tolerance 
factors  

 inappropriate or 
excessive speed 

 seatbelts and child 
restraints not used 

 crash-helmets not 
worn by users of two-
wheeled vehicles 

  roadside objects not 
crash-protective 

  insufficient vehicle 
crash protection for 
occupants and for 
those hit by vehicles 

  presence of alcohol 
and other drugs 

 delay in detecting 
crash and in 
transport of those 
injured to a health 
facility 

 presence of fire 
resulting from 
collision 

  leakage of hazardous 
materials 

 presence of alcohol 
and other drugs 

 difficulty in rescuing 
and extracting people 
from vehicles 

 difficulty in 
evacuating people 
from buses and 
coaches involved in 
crash 

  lack of appropriate 
pre-hospital care  

 lack of appropriate 
care in hospital 
emergency rooms. 

 Over the years, traffic safety professionals and researchers have identified several data 
characteristics and methodological issues that are critical considerations in the development and 
application of an appropriate statistical methodology to study such data (14, 20–27), these issues 
are presented in Figure 2.  

 

Figure 2. Challenges dealing with traffic safety data 

Lord and Mannering (14) provided a comprehensive review of methodological aspects and list 
widely used econometric tools for investigation of crash frequency data and severity analysis. 
Statistical/Econometric modeling assumes a distribution of data and then extracts relationship 
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information between the feature and labels. The assumed distribution in statistical/econometric 
models may not be true about the data, thus leading to poor performance of the model estimations 
(28–31). Although planners and researchers typically use the traditional statistical models for 
classification problems, they suffer fundamental limitations in tackling multi-label classification 
problems. Recently, for various applications in different disciplines including transportation 
engineering, supervised ML classification tools have shown an edge over conventional statistical 
and econometric count models in terms of predictive capabilities.  

3.1. Conventional ML Classification Algorithms 
Logistic Regression: Target label (𝑦௜) is modelled as a linear function of (𝑥௜), which utilizes a 
standard logistic function or otherwise called sigmoid function, given in equation no. 1, that can 
transform the final solution to either 0 or 1. In other words, the linear combination of features, 𝑥௜ 
is a function that spans from minus infinity to plus infinity whereas the labels vector 𝑦௜ has positive 
discrete choices (two for binary logistic and two or more for multiclass logistic regression). The 
optimization criterion in logistic regression is called maximum likelihood where, rather than 
minimizing the average loss, the likelihood of training data is maximized (32), (33).  

Decision Tree: The decision support tool which is an acyclic graph that can be used to make 
decisions. It consists of branch like graphs, where at each node of the graph, a specific feature j of 
the feature vector x is examined. There are several approaches to deploy decision tree algorithm, 
ID3, C4.5, CART etc. (32). ID3 algorithm is used to classify nominal valued datasets. Generally, 
Decision tree models are built in two steps, induction and pruning. Induction deals with the 
building the branches or hierarchical decision boundaries and pruning refers to the removing the 
unnecessary branches from the model based on the dataset (32), (33). 

k-Nearest Neighbors (kNN): This is a non-parametric learning algorithm in which the KNN 
algorithm keeps all the training examples in the memory even after modeling and when an 
unlabeled instance comes, the algorithm finds k instances (neighbors) from the training dataset 
closest to the unlabeled instance and returns the majority label from these neighbors. The closeness 
or similarity of examples is quantified using a distance function, usually Euclidean distances (32), 
(33). 

Support Vector Machine (SVM): The SVM algorithm finds the hyperplane in the N-dimensional 
space that classify the instances to its respective labels. The total number of features decides 
dimension of the space under consideration. Support vectors are data points that are close to the 
hyperplane, and they influence the position and orientation of the hyperplanes. SVM tries to find 
the largest separating margin between classes.  

Table 2 presents some of the advantages and disadvantages of the conventional classification tools 
used in the study (32), (33). 
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Table 2. Overview of some Classification Tools 

Classification tool and related 
works in traffic safety 

Advantages Disadvantages 

Logistic Regression 

Burkov(32), Bonaccorso(33), Lu et 
al. (34), Iranitalab and Khattak 
(35) 

 Simple to implement 
 Computationally efficient 

 Prone to overfitting 
 High reliance on proper data 

presentation 
 Decision surface is linear, not suited 

for nonlinear problems 

Decision Tree 

Burkov (32), Bonaccorso (33), 
Iranitalab and Khattak (35), Yuan 
et al. (36) 

 Computationally efficient 
 Easy interpretation of results 
 Can deal with outliers 
 Less data cleaning required 

 Prone to overfitting 
 Not fit for continuous variables 
 Complexity increases with number 

of labels 

k Nearest Neighbor 

Burkov(32), Bonaccorso(33), 
Iranitalab and Khattak (35), Yuan 
et al. (36) 

 No assumption about data 
 Simple to implement 
 High accuracy 
 Versatile 

 Computationally expensive 
 High memory requirement 
 Sensitive to irrelevant data and 

scale of data 

Support Vector Machine 

Li et al. (28), Burkov(32), 
Bonaccorso(33), Iranitalab and 
Khattak (35), Yuan et al. (36) 

 High accuracy 
 Perform well for clean small data 

 Not suited for very large dataset, 
takes longer time for training 

 Less effective for data with noise 

3.2. Multi-label Classification 
In multi-label learning, each object is also represented by a single instance while associated with 
a set of labels instead of a single label, unlike traditional supervised learning (binary or multi-
class). The task is to learn a function which can predict the proper label sets for unseen instances. 
In multi-label classification, the examples are associated with a set of labels Y ⊆ L.  

MLC induces a predictive model from a set of training data, which later assigns one or 
more labels to each new test example (37, 38). Suppose χ=Rd or Zd denotes the d-dimensional 

instance space, and ƴ = ቄy1,  y2,….,yqቅ  denotes the label space with 𝑞 possible class labels. The 

task of multi-label learning is to learn a function h: χ → 2ƴ from the multi-label training set 
Ɗ={(…,Yi)} | 1 ≤ i ≤ m. For each multi-label example …, 𝑥௜ ∈  𝜒 is a d-dimensional feature vector 
(𝑥௜ଵ, 𝑥…, . . . , 𝑥௜ௗ)் and 𝑌௜  ⊆  ƴ is the set of labels associated with 𝑥௜. For any unseen instance 
 (𝑥 ∈ 𝜒), the multi-label classifier h (·) predicts h (·) ⊆  ƴ  as the set of proper labels for 𝑥. 
Traditional two-class and multi-class problems can both be cast into multi-label ones by restricting 
each instance to have only one label. However, the generality of multi-label problem makes it more 
difficult to learn. An intuitive approach to solve multi-label problem is to decompose it into 
multiple independent binary classification problems (one per category). But this kind of method 
does not consider the correlations between the different labels of each instance. 
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Figure 3. Few MLC algorithms 

3.3. MLC Strategies 
The selection of the appropriate MLC algorithm depends on the specific dataset that the algorithm 
is trying to classify, but the primarily depends on how well the label correlations needs to be 
captured. There is also a tradeoff between computational cost and classification performance while 
choosing the MLC strategy. Here, first, second and high order strategy are briefly discussed. 

First-order strategy:  

The task of multi-label learning is tackled in a label-by-label style and thus ignoring coexistence 
of the other labels, such as decomposing the multi-label learning problem into several independent 
binary classification problems (one per label). The noticeable merit of first order strategy lies in 
its conceptual simplicity and high efficiency. On the other hand, the effectiveness of the resulting 
approaches might be suboptimal due to the ignorance of label correlations.  

Second-order strategy:  

The task of multi-label learning is tackled by considering pairwise relations between labels, such 
as the ranking between relevant label and irrelevant label or interaction between any pair of labels. 

As label correlations are exploited to some extent by second-order strategy, the resulting 
approaches can achieve good generalization performance. However, there are certain real-world 
applications where label correlations go beyond the second-order assumption.  

High-order strategy:  

The task of multi-label learning is tackled by considering high-order relations among labels such 
as imposing all other labels’ influences on each label or addressing connections among random 
subsets of labels etc. High-order strategy has stronger correlation-modeling capabilities than first 
order and second-order strategies, while on the other hand is computationally more demanding 
and less scalable. 
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Table 3 presents summary of different MLC strategies and the order of label correlation the 
algorithms deal with, while training the classification models. 

Table 3 Summary of Some Multi-Label Learning Algorithms (adapted from (37–45) 

Algorithm Idea Order of Correlation Literature Domain 

Binary Relevance 
Fit multilabel data to q binary 
classifiers 

First-order Image 

Classifier Chains 
Fit multilabel data to a chain of binary 
classifiers 

High order 
Image, Video, Text, 
Biology 

Calibrated Ranking 
Loss 

Fit multilabel data  Second-order Image, Text, Biology 

Random k-Label 
sets 

Fit multi-label data to n multi-class 
classifiers 

Second-order Image, Text, Biology 

ML-kNN 
Fit k-nearest neighbor to multi-label 
data 

First-order Image, Text, Biology 

ML-DT Fit decision to multi-label data First-order Biology 
Rank-SVM Fit kernel learning to multi-label data Second-order Biology 

CML 
Fit conditional random field to multi-
label data 

Second-order Text 

In the past, multilabel classification was mainly motivated by the tasks of text 
categorization and medical diagnosis. Text documents usually belong to more than one conceptual 
class. MLC is a classification task where an instance can be simultaneously classified in more than 
one class. Labeled data extracted from several domains, like text, web pages, multimedia (audio, 
image, videos), and biology are intrinsically multi-labeled (40). Additionally, the number of 
application domains with MLC data is growing fast. Early multi-label learning studies primarily 
focused on the problem of multi-label text categorization. Recently, multi-label learning has 
attracted significant attention from ML and related communities and has been widely applied to 
diverse problems from automatic annotation for multimedia contents to bioinformatics, web 
mining, rule mining, information retrieval tag recommendation etc. (46–49).  

In a recent application, Rivolli et al. (50) used MLC algorithms to recommend food truck 
cuisines, assuming that a person can have more than one cuisine preference, and with the same 
level of preference. While in multi-class classification only a single class label is predicted, in 
MLC, more than one class label can be simultaneously predicted. In the same way as multi-class 
classification tasks can be seen as a generalization of binary classification tasks, which restricts to 
two the number of classes, MLC can be seen as a generalization of multi-class, which restricts to 
one the number of predicted classes (37).  

3.4. Clustering Analysis Segmenting crash cluster groups 
The clustering analysis pipeline for this analysis was aimed to conduct a data driven Principal 
(PCA) based cluster analysis using Texas counties data to identify natural group based on 
similarity in characteristics using Hierarchical clustering tools. From theoretical point of view, this 
information is extremely useful when it comes to spatial comparison of region in terms of crash 
risk analysis and feasible transferability of efficient prediction models to similar county groups. 
From the perspective of planner’s and policy makers, such information can assist in devising 
efficient crash counter measures and financial investments for necessary regions. The 
methodological framework presented in this study can also be used for a data exploration prior to 
modeling the crash risk at the aggregated spatial level. 
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Application of clustering techniques in the field of Transportation Engineering is not new. 
Papagiannakis et al. (51) utilized clustering technique to establish similarities in vehicle 
classification and axle load distributions between traffic data collection sites. Cao et al. (52) 
conducted a cluster analysis o’ vessel's trajectories based on the Automatic Identification System 
(AIS) datasets of Wuhan Erqi Yangtze River Bridge area. Relationships and information issues 
regarding quality of safety data for developing nations was studied by Raihan et al.(53) using 
hierarchical clustering coupled with random forest method. Clustering is an important data 
preprocessing step for many of the Artificial Neural Network modeling framework. Taamneh et 
al.(54) studied the severity of road traffic crashes using a Hierarchical clustering based Artificial 
Neural Network model. Using clustering, Janstrup et al.(55) presented an integrated analysis of 
information about road maintenance, maintenance costs, road characteristics, crash characteristics, 
and geographical location that can enrich road maintenance prioritization from a traffic safety 
perspective. Such Macroscopic crash analysis, where crashes are aggregated to traffic analysis 
zones or county or ZIP code etc. are considered to quantify the impacts of socioeconomic and 
demographic characteristics, transportation demand and network attributes to provide 
countermeasures from a planning perspective (56). Similar analysis assists decision-makers in 
delivering efficient and effective resources allocation and policy analysis for priority regions. It is 
therefore reasonable to explore the use of spatial models of crash occurrence to better understand 
the implications of government policies and safety initiatives. Several planning acts have 
emphasized the importance of macroscopic crash analysis. Originally, the Transportation Equity 
Act for the 21st Century (57) suggested to consider safety in the transportation planning process. 
Washington et al. (58) discussed how to incorporate safety into transportation planning at different 
levels. The Moving Ahead for Progress in the 21st Century Act (MAP-21 Act) (59) and Fixing 
America’s Surface Transportation Act (FAST Act) (60) require the incorporation of transportation 
safety in the long-term transportation planning process.  

Study Significance and Contributions 

The type and extent of analysis deployed for this project, specifically the simultaneous 
classification of traffic crash collision and severity injury type using multi-label classification 
combined with the right problem transformation approach, is probably one of the first attempts in 
the field of traffic safety analysis. The results from the preliminary testing phase highlights the 
efficiency of the proposed model framework in terms of speed and accuracy. The project team has 
also emphasized the importance of data engineering for optimized allocation of computational 
memory which is key for application/ practical stages of the project, which is rarely covered in 
other studies. This is very crucial for many machine-learning and deep-learning algorithms that 
requires heavy computational horsepower. The database management framework designed for this 
project is reasonably efficient and highly flexible, meaning, the any road segments in Texas can 
be analyzed/modelled using this design, but the research also believes more improvements can be 
done to the efficiency side of the data, with respect to the memory usage during the data loading 
phase. The contributions of this study can be summarized as follows. First, it provides framework 
for employing MLC for the categorization problems in the traffic safety domain. Most importantly, 
this study is aimed at attaining better prediction benchmark for the classification models by 
focusing on the target rather than on modifying the algorithms. This could be very key for Spatial-
Temporal transferability of ML/AI Models. The application of clustering techniques to create 
intuitive dendrogram visualization of the county clusters in terms of traffic safety is another new 
topic, the project team has explored and validated. Dendrogram produced from clustering process 
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is extremely useful in understanding the data. By observing the branches of the hierarchical 
dendrogram structure, insightful information about those county group that varies significantly 
with respect to explanatory features and crash types and those which does not have any effect on 
the same can be understood. From theoretical point of view, this information is extremely useful 
when it comes to spatial comparison of region in terms of crash risk analysis and feasible 
transferability of efficient prediction models to similar county groups. From the perspective of 
planner’s and policy makers, such information can assist in devising efficient crash counter 
measures and financial investments for necessary regions. The methodological framework 
presented in this study can be used for a data exploration prior to modeling the crash risk at the 
aggregated spatial level.    
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4. METHODOLOGY 

The primary research objective deals with simultaneous classification of crash collision type and 
severity level, provided accident occurred at a certain location at certain time. Motor vehicle traffic 
accidents can be studied by the events they contain, often by the harmful events. The first harmful 
event of an accident refers to the first injury or damaging producing event that occurs. The most 
harmful event is typically recorded for each involved unit. It refers to the event that produces the 
most severe injury or amount of damage for each unit. For accidents with more than four events 
in the sequence, it is suggested to omit the event(s) least relevant to describing the crash (61). The 
terms collision and non-collision when used to classify an accident, refer to the first harmful event 
of the accident being a collision event or non-collision event. Collison events in a vehicle’s 
sequence of events is all harmful (causing injury or damage) and describe the motor vehicle 
striking or being struck by another vehicle, person, or object. Non-collision events in a vehicle’s 
sequence-of-events is not necessarily harmful and describe events in the accident other than 
collision events.  

Injury-severity data are generally represented by discrete categories such as fatal injury, 
incapacitating injury, non-incapacitating, possible injury, and property damage only, often referred 
to as the KABCO scale (62). The description of each level of injury severity, as per Texas 
regulations are: 

 fatal injury or killed (K): succumbed due to injuries sustained from the crash, within 30 
days of the crash 

 incapacitating injury (A): severe injury which prevents continuation of normal activities; 
includes broken or distorted limbs, internal injuries, crushed chest, etc. 

 non-incapacitating (B): evident injury such as bruises, abrasions, or minor lacerations 
which do not incapacitate. 

 possible injury: injury which is claimed, reported, or indicated by behavior, but without 
visible wounds; includes limping or complaint of pain. 

 property damage only (O): person involved in crash did not sustain an A, B, or C injury. 

 
Figure 4. Crash Events 
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4.1. Learning Algorithms 

4.1.1. Binary Relevance 
The basic idea of this algorithm is to decompose the multilabel learning problem into q 
independent binary classification problems, where each binary classification problem corresponds 
to a possible label in the label space (41). Following the notations in (list of symbols), for the 
𝑗௧௛ class label 𝑦௝, Binary Relevance first constructs a corresponding binary training set by 
considering the relevance of each training example to 𝑦௝: 

Ɗj= ቄቀI, ϕ(Yi,yjቁቅ  | 1 ≤ i ≤ m (1) 

where, ϕI= ൜ 
+1, if 𝐼∈Yi 

-1, otherwise
 (2) 

Next, a binary learning algorithm Β is applied to induce a binary classifier 𝑔௝: 𝝌 → ℝ , i.e., 𝑔௝ ←

Ɓ൫Ɗ௝൯. Thus, for any multi-label training example (𝐼,Yi), instance xi will be involved in the 
learning process of q binary classifiers. For relevant label Ij∈ Yi, xi is regarded as one positive 
instance in inducing 𝑔௝(. ). For irrelevant label yj∈ 𝐼௜, xi is regarded as one negative instance (also 

known as cross-training). For any unseen instance x, Binary Relevance predicts its associated label 
set Y by querying labeling relevance on each individual binary classifier and then combing relevant 
labels: 

Y= ቄyj | gj
(x) > 0,  1 ≤  j ≤ qቅ (3) 

Binary relevance method is a first-order approach which builds classifiers for each label 
separately and offers the natural opportunity for parallel implementation. The most prominent 
advantage of Binary Relevance lies in its extremely straightforward way of handling multi-label 
data, which has been employed as the building block of many state-of-the-art multi-label learning 
techniques. 

4.1.2. Classifier Chains 
The algorithm transforms the multilabel learning problem into a chain of binary classification 
problems, where subsequent binary classifiers in the chain is built upon the predictions of 
preceding ones (42, 63). For 𝑞 possible class labels ൛𝑦ଵ, 𝑦ଶ, 𝑦ଷ, … . , 𝑦௤   ൟ, let 𝜏: {1, … . , 𝑞} →

{1, … . , 𝑞} be a permutation function which is used to specify an ordering over them, 𝑦ఛ(ଵ) >

𝑦ఛ(ଶ) > 𝑦ఛ(ଷ) > ⋯ . . > 𝑦ఛ(௤). For the 𝑗௧௛ label 𝑦ఛ(௤) (1 ≤ 𝑗 ≤ 𝑞)  in the ordered list, a 
corresponding binary training set is constructed by appending each instance with its relevance to 
those labels preceding 𝑦ఛ(௝): 

𝒟ఛ(௝) = ቄቀൣ𝑥௜ , 𝐩𝐫𝐞ఛ(௝)
௜ ൧, 𝜙൫Υ௜ , 𝑦ఛ(௝)൯ቁ | 1 ≤ 𝑖 ≤ 𝑚ቅ (4) 

Where 𝑝𝑟𝑒ఛ(௝)
௜ =  ቀ𝜙൫Υ௜ , 𝑦ఛ(ଵ)൯, … . , 𝜙൫Υ௜ , 𝑦ఛ(௝ିଵ)൯ቁ

்

  

Here ൣ𝑥௜ , 𝐩𝐫𝐞ఛ(௝)
௜ ൧ concatenates vectors 𝑥௜ and 𝐩𝐫𝐞ఛ(௝)

௜ , and 𝐩𝐫𝐞ఛ(௝)
௜ represents the binary 

assignment of those labels preceding 𝑦ఛ(௝)on 𝑥௜ ൫specifically, 𝐩𝐫𝐞ఛ(ଵ)
௜ = ∅൯. Then, a suitable 

binary classifier ℬ is used to induce a binary classifier 𝑔𝜏(𝑗): 𝜒 × {−1, +1}𝑗−1 →  ℝ, 𝑖. 𝑒.  𝑔𝜏(𝑗) ←
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 ℬ൫𝒟𝜏(𝑗)൯. Or, 𝑔𝜏(𝑗)
(. ) controls whether  𝑦ఛ(௝) is a relevant label or not. For new instance 𝑥, its 

associated label set Υ is predicted by traversing the classifier chain iteratively. 

4.1.3. Multi-label k-Nearest Neighbors (ML-kNN) 
Multi-Label k-Nearest Neighbor (ML-kNN, derived from the k-nearest neighbor (kNN)) first 
identifies the k nearest neighbors of the test instance where the label sets of its neighboring 
instances are obtained. After that, maximum a posteriori (MAP) principle is employed to predict 
the set of labels of the test instance (64). This algorithm also known by the name Lazy Learning 
Algorithm (45), (64).  

 Let X be the domain of instances. Let Y be the finite set of Labels, Y= {1, 2, 3……., Q}. 
Let T be the training set, T={(x1, Y1),(x2 ,Y2),…,(xm,𝐼)} ,  (𝐼 ∈ X, Yi ⊆ Y). T is derived 
independently and identically from an unknown distribution. 
 Here, the objective of the MLC algorithm is to either find the classifier, represented by h 
that maps the given set of instances to label set, h: X→ 2Y, or computes a real-valued function 
which is represented as f: X×Y→R. The algorithm output larger values for label in Y୍, or 
f (xi, y1)> f (xi, y2) or y1∈ Yi and  y1∉ Yi. The real-valued function is then transformed into a 
ranking function, such that instances with highest f value will have the lowest rank. This 
transformation into a ranking function can be used to derive the respective classifier h(x), for the 
instance x. 

For the instance x, y is the vector containing the labels of x, and the lth label is given by y 
(l), where l∈ Y.  y (l) = 1 when l ∈ Y and 0 otherwise. N (x) represents the index set of the k nearest 
neighbor of the instance x, from the training set T. From the subset of labels from the indexed set 
N(x), a counting vector is defined using the following equation, which counts the number of 
neighbors of x belonging to lth class. 

Cx (l) = ෍ 𝑦xa

a ∈ N (x)

(l), l ∈ Y (6) 

Given the instance t from test set, the learning algorithm identify the assigned k number of 
neighbors, represented by N(t) from the training set T. 
  Let H1

l be the event that instance t has label and H0
l  be the event that instance t does not 

have label. 𝐸௝
௟ is the event that among the k nearest neighbors of instance t, there are j instances 

with label l. The label set [𝑦t(l)], of the test instances are determined using MAP- Maximum a 
posteriori principle using the counting vector Ct ,which is given by 
 
 (7) 

The final classification label set is derived from this MAP principle by the Bayesian principle  

𝑦t( l ) = arg maxb ∈ {0,1} 
P ( H  b 

l ) P ( ECt (l)
l  | H b 

l )

P ( E Ct (l )
l  )

 (8) 

 
= arg maxb ∈ { 0,1 } P ( Hb

l  ) P (E஼t(l)
l  | Hb

l  ) (9) 

 Where P (Hb
l ) is the prior probability and P (ECt(l)

l | Hb
l ) is the posterior probability, and both 

estimated from Training set. 
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4.1.4. Evaluation Metrics  
In traditional supervised learning, generalization performance of the learning system is evaluated 
with conventional metrics such as accuracy, F-measure, area under the ROC curve (AUC), etc. 
However, performance evaluation in multi-label learning is much complicated than traditional 
single-label setting, as each example can be associated with multiple labels simultaneously. 
Therefore, several evaluation metrics specific to multi-label learning are proposed, which can be 
generally categorized into two groups, i.e., example-based metrics and label-based metrics. Multi-
label metrics are usually non-convex and discontinuous, in practice most learning algorithms resort 
to optimizing (convex) surrogate multi-label metrics. The subset accuracy evaluates the fraction 
of correctly classified examples, i.e., the predicted label set is identical to the ground-truth label 
set. Intuitively, subset accuracy can be regarded as a multi-label counterpart of the traditional 
accuracy metric and tends to be overly strict especially when the size of label space (i.e., q) is 
large. 

 
B* can be Accuracy, Precision, Recall, 𝑭𝜷 

Figure 5. MLC Performance Evaluation 

The suitability of performance metrics depends on the classification problem itself. For this study, 
the example-based classification performance evaluation matrices (shown in Figure 5) were used 
to compare and benchmark the performance the proposed MLC classification models. A summary 
about these matrices is presented Table 4. Each of these metrics evaluates the learning system’s 
performance on each test example separately, and then returning the mean value across the test 
set.  
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Table 4. Example-based Performance Metrics 

Metric Description Equation 

Subset 
Accuracy 

evaluates the fraction of correctly classified examples, i.e., the 
predicted label set is identical to the ground-truth label set. 
Subset accuracy can be regarded as a multi-label counterpart 
of the traditional accuracy metric and tends to be overly strict 
especially when the size of label space (i.e., q) is large. 

Subset Accuracy: 
1

p
෍⟦h(xi)=Yi⟧

𝒑

𝒊ୀ𝟏

 

Hamming 
Loss 

evaluates the fraction of misclassified instance-label pairs, i.e., a 
relevant label is missed or an irrelevant is predicted Hamming Loss: 

1

p
෍

1

q
|h(xi)∆Yi|

p

i=1

 

Accuracy evaluates the fraction of correct predictions to total predictions Accuracy= 
1

p
෍

|Yi∩h(xi)|

|Yi∪ h(xi)|

p

i=1

 

Precision 
evaluates the fraction of true positives to sum of true positives 
and false positives Precision= 

1

p
෍

|Yi∩h(xi)|

|h(xi)|

p

i=1

 

Recall 
evaluates the fraction of true positives to sum of true positives 
and false negatives 𝐑𝐞𝐜𝐚𝐥𝐥 =  

𝟏

𝒑
෍

|Yi ∩ h(xi)|

|Yi|

𝒑

𝒊ୀ𝟏

 

Fβ 
an integrated version of Precision and Recall with balancing 
Factor β > 0.  Β = 1 leads to the harmonic mean of precision and 
recall 

Fβ= 
൫1+β2൯. Precision. Recall

β2.Precision + Recall
 

4.2. Spatial Transferability 
The performance of any AI/ML model is defined by the data. The quality and quantity of the 
training data dictate the classification accuracy of any such algorithms. No prior assumption about 
the distribution of data makes it easier to make accurate generalized inferences without breaking 
any data-specific rules. The clustering analysis was aimed to conduct a data driven Principal (PCA) 
based cluster analysis using Texas counties data to identify natural group based on similarity in 
characteristics using Hierarchical clustering tools. The clustering framework is illustrated in Figure 
6. The use of PCA based analysis is critical for macroscopic crash prediction modelling, as the 
analysis generally deals with small data size and large crash features, which has not been explored 
much in the past. Despite, being a popular algorithm for unsupervised learning for data 
exploration/market segment analysis etc., hardly few researchers have used this tool for crash data 
exploration. Apart from finding entities sharing similar attributes, clustering tools can help in 
separating normal data from outliers or anomalies. Thus, the main objective of this work is to treat 
the county level data as unsupervised learning problem to discover natural groups of similar 
examples or clusters within the data, or to determine how the data is distributed in the space, known 
as density estimation. Anticipating possible delays that may arise due to computational 
soundlessness, that could affect progress of the modelling analysis, we adapted the clustering 
approach to test/ or validate the spatial transferability of the calibrated/validated predictive models 
to other main regions of Texas. 
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Clusters or groups that share common characteristics, play an important role in how we analyze 
and describe the environment or system. Dendrogram produced from clustering process is 
extremely useful in understanding the data. By observing the branches of the hierarchical 
dendrogram structure, insightful information about those county group that varies significantly 
with respect to explanatory features and crash types and those which does not have any effect on 
the same can be understood. Given a set of N items to be clustered, and an N*N distance (or 
similarity) matrix, the basic process of hierarchical clustering consists of following steps (65): 

1. Assign each item to its own cluster, so that if you have N items, you now have N clusters, 
each containing just one item. Let the distances (similarities) between the clusters equal 
the distances (similarities) between the items they contain. 

2. Find the closest (most similar) pair of clusters and merge them into a single cluster, so that 
now you have one less cluster. 

3. Compute distances (similarities) between the new cluster and each of the old clusters. 
4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size N. 

In Steps 2 and 3, the algorithm deals with finding distances, which represents the 
similarity/dissimilarities, between cluster pairs. So, prior to clustering, it is required to determine 
the distance matrix that specifies the distance between each data point using some distance 
function. The main task of clustering/classification of observations into groups requires the 
computation of the distance or the (dis)similarity between each pair of observations. The result of 
this computation is known as a dissimilarity or distance matrix. The classical methods for distance 
measures are Euclidean and Manhattan distances. This study uses Euclidean distance for the 
generation of distance matrix. The formula for computing the Euclidean Distance (eqn. 1) is shown 
below: 

deuc (x ,y)= ඨ෍ (xi- yi)
2

n

i=1

 (1) 

The AGNES clustering algorithm has multiple clustering/linkage criteria for grouping data. The 
linkage function takes the distance information from the calculated distance matrix and groups 
pairs of objects into clusters based on their similarity. The new clusters are linked to each other to 
create bigger clusters. This process is iterated until all the objects in the original data set are linked 
together in a hierarchical tree. Ward’s minimum variance method is one of the most common 
linkage criteria used for agglomerated hierarchical clustering (see eqn. (2) and (3)). It minimizes 
the total within-cluster variance. Ward’s method approach also performs well in separating clusters 
if there is noise between cluster. 

Δ (A, B) = ∑ ‖xሬ⃗ –-I‖i ∈ A∪B
2 – ∑ ‖–ሬ⃗ I-mሬሬሬ⃗ A‖i ∈ A

2 – ∑ ‖xሬ⃗ i-mሬሬሬ⃗ B‖i ∈ B
2 (2) 

or, Δ (A, B) = 
nA nB

nA – nB
 ‖mAሬሬሬሬሬ⃗  – mBሬሬሬሬሬ⃗  ‖2 (3) 

where mj is the center of cluster j, and nj is the number of points in it. ∆ is called the merging 
cost of combining the clusters A and B. 
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The main idea behind this approach is that by treating the safety data as unlabeled 
hierarchical clustering creates meaningful hierarchy of county groups that share common 
characteristics with respect to the features considered in this study. The study also utilized 
Principal Component Analysis to tackle the issue of overfitting due to high dimensionality by 
taking principal components that explains maximum variance from each feature group. One major 
advantage of using hierarchical clustering is its ability to provide visualization of result. The final 
clusters can be represented in the form of dendrograms which can help in the interpretation of the 
results by creating meaningful taxonomies and in post modelling results comparisons.  

 

Figure 6. County-Level PCA Based Clustering Framework Approach 

4.3. Study Area and Period 
The study area chosen for the testing of the research framework comprises of 5 main cities. 
Precisely, the model calibration and validation were conducted leveraging the historic crashes data 
occurring in the state of Texas from 2013 to 2017. The state of Texas is in the South-Central region 
of the United States. At over 268,500 square miles in area, and with more than 29.1 million 
residents in 2020, Texas is the second largest U.S. state by area (after Alaska) and population (after 
California). With a population of 4,652,980, Harris County (29.7752° N, 95.3103° W) is the largest 
county in Texas, and had a recent growth rate of 13.7%. Dallas County (32.8025° N, 96.8351° W), 
Tarrant County (32.7732° N, 97.3517° W), Bexar County (29.4201° N, 98.5721° W) and Travis 
County (30.2097° N, 97.6982° W) make up the rest of the top five most populous counties in Texas, 
with each having populations of more than a million. Additionally, all show growth rates of 
between 10.6% (Dallas County) and 19.7% (Travis County), (see Figure 7) . This research targeted 
the top biggest cities of the state that includes, Austin, Dallas, Houston, Fort Worth, and San 
Antonio. As the geographic boundaries for counties are more continuous and linear compared to 
City (complex boundaries), the analysis boundaries for the historic crashes occurring in selected 
cities are carries out leveraging the county boundaries within which the respective cities belong 
(66). The spatial distribution of exposure and crash rate features are presented in Figure 8. 
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Figure 7. Population Estimate 

 

 
(a) Traffic exposure as DVMT 

 
(b) Motor vehicle crash rate 

 
(c) Pedestrian crash rate 

 
(d) Pedal cyclist crash rate 

Figure 8. Traffic exposure and average crash rates for the Texas counties (a): Traffic Exposure, (b): Motor Vehicle Crash 
Rate, (c): Pedestrian Crash Rate, (d): Pedal Cyclist Crash Rate 
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Figure 9. Primary Study Area 

4.4. Data and Data Source 
Statewide motor vehicle traffic crash data provides the basic information necessary for effective 
highway and traffic safety efforts at any level of government: local, state, or federal. The Texas 
Department of Transportation (TxDOT) is the custodian of crash records for the State of 
Texas. Texas Transportation Code §550.062 requires any law enforcement officer who in the 
regular course of duty investigates a motor vehicle crash that results in injury to or the death of a 
person or damage to the property of any one person to the apparent extent of $1,000 or more, to 
submit a written report of that crash to TxDOT not later than the 10th day after the date of the crash 
(67, 68). TxDOT collects crash reports from Texas law enforcement agencies for crashes occurring 
on public roadways and the state highway system. The state retention schedule for crash reports 
and data is 10 years plus the current year. Data for years beyond this period is unavailable. TxDOT 
provides guidance manual to guide and instruct peace officers in completing the Texas Peace 
Officer’s Crash Report and the Commercial Motor Vehicle Section of the Texas Peace Officer’s 
Crash Report as required by Section 550.063 of the Texas Transportation Code (69, 70). State 
statutes and city ordinances govern reporting and investigation requirements. Statewide motor 
vehicle traffic crash data provides the basic information necessary for effective highway and traffic 
safety efforts at any level of government: local, state, or federal. State crash data is used to perform 
problem identification, establish goals and performance measures, allocate resources, determine 
the progress of specific programs, and support the development and evaluation of highway and 
vehicle safety countermeasures. Better data will lead to safer roadways. Hence, high quality data 
is a decisive element for effective identification of traffic safety glitches, communicate safety 
issues to the public and media and make better programming and resource allocation decisions. 
TxDOT maintains an open data portal named TxDOT Open Data Portal (71). This data portal 
provides access to numerous periodically updated GIS based transportation data that can be 
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explored and downloaded and has been used in this study. The TxDOT Roadway Inventory layer 
(72) is a statewide dataset that has attribute information routed to TxDOT Roadway linework. By 
using linear referencing tools, attribute information from the TxDOT Roadway Inventory table is 
located on the linework. Roadway attributes such as functional system, traffic counts, surface types 
among many others can be found on a roadway simply by selecting it or performing a query. The 
database is updated frequently by the Transportation Planning and Programming Division at 
TxDOT in the Data Analysis, Mapping and Reporting Branch for internal and public use. Features 
and information, about the transportation infrastructure and traffic relevant for the respective study 
regions were extracted from this data repository. The link level relevant attributes for the entire 
transportation link of Bexar County were intersected and extracted from the TxDOT Open Data 
Portal (73).  

The database management framework was a crucial part of this research as prediction 
models are based on machine learning algorithms, some of them are computationally expensive. 
The data filters and features selection are organized in such a way that, there is ample 
computational memory to carry out the analysis without any interruptions. This optimized dataflow 
is also key for the implementation phase of this project. Figure 10 represents the database 
management framework used for this study. The current framework has potential for further 
optimization and improvements to the total modelling framework.  

 
Figure 10. Database Management Framework 

4.5. Model Specification 
Bexar County, which encompasses the City of San Antonio, was selected as the primary testing 
study area. The proposed multilabel classification model for the categorization problem of crash 
collision and injury severity type, was calibrated using the data extracted for the primary study 
area for the analysis period. The spatial transferability of the proposed model framework was 
carried out for the rest four-study location. As crashes are relatively rare events, it is essential that 
a safety analysis includes an adequate time frame of study (74) to capture the temporal variations. 
The crash data for five years (2013-2017) period for all the study locations, were extracted from 
the crash database maintained the Texas Department of Transportation (TxDOT), called the Crash 
Records Information Systems (CRIS) (67).  To summarize the modelling data information, all the 
crashes occurred in Urban Principal Arterial roads between the 2013 and 2017 was used for the 
training and testing of the classification models. The description of the crash injury severity, the 
collision type and the respective risk factors or features is described in the following section.  
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Traffic crash results from a combination of factors related to the components of the system 
comprising roads, the environment, vehicles and road users, and the way they interact. Some 
factors contribute to the occurrence of a collision and are therefore part of crash causation. Other 
factors aggravate the effects of the collision and thus contribute to trauma severity. Some factors 
may not appear to be directly related to road traffic injuries. Some causes are immediate, but they 
may be underpinned by medium-term and long-term structural causes. Crash risk factors or the 
model features that could impact the target (Collision /Injury type), is presented Table 6 and Table 
5. Other features respective to the person/persons of interest or the units (vehicle involved in the 
car) of interest has also been considered for training the classification model. As more features 
creates additional data issues like overfitting, as well as increases the computational   requirement 
standards to execute the classification algorithm.  

 

Table 5. Categorical Risk Factors 

Nominal Data Description Categories 

Traffic Control Type of traffic control at the scene of the crash 21 

Weather Condition 
The prevailing atmospheric condition reported by the officer at the time 

of the crash 
12 

Light Condition The type and level of light that existed at the time of the crash 7 

Surface Condition 
The surface condition (wet, dry, etc) present at the time and place of the 

crash 
10 

Road Part 
The part of the roadway on which the vehicle(s) was traveling prior to 

the crash 
6 

Entering road Crash occurred at Entering Roads 2 

Road Alignment The geometric characteristics of the roadway at the crash site 7 

Construction zone Whether crash occurred at construction site 2 

Active construction 
zone 

Whether crash occurred at construction site with workers 2 

Intersection related 
Specifies whether a crash occurred at an intersection, not at an 

intersection, or if the presence of an intersection contributed to the crash 
2 

Gender 
Gender of the person of interest (Most severe injury/Driver 1 

injury/Driver 2 injury) 
2 
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Table 6. Numeric Risk Factors 

Feature Name Mean 
Standard 
Error 

Median Mode 
Standard 
Deviation 

Kurtosis Skewness Range Minimum Maximum 

Crash Speed limit 
(mph) 

52.283 0.107 55 45 15.190 3.142 -1.519 76 0 75 

Number of Lanes 5.080 0.012 4 4 1.642 1.549 1.438 9 2 11 

Median width plus both 
inside shoulders (feet) 

45.492 0.172 48 48 24.347 -1.051 0.163 86 0 86 

Right of way Width 
(feet) 

304.396 0.352 300 300 49.821 2.644 -0.052 350 150 500 

Roadbed Width (feet) 93.493 0.165 82 76 23.362 0.315 0.969 138 36 174 

Surface Width (feet) 63.742 0.148 48 48 20.966 0.638 1.177 108 24 132 

Left Shoulder Width 
(feet) 

11.092 0.034 8 8 4.839 0.487 0.986 34 0 34 

Right Shoulder Width 
(feet) 

18.545 0.035 20 20 4.998 3.120 -0.249 36 0 36 

Median Width (feet) 34.533 0.176 40 40 24.967 -1.182 0.094 77 0 77 

Adjusted AADT 77633.844 277.342 70780 73838 39272.066 -0.568 0.531 159201 4279 163480 

% Single Truck AADT 2.461 0.007 1.9 1.8 0.958 5.397 1.868 7.5 0.6 8.1 

% Combination Truck 
AADT 

3.457 0.026 1.5 0.6 3.637 -0.882 0.901 10.3 0.1 10.4 

% Truck AADT 5.928 0.029 4 2.3 4.146 -0.669 0.874 13.8 0.7 14.5 
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Figure 11. Target Distribution 

Figure 11 shows the distribution of the model target features, crash collision type and injury 
severity type. The imbalance nature of the safety data can be seen from the histogram shown below. 
Relatively high percentage of the crashes are same direction collisions and high percentage of non-
injury crashes. To account for the imbalance, the classification model or crash feature can be 
trained with respect to modified target types by transforming the problem from multi-class to 
binary, whether injured or not. This way, the models can be trained without leveraging data 
imputation that could create external bias to the prediction models. Figure 12 illustrates this target 
transformation. The overall scope of this project is described in Table 7 and Figure 13. The detailed 
list of the classification models with the respective target is presented in Table 7. Figure 13 shows 
the various algorithms used for each of the model discussed in the Table 7. 

 
Figure 12. Target Modifications 
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Table 7. Model Specifications  

C
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Sl. Model Name Target Severity type 

1 C1 Collision type NA 

2 C2 Most Severe Injury Type I 

3 C3 Most Severe Injury Type II 

4 C4 Driver Injury (unit 1) Type I 

5 C5 Driver Injury (unit 1) Type II 

6 C6 Driver Injury (unit 2) Type I 

7 C7 Driver Injury (unit 2) Type II 

P
ro

p
os

ed
 M

L
C

 
M

od
el

s 

Sl. Model name Target 1 Target 2 Target 3 Severity type 

1 P1 Collision type Most Severe Injury  NA Type I 

2 P2 Collision type Most Severe Injury  NA Type II 

3 P3 Collision type Driver Injury (unit 1) Driver Injury (unit 2) Type I 

4 P4 Collision type Driver Injury (unit 1) Driver Injury (unit 2) Type II 
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Figure 13 Overview of Tested Models 
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5. ANALYSIS AND FINDINGS 

5.1. Classification Model Performance 
The core objective of this project is to explore the machine learning MLC tool for classification 
problems in the context of traffic safety simultaneous classification of collision type and crash 
injury type. The ability of MLC to categorize an entity under study to more than one labels 
simultaneously provides it an edge over the traditional classification approaches that classify 
collision type and crash injury types separately. Underlying correlation between the injury severity 
type and collision type is leveraged using the AI tool to develop a robust classification model, and 
the performance of the proposed tool will be benchmarked with the conventional tools [see models 
in Figure 13]. The following section discusses the results and inferences from the classification 
analysis, which is followed by the discussion of the results and inference from the clustering 
studies. 

The proposed and conventional classification model experiment for the traffic crash 
collision and severity type is formulated using holdout, in which 70% of the dataset instances are 
used for training and 30% for test. As there are no limit on the data to train the model, removing a 
part of it for validation will affect the model capability up-to great extent and even poses problems 
such as under-fitting.  K-Fold Cross Validation is a suitable method that provides ample data for 
training the model and leaves ample data for validation. The stability of the performance of the 
conventional model has been validated using repeated k-fold cross validation using with number 
of times cross-validator needs to be repeated is set to 10 using 5 folds. Results from the preliminary 
analysis has been   presented as charts (shown in Figure 14). To be precise, the prediction 
performances of the conventional injury severity type classification models and the proposed 
multi-label simultaneous classification of collision type and injury severity type was compared 
and benchmarked preliminarily for label-label precision, recall and f1-score values. 

The numerical results indicate that the performance of the proposed approach was 
comparable or even better than the conventional models (see Figure 14). The conventional models 
[C1 to C7] is highly impacted by the imbalance nature of the crash data. This is shown by the 
extreme distributions (very high-very low values) of the bars. The high performances of LR models 
and SVMs models are caused due to overfitting, as these model’s performances are highly skewed 
by this imbalance, caused by the high crash rate of the “no injury” crashes. Removing the 
imbalance label or imputing under-represented labels can add external bias to the already 
complicated classification problem. This imbalance nature of the crash data can be addressed 
without adding bias through the multi-label classification approach as discussed in the 
methodology section. This is clearly visible from the distributed bars with typical variations, 
(shown in Figure 14 [models P1 to P4]). In other words, the decision, or the classification boundary 
between various injury severity type in the crash features dataspace is more separable when 
collision is also considered simultaneously. Though not documented, the proposed classification 
models outperformed the conventional models in terms of both prediction performance and 
computational time. This superior prediction performances of the proposed approach needs further 
validation though further training and testing.  
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Figure 14 Prediction Performances 
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5.2. Agglomerative Hierarchical Clustering Results 
The main advantage of Hierarchical clustering, as mentioned in the previous section, is its ability 
to provide representation/visualization of results using dendrogram. The 5 outputs from the 
principal component analysis along with traffic variables were subjected to agglomerative 
hierarchical clustering separately with motor vehicle crash rate, pedestrian crash rate and pedal 
cyclist crash rate and the computational results are summarized in Table 8. Results from the cluster 
metrics shows that AGNES with 2 clusters has maximum cluster strength, i.e., the optimum 
number of clusters is 2.  

Table 8. Cluster Stability  

Clusters 
Motor Vehicle Crashes Pedestrian Crashes Pedal cyclist crashes 

Dunn Silhouette Dunn Silhouette Dunn Silhouette 

2 0.5311 0.6377 0.5244 0.6369 0.5374 0.6369 

3 0.2042 0.4146 0.2195 0.4132 0.2065 0.4104 

4 0.2133 0.3809 0.2195 0.3749 0.1985 0.3947 

5 0.2133 0.3652 0.2195 0.3627 0.2097 0.3727 

6 0.2133 0.3554 0.1442 0.3427 0.2139 0.366 

To visualize their similarities at a higher resolution, the resulting dendrogram tree was cut 
at the required height, which creates a hierarchy of 5 branches. Members within same branch are 
more similar than in different branches. Dendrogram plots from the cluster analysis results were 
used to identify 5 county-groups that are similar in the feature space. The resulting dendrograms 
was cut at a height to create 5 branches or cluster group and cluster memberships were analysed. 
This way, it is also possible to understand the changes in the cluster membership under each branch 
as we move down the dendrogram (appendix B). The number of counties in each cluster for the 
motor vehicle and pedestrian crash clustering is almost identical, whereas the same varies for the 
pedal cycle crash clusters. Specifically, cluster 1 and cluster 2 size of pedal cyclist cluster with 
respect to motor vehicle and pedal cyclist crash cluster shows significant variation. The cluster 
size  and membership for Cluster 1, Cluster 2  and Cluster 3 changes for different crash types. With 
respects to the all counties, Cluster 5 and Cluster 4 counties are on the extreme side of the data for 
all crash types considerd. Counties that has significantly high values of features, as relative to other 
counties continue to be in the same cluster groups (Cluster 4) for all types of crashes. These 
counties contains few of the fast growing and popular cities in the state of texas, like Dallas, San 
Antonio, Austin, and Houston. The average Daily Vehicle Miles Travelled (DMVT) is relatively 
higher for cluster 4 compared to other groups. Similarily, counties with feature values on the lower 
side always cluster together (e.g. Cluster 1). Counties like Kennedy, Sterling, Brocks etc. belongs 
to cluster 1.  

The distribution plots of average county features for the different crash types by clusters 
have been presented in Figure 15. Summary of Cluster Features. The bars in blue, amber and grey 
respectively represent motor vehicle, pedestrian and pedal cyclist crashes. The plots shown in 
Figure 15 presents a comprehensive picture about varying dependence of crash features on county 
groups crash rates, informations that are key for the modelling framework. The optimum number 
of clusters for the aggregated data considering the three types of crashes was found to be 2. Clusters 
1, 2, 3 and 5 are identical with respect to the distribution of the features and Cluster 4 varies 
significantly from others. The mean value of crash features like DVMT, Truck DVMT, population 
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density, and road density in cluster 4 for all the crash types is significantly high relative to other 
clusters as explained before, whereas the education type, per capita income, and urban percent 
displays variation among the cluster for all the crash types.  
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Figure 15. Summary of Cluster Features 
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6. CONCLUSIONS 

The primary objective of this project was to explore and investigate the practicality of using 
Machine Learning Multi-Label Classification tool for classification problems in the context of 
traffic safety, in particular simultaneous classification of collision type and crash injury type. The 
ability of MLC to categorize an entity under study to more than one labels simultaneously provides 
it an edge over the traditional classification approaches that classify collision type and crash injury 
types separately. Underlying correlation between the injury severity type and collision type is 
leveraged using the AI tool to develop a robust classification model, and the performance of the 
proposed tool has been benchmarked with the conventional tools. The classification performance 
of all the conventional and proposed classification algorithms considered in this study has been 
benchmarked and compared in terms of prediction performance and computational efficiency.  

 Primary challenge of the project was the lack of literature on both mathematical and 
computational materials that discusses MLC algorithms specific to traffic safety domain. Although 
MLC is an evolving concept, it has gained popularity only in recent years for its intuitiveness and 
simplicity. Specifically, there is lack of materials on domain/algorithm specific hyperparameters 
tuning and their limits for multi-label classification side of ML-AI domain. This means more 
customized testing is needed to optimize such hyperparameters that affects model performance. 
Though showing promising preliminary results, the MLC models also had to deal with challenges 
such as the inherent labels dependencies, the computational complexity related of the model’s 
inference, the large dimensions of the (input/output) spaces and the imbalance label representation 
where negative labels massively outnumber positive ones. Available computational packages for 
MLC classification are relatively new compared to the multi-class model packages, which are 
typically extensively updated and upgraded frequently. This could impact the direct comparison 
of both modelling approaches. 

Though more comprehensive training and testing is required, the numerical result from this 
study indicates that the proposed approach has a promising overall classification performance 
compared to traditional multiclass traffic crash injury classification approaches. The primary 
output of this project is a new research framework for the fundamental injury severity classification 
and traffic safety analysis problems. 

6.1. Future Direction 

An interesting future extension of this research will be to conduct additional training and testing 
of the models with the modified hyperparameters and parallelly narrow down the optimized metric 
for performance evaluation and benchmarking. Research may be conducted on tuning the model 
codes to minimize the package dependencies, thus increasing flexibility over the parameters. 
Besides the model approaches of multi-label algorithms discussed in this report, a third category 
of meta-models distinguish itself as ensemble multi-label models where multi-label models are 
based on the top of a committee of single multi-label models with the goal of combining their 
outputs as a single prediction. This group of models aims to enhance the generalization ability of 
single models by combining multiple ones to accomplish jointly one common task. The 
improvement of performances within this family of methods relies on the concept of diversity, 
stating that a good ensemble is a committee of models in which misclassified instances are 
different from one individual model to another. Such models need to be explored for crash analysis.  
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APPENDIX A: Classification Performance Evaluation [Conventional Models] 
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C
1 

Same Direction 4956 0.87 0.96 0.91 0.88 0.87 0.88 0.88 0.96 0.91 0.88 0.96 0.92 0.88 0.93 0.91 

Angle Collision 675 0.65 0.12 0.2 0.27 0.31 0.29 0.48 0.14 0.21 0.62 0.1 0.17 0.58 0.07 0.12 

Opposite Direction 379 0.82 0.11 0.19 0.33 0.37 0.35 0.57 0.29 0.38 0 0 0 0.49 0.18 0.26 

Other 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

micro avg. 6016 0.86 0.81 0.83 0.77 0.77 0.77 0.85 0.82 0.84 0.87 0.8 0.84 0.87 0.79 0.83 

macro avg. 6016 0.58 0.3 0.32 0.37 0.39 0.38 0.48 0.34 0.38 0.37 0.27 0.27 0.49 0.29 0.32 

weighted avg. 6016 0.84 0.81 0.78 0.78 0.77 0.78 0.81 0.82 0.8 0.79 0.8 0.77 0.82 0.79 0.78 

samples  avg. 6016 0.81 0.81 0.81 0.74 0.77 0.75 0.82 0.82 0.82 0.8 0.8 0.8 0.79 0.79 0.79 

 

C
2 

Incapacitating Injury 94 0 0 0 0.02 0.03 0.03 0.14 0.01 0.02 0 0 0 0 0 0 
Non-Incapacitating 

Injury 
422 0 0 0 0.09 0.12 0.1 0.07 0.01 0.01 0 0 0 0 0 0 

Possible Injury 1358 0 0 0 0.26 0.27 0.27 0.27 0.06 0.1 0 0 0 0.28 0.02 0.04 

Fatal Injury 11 0 0 0 0.05 0.09 0.06 0 0 0 0 0 0 0 0 0 

Not Injury 4131 0.69 0.99 0.81 0.71 0.69 0.7 0.7 0.88 0.78 0.69 1 0.81 0.7 0.8 0.75 

micro avg. 6016 0.69 0.68 0.69 0.53 0.54 0.54 0.67 0.62 0.65 0.69 0.69 0.69 0.69 0.55 0.61 

macro avg. 6016 0.14 0.2 0.16 0.23 0.24 0.23 0.24 0.19 0.18 0.14 0.2 0.16 0.2 0.16 0.16 

weighted avg. 6016 0.47 0.68 0.56 0.55 0.54 0.55 0.55 0.62 0.56 0.47 0.69 0.56 0.54 0.55 0.52 

samples  avg. 6016 0.68 0.68 0.68 0.47 0.54 0.49 0.62 0.62 0.62 0.69 0.69 0.69 0.55 0.55 0.55 

 

C
3 

Not Injured 4131 0.69 0.99 0.81 0.71 0.68 0.69 0.7 0.87 0.78 0.69 1 0.81 0.7 0.79 0.74 

Injured 1885 0.4 0.02 0.03 0.35 0.35 0.35 0.39 0.18 0.25 0 0 0 0.38 0.12 0.18 

micro avg. 6016 0.68 0.68 0.68 0.59 0.58 0.58 0.66 0.65 0.66 0.69 0.69 0.69 0.66 0.58 0.62 

macro avg. 6016 0.54 0.5 0.42 0.53 0.52 0.52 0.55 0.53 0.51 0.34 0.5 0.41 0.54 0.46 0.46 

weighted avg. 6016 0.6 0.68 0.57 0.59 0.58 0.59 0.6 0.65 0.61 0.47 0.69 0.56 0.6 0.58 0.57 

samples  avg. 6016 0.68 0.68 0.68 0.56 0.58 0.57 0.65 0.65 0.65 0.69 0.69 0.69 0.58 0.58 0.58 

 

C
4 

Incapacitating Injury 37 0 0 0 0.03 0.05 0.04 0.25 0.03 0.05 0 0 0 0 0 0 
Non-Incapacitating 

Injury 
179 0 0 0 0.04 0.04 0.04 0.08 0.01 0.01 0 0 0 0 0 0 

Possible Injury 716 0 0 0 0.13 0.15 0.14 0.2 0.02 0.04 0 0 0 0.41 0.01 0.02 
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Fatal Injury 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Not Injury 4264 0.73 0.95 0.83 0.75 0.73 0.74 0.75 0.88 0.81 0.73 0.96 0.83 0.75 0.85 0.8 

micro avg. 5200 0.73 0.78 0.75 0.61 0.62 0.62 0.74 0.72 0.73 0.73 0.79 0.76 0.75 0.7 0.72 

macro avg. 5200 0.15 0.19 0.17 0.19 0.19 0.19 0.25 0.19 0.18 0.15 0.19 0.17 0.23 0.17 0.16 

weighted avg. 5200 0.6 0.78 0.68 0.63 0.62 0.63 0.64 0.72 0.67 0.6 0.79 0.68 0.67 0.7 0.66 

samples  avg. 5200 0.68 0.68 0.68 0.5 0.54 0.51 0.63 0.63 0.63 0.68 0.68 0.68 0.6 0.6 0.6 

 

C
5 

Not Injured 4263 0.73 0.95 0.83 0.75 0.73 0.74 0.75 0.88 0.81 0.73 0.96 0.83 0.75 0.86 0.8 

Injured 937 0 0 0 0.18 0.2 0.19 0.26 0.05 0.08 0 0 0 0.45 0.01 0.02 

micro avg. 5200 0.73 0.78 0.76 0.63 0.63 0.63 0.73 0.73 0.73 0.73 0.79 0.76 0.75 0.71 0.73 

macro avg. 5200 0.37 0.48 0.41 0.46 0.47 0.46 0.51 0.46 0.44 0.37 0.48 0.42 0.6 0.43 0.41 

weighted avg. 5200 0.6 0.78 0.68 0.65 0.63 0.64 0.66 0.73 0.68 0.6 0.79 0.68 0.7 0.71 0.66 

samples  avg. 5200 0.67 0.67 0.67 0.52 0.55 0.53 0.63 0.63 0.63 0.68 0.68 0.68 0.61 0.61 0.61 

 

C
6 

Incapacitating Injury 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Non-Incapacitating 

Injury 
187 0 0 0 0.04 0.05 0.05 0.06 0.01 0.01 0 0 0 0 0 0 

Possible Injury 726 0 0 0 0.15 0.16 0.16 0.26 0.03 0.05 0 0 0 0.47 0.01 0.02 

Fatal Injury 4 0 0 0 0.12 0.25 0.17 0 0 0 0 0 0 0 0 0 

Not Injury 4312 0.73 0.96 0.83 0.75 0.74 0.75 0.74 0.89 0.81 0.72 1 0.84 0.75 0.84 0.79 

micro avg. 5264 0.73 0.79 0.76 0.63 0.63 0.63 0.73 0.73 0.73 0.72 0.82 0.76 0.75 0.69 0.72 

macro avg. 5264 0.15 0.19 0.17 0.22 0.24 0.22 0.21 0.18 0.17 0.14 0.2 0.17 0.25 0.17 0.16 

weighted avg. 5264 0.6 0.79 0.68 0.64 0.63 0.64 0.65 0.73 0.67 0.59 0.82 0.68 0.68 0.69 0.65 

samples  avg. 5264 0.69 0.69 0.69 0.51 0.55 0.53 0.64 0.64 0.64 0.72 0.72 0.72 0.61 0.61 0.61 

 

C
7 

Not Injured 4312 0.73 0.96 0.83 0.75 0.72 0.74 0.74 0.87 0.8 0.72 1 0.84 0.75 0.83 0.79 

Injured 952 0 0 0 0.19 0.2 0.19 0.27 0.05 0.09 0 0 0 0.38 0.02 0.04 

micro avg. 5264 0.73 0.78 0.76 0.64 0.63 0.63 0.72 0.73 0.73 0.72 0.82 0.76 0.75 0.68 0.71 

macro avg. 5264 0.37 0.48 0.42 0.47 0.46 0.47 0.5 0.46 0.45 0.36 0.5 0.42 0.57 0.42 0.41 

weighted avg. 5264 0.6 0.78 0.68 0.65 0.63 0.64 0.66 0.73 0.67 0.59 0.82 0.68 0.68 0.68 0.65 

samples  avg. 5264 0.69 0.69 0.69 0.53 0.55 0.53 0.63 0.64 0.64 0.72 0.72 0.72 0.6 0.6 0.6 
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APPENDIX B: Classification Performance Evaluation [Proposed Models] 

Target 

 Binary Relevance with 
Random Forest Classifier 

ML_KNN 
Classifier Chains with 

Random Forest Classifier 
Label Powerset with 

Random Forest Classifier 
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P1 

Angel Collision 511 0.56 0.23 0.33 0.57 0.11 0.18 0.55 0.22 0.32 0.25 0.25 0.25 

Same Direction 3654 0.89 0.94 0.92 0.88 0.93 0.91 0.88 0.96 0.92 0.82 0.25 0.38 

Opposite Direction 319 0.59 0.34 0.44 0.57 0.18 0.27 0.55 0.47 0.51 0.09 0.3 0.14 

Other 1 0 0 0 0 0 0 0 0 0 0 0 0 

Collision 
Type 
and 

Most 
Severe 
Injury 

Incapacitating Injury 80 0.2 0.01 0.02 0 0 0 0.29 0.03 0.05 0.01 0.19 0.02 

Non-Incapacitating 
Injury 

375 0.15 0.02 0.03 0 0 0 0.13 0.02 0.03 0.14 0.06 0.09 

Possible Injury 1186 0.31 0.09 0.14 0.35 0.04 0.07 0.3 0.11 0.16 0.25 0.03 0.05 

Fatal Injury 6 0 0 0 0 0 0 0 0 0 0 0.33 0 

Not Injury 2838 0.65 0.82 0.73 0.64 0.91 0.75 0.64 0.9 0.75 0.63 0.39 0.48 

micro avg. 8970 0.74 0.68 0.71 0.75 0.68 0.71 0.72 0.72 0.72 0.26 0.26 0.26 

macro avg. 8970 0.37 0.27 0.29 0.34 0.24 0.24 0.37 0.3 0.3 0.24 0.2 0.16 

weighted avg. 8970 0.67 0.68 0.66 0.66 0.68 0.64 0.66 0.72 0.67 0.59 0.26 0.34 

samples avg. 8970 0.74 0.68 0.7 0.73 0.68 0.7 0.72 0.72 0.72 0.26 0.26 0.26 

P2 

Angel Collision 511 0.56 0.22 0.32 0.57 0.11 0.18 0.57 0.23 0.32 0.15 0.35 0.21 

Same Direction 3654 0.89 0.95 0.92 0.88 0.93 0.91 0.88 0.96 0.92 0.88 0.47 0.61 

Opposite Direction 319 0.6 0.35 0.44 0.57 0.18 0.27 0.57 0.47 0.51 0.13 0.34 0.19 

Other 1 0 0 0 0 0 0 0 0 0 0 0 0 

Collision 
Type 
and 

Driver 1 
Injury 
Type 
and 

Driver 2 
Injury 

Incapacitating Injury 37 0.67 0.05 0.1 0 0 0 0.4 0.05 0.1 0.01 0.46 0.02 

Non-Incapacitating 
Injury 

160 0.12 0.01 0.02 0 0 0 0.11 0.01 0.02 0.04 0.15 0.06 

Possible Injury 629 0.23 0.04 0.07 0.5 0 0.01 0.25 0.05 0.09 0.17 0.23 0.19 

Fatal Injury 4 0 0 0 0 0 0 0 0 0 0 0 0 

Not Injury 3655 0.82 0.96 0.88 0.82 1 0.9 0.82 0.97 0.89 0.84 0.31 0.45 

Incapacitating Injury 30 0 0 0 0 0 0 0 0 0 0.01 0.33 0.01 
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Type Non-Incapacitating 
Injury 

182 0.12 0.01 0.02 0 0 0 0.11 0.01 0.02 0.03 0.18 0.06 

Possible Injury 699 0.31 0.06 0.1 0.5 0.03 0.05 0.3 0.05 0.08 0.16 0.17 0.16 

Fatal Injury 3 0 0 0 0 0 0 0 0 0 0 0 0 

Not Injury 3571 0.8 0.96 0.87 0.8 1 0.89 0.8 0.98 0.88 0.81 0.27 0.41 

micro avg. 13455 0.82 0.79 0.8 0.83 0.8 0.81 0.81 0.81 0.81 0.33 0.33 0.33 

macro avg. 13455 0.37 0.26 0.27 0.33 0.23 0.23 0.34 0.27 0.27 0.23 0.23 0.17 

weighted avg. 13455 0.75 0.79 0.75 0.76 0.8 0.74 0.74 0.81 0.76 0.71 0.33 0.43 

samples avg. 13455 0.81 0.79 0.8 0.82 0.8 0.81 0.81 0.81 0.81 0.33 0.33 0.33 

P3 

Angel Collision 511 0.56 0.22 0.32 0.57 0.11 0.18 0.56 0.23 0.32 0.48 0.25 0.33 

Same Direction 3654 0.89 0.95 0.92 0.88 0.93 0.91 0.88 0.96 0.92 0.88 0.95 0.91 

Opposite Direction 319 0.6 0.35 0.44 0.57 0.18 0.27 0.54 0.46 0.5 0.57 0.43 0.49 

Other 1 0 0 0 0 0 0 0 0 0 0 0 0 

Collision 
Type 
and 

Most 
Severe 
Injury 

Not Injured 2838 0.65 0.82 0.72 0.64 0.91 0.75 0.64 0.82 0.72 0.64 0.81 0.72 

Injured 1647 0.43 0.22 0.29 0.44 0.13 0.2 0.42 0.22 0.29 0.41 0.22 0.29 

micro avg. 8970 0.73 0.71 0.72 0.74 0.7 0.72 0.72 0.72 0.72 0.72 0.72 0.72 

macro avg. 8970 0.52 0.43 0.45 0.52 0.37 0.38 0.51 0.45 0.46 0.5 0.44 0.46 

weighted avg. 8970 0.7 0.71 0.69 0.7 0.7 0.66 0.69 0.72 0.69 0.68 0.72 0.69 

samples avg. 8970 0.73 0.71 0.71 0.73 0.7 0.71 0.72 0.72 0.72 0.72 0.72 0.72 

P4 

Angel Collision 511 0.57 0.23 0.32 0.57 0.11 0.18 0.58 0.23 0.33 0.5 0.23 0.31 

Same Direction 3654 0.89 0.94 0.91 0.88 0.93 0.91 0.88 0.96 0.92 0.87 0.96 0.91 

Opposite Direction 319 0.59 0.35 0.44 0.57 0.18 0.27 0.55 0.47 0.51 0.54 0.4 0.46 

Other 1 0 0 0 0 0 0 0 0 0 0 0 0 

Collision 
Type 
and 

Driver 1 
Injury 
Type 
and 

Driver 2 
Injury 
Type 

Not Injured 3655 0.82 0.96 0.88 0.82 1 0.9 0.82 0.96 0.88 0.82 0.96 0.88 

Injured 830 0.27 0.07 0.11 0.43 0.01 0.02 0.28 0.07 0.12 0.3 0.08 0.13 

Not Injured 3571 0.8 0.96 0.87 0.8 1 0.89 0.8 0.97 0.88 0.8 0.96 0.87 

Injured 914 0.34 0.08 0.12 0.73 0.02 0.05 0.35 0.07 0.12 0.34 0.09 0.14 

micro avg. 13455 0.81 0.8 0.8 0.83 0.8 0.81 0.81 0.81 0.81 0.8 0.8 0.8 

macro avg. 13455 0.54 0.45 0.46 0.6 0.41 0.4 0.53 0.47 0.47 0.52 0.46 0.46 

weighted avg. 13455 0.75 0.8 0.76 0.79 0.8 0.74 0.75 0.81 0.76 0.75 0.8 0.76 

samples  avg. 13455 0.81 0.8 0.8 0.82 0.8 0.81 0.81 0.81 0.81 0.8 0.8 0.8 
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APPENDIX C: Agglomerative Hierarchical Clustering  
Table 9 Clustering Data 

 Name Description Min Max Mean Std. Dev. 

 Crash Frequency (2015,2016,2017 average)     

Pedestrian Crash involving Pedestrians 0 5031 84.48 420.56 

Motoveh Motor vehicle crashes 2 303034 5110.42 23330.20 

Cyclist Crash involving pedal cyclists 0 1943 36.76 167.77 

Exposure features 

DVMT Daily vehicle miles traveled (in thousands) 53.97 239484.16 6093.72 20973.16 

Traffic Features 

trf_intnsty Traffic Intensity (DVMT/Road Length) 107.15 15768.85 2454.029 2508.98 

trck_intnsty Truck Traffic Intensity (Truck DVMT/Road length) 23.38 2653.49 451.93 427.7 

Road Infrastructure 

IS_prcnt Interstate Road % 0.00 30.20 2.75 4.92 

FrEx_prcnt Freeway and Expressway % 0.00 8.57 0.54 1.39 

PA_prcnt Principal Arterial % 0.00 68.39 7.40 7.04 

MinA_prcnt Minor Arterial % 0.00 26.62 6.12 4.34 

MaCol_prcnt Major Collector Road % 1.41 55.65 16.53 6.04 

MinCol_prcnt Minor Collector Road % 0.00 22.89 6.21 4.15 

Loc_prcnt Local Road % 18.76 76.71 60.42 9.35 

NoMed_prcnt % of Road section with No Median 31.61 100.00 92.06 7.59 

Unprtcd_prcnt % of Road section with Unprotected Median 0.00 66.60 5.59 7.05 

curbd_prcnt % of Road section with Curbed Median 0.00 7.85 0.41 1.05 

PosBar_prcnt % of Road section with Positive Barrier Median 0.00 14.43 1.95 2.95 

FrExway_nlane Average Number of Lanes on Freeway Expressway 0.00 3.573 0.60 1.14 

PA_nlane Average Number of Lanes on Principal Arterial 0.00 4.00 2.40 1.01 

MinorA_nlane Average Number of Lanes on Minor Arterial 0.00 4.22 2.29 0.61 

Maj_col_nlane Average Number of Lanes on Major Collector 1.86 2.49 2.07 0.10 

Min_col_nlane Average Number of Lanes on Minor Collector 0.00 2.73 1.98 0.29 

Local_nlane Average Number of Lanes on Local Roads 1.93 2.02 2.00 0.01 

Road_den Road density Miles/ Sq. Mile .11 11.60 1.51 1.45 

Socio Demographics and Economics features 

age17_under Percentage of population of age 17 and under 8.51 35.99 24.22 3.83 

age65_older Percentage of population of age 65 and older 8.61 35.61 17.82 5.24 

age85_older Percentage of population of age 85 and older 0.00 4.99 2.15 0.80 

HSG_over % High School Graduate or higher 48.50 93.90 79.47 8.12 

Bach_Over % Bachelor s Degree or higher 3.00 50.20 18.26 7.46 

unemp_rate Unemployment Rate (%) 1.90 11.70 4.47 1.53 

PC_income Per Capita Income ($) 19801 130461.0 43856.59 12504.32 

pop_den Population Density Per Sq Mile 0.12 2718.00 104.80 305.71 

urban_prcnt % of Urban Area 0.00 99.31 44.48 31.90 
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Figure 16 Dendrogram Spatial mapping of cluster members 


