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Interpolation Analytics in Curve Construction 

 

This article focuses on interpolation subject, in particular, the interpolation of curve 

bootstrapping. Both linear spline and cubic spline are studied. Although there are a 

number of advantages to using piecewise cubic splines, there is one major drawback 

which leads us to go in favour of linear splines.  This drawback stems from the fact that 

the perturbation of one point will affect another point. 

 

We will show a graphical illustration later of how the perturbation of one point will affect 

other points.  As a result, we recommend that linear splines be used to construct the 

various curves rather than higher order polynomial splines. 

 

Linear Spline 

 

Given a set of discrete data points ( ) ( ) ( )nn yxyxyx ,,,,,, 1100  , one can use linear 

interpolation between successive points, 
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to build a piecewise linear interpolant of the data points ( )kk yx , : 
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One can then use this to approximate other points on the curve.  The advantage of linear 

interpolation is its simplicity and, in many cases, it provides an adequate approximation.  A 

disadvantage is that the approximating curve is not smooth (since the derivative is in general 

discontinuous at given data points) even though the real curve may in fact be smooth.   

 

Cubic Spline 

 

Another method of interpolation is to fit a series of linked cubic polynomials.  Consider 

an interpolant that allows curvature between the data points and requires the first and 

second derivatives to be continuous throughout the interval  nxx ,0 .  Furthermore, 

assume that the interpolant linking the data points ( )kk yx ,  and ( )11, ++ kk yx  is a cubic 

polynomial of the form: 
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2
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subject to the following constraints: 
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The first constraint is the interpolation of ( )kk yx , ; the second constraint is the continuity 

of the interpolant and the third and fourth constraints are the continuity of the first and 

second derivatives respectively.  A final condition is to set the change in slope at the ends 

of the curve equal to zero (for a natural cubic spline).   

 

Hence, with cubic splines, the curve has to go through each data point but neither the 

curve nor its slope can be kinked at any point.  The gap between each data point is 

represented by a unique polynomial that relates to the next “piece” in a chain by having 
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its slope and rate of change of the slope be equal to that of its neighbour at the point at 

which they join.   

 

A simple example below shows how three data points are linked (at x1, x2, x3) with two 

cubic splines.   

 

Cubic Spline Interpolation 
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           x1       x2         x3  

 

 

Each section of the curve is a cubic polynomial 
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First and second derivatives are equal where curves join: 
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22 3232 hxgxfdxcxb ++=++   
22 6262 hxgdxc +=+  

 

Two extra equations – change in slope at the ends = 0: 

 

062 2 =+ dxc    062 2 =+ hxg  
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