
A user study of command line synthesis from
natural language

Abstract—Developers may have difficulty implementing de-
sired program behaviors, even when they can describe their
goal in English. Existing resources, such as question-and-answer
websites, catalog specific tasks that someone wanted to perform
in the past. However, these resources have limited value for
generalizing to new tasks or to compound tasks that require
combining multiple operations.

NLP-inspired tools translating English sentences to equivalent
source code are a promising approach. The accuracy of such
tools is modest, and in particular is much lower than for natural-
language-to-natural-language tools.

Recent work aims to improve the performance of such tools
against reference benchmarks. However, our aim is different.
Our objective is to determine whether such improvements are
essential.

We investigated whether current tools improve developers’ pro-
ductivity and how developers perceive these tools. We performed
a controlled study in which developers complete Bash scripting
tasks assisted by an automatic English to Bash translation tool.

Index Terms—machine translation, bash, natural language,
neural networks

We submit the methodology as-is as pre-registration for our
study.

I. METHODOLOGY

We wish to know whether an imperfect AI model can help
developers. To answer this question, we performed a controlled
user study to test whether developers benefited from using
an AI assistant that suggests Bash one-liners from english
descriptions to complete file system tasks.

We follow the format suggested by [1] for reporting experi-
ments in software engineering. This study is pre-registered [2]
at https://doi.org/10.5281/zenodo.6600939.

A. Goal

The goal of this study is to analyze whether developers
benefit from using an AI assistant that translate english
descriptions into Bash one-liners to complete Linux file system
tasks. The AI assistant is imperfect, that is, it can give incorrect
suggestions to the developer, which is true for any AI model.
To assess the potential benefits, we measured the time it take
for developers to complete Linux file system tasks using Bash
one-liners and wether they could complete the task within a
time limit.

To this end, we formulated the following research questions:
RQ1 Can imperfect AI models help developers?
RQ2 How do developers perceive imperfect tool suggestions?

We refined RQ1 in two research questions:
RQ1.1 Can imperfect AI models help developers complete

tasks faster?

RQ1.2 Can imperfect AI models help developers complete
tasks more correctly?

We answered the first research question with a controlled
experiment and the second with an exit survey.

If imperfect predictions significantly reduce developers’
effort, then a focus on model’s performance alone may lead
researchers to dismiss useful approaches.

Although our experiment considers one specific tool, the
implications would apply much more broadly, even beyond
software engineering tools and tasks. This is a valid general-
izability claim to make because the existential argument for
this tool shows that it is worth investigating for any other
tools using ML models. Until you try it out on your end
users, there is currently no way to know how helpful your
model’s suggestions are in practice and what is the model’s
performance threshold, if any, for the tool to be practically
helpful to developers.

B. Participants

We recruited undergraduate and graduate students who are
familiar with the Unix command line and the Bash command
language, either from taking a class or from programming
experience. Participants received a $20 gift-card compensation
for their participation (approximately one hour).

C. Experimental Materials

All the experimental materials are publicly available at https:
//doi.org/10.5281/zenodo.6600939.

1) Website: The experiment website contained an overview
of the experiment, the consent form, and instructions for
participating in the experiment.

2) Consent: Participant consent was obtained electronically
at the start of the experiment. Participants could withdraw from
the study at any time without disclosing a reason.

3) Demographic Survey: Before starting the experiment,
participants filled out an anonymous survey that contained the
following questions:

1) What year did you enter college?
2) How many courses with programming exercises or projects

have you taken in your life (including any current
enrollments)?

3) How many years of programming experience, in any
language, do you have professionally (i.e., for which you
got paid, including internships)?

4) How familiar are you with Shell scripting (including Bash
scripting)?
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Beginner (Using Shell scripting or commands infre-
quently or having some class experience)

Experienced (Using Shell scripting or commands some-
what regularly or writing a few scripts)

Expert (Using Shell scripting or commands extensively
or developing production code)

5) Have you used the Tellina tool before?
4) Environment: Each participant ran the experiment on

a computer or virtual machine running Rocky Linux 8 [3].
Participants ran commands in Rocky Linux’s default terminal.

Whenever a user ran a command that does not solve the
given task, the Meld [4] visual comparison tool quickly and
concisely [5] showed how the files and directories (or, the
command’s output) differed from the expected solution.

5) File system: Users ran commands from a directory
containing the files and folders from a GitHub repository1.
The directory structure consisted of 29 folders and 62 files and
is 4 levels deep. We changed all constant values in the task
descriptions to match the contents of this file system.

6) Natural Language to Code Interface: We chose the
task of converting natural language to bash commands because
there was a recent competition [6] in which 7 tools [7], [8],
[9], [10], [11], [12], [13] competed. The competition focused
on comparing approaches through metrics including accuracy,
energy consumption, and latency.

Compared to other code completion tasks, file-system
completion task in Bash have multiple advantages: 1) All
developers are familiar with the business domain since everyone
know what a file system is; 2) Bash one-liners are fast to
write and execute, and do not require to install a compiler or
interpreter. 3) Participants can focus on writing Bash one-liners
since they do not have to worry about language syntax, or API
documentation to complete the tasks.

To choose between the 7 tools that competed, we considered
usability as it is the most relevant for developers adoption
and usage. That is, how easy is it for a developer to submit
a query to the tool and receive the results. We preferred a
web-based tool, rather than a command-line tool. A web tool
that works in a similar way to existing tools developers use
(e.g., Google, Stack Overflow), does not clutter or interrupt
the shell session, and does not require learning new special-
purpose shell commands. We chose Tellina [13]. Section ??
compares Tellina to the other tools. Our experiment is not
an evaluation of this tool per se, and could be run with any
reasonable assistant that suggests Bash one-liners.

Tellina: Tellina is an open source tool supporting 102
unique utilities, 206 unique flags and 15 reserved tokens. Tel-
lina’s model is trained on 10,000 pairs of English descriptions
and Bash one-liners. The model has a BLEU [14] score of
50.9/100 and a top-3 full command accuracy of 45%. The
full command accuracy expects an exact match between the
predicted solution and the expected solution: it does not account
for partial solutions. When accounting for partial solutions
where incorrect command arguments do not count as errors

1https://github.com/icecreammatt/class-website-template

(i.e., the name of the input file is incorrect), the top-3 partial
accuracy performance is 61%, In other words, Tellina is wrong
about half the time.

Tellina’s web application [15] has an interface similar to
the Google search engine: the user types a natural language
sentence describing a task, then the website displays the model’s
top 20 bash command translations of the sentence.

The Tellina web application shows recent queries from all
users. The user study used a modified version that lacks this
feature to avoid influencing participants with queries of other
participants. The web application also shows example queries;
we ensured that they differ from all the tasks in the experiments.

7) Exit survey: After the experiment, participants filled out
a survey, which qualitatively measured the perceived usefulness
of Tellina. Questions marked with [likert] are coded on a 1 to
7 scale [16].

1) Did you try Tellina at least once to help you solve a task?
[binary]

2) I want to use Tellina in the future. [likert]
3) Partially correct suggestions made by Tellina helped me

find a solution. [likert]
4) Suggestions made by Tellina slowed me down. [likert]
5) Incorrect suggestions made by Tellina were easy to correct.

[likert]
6) What features of Tellina were the most helpful to you?

[open]
7) What mistakes made by Tellina affected you most? [open]
8) Please list the features that you think should be added to

Tellina. [open]
9) Please give us any additional comments you have about

Tellina. [open]

D. Tasks

We sourced the tasks from real posts from five websites
(table I) that offer programming help.

TABLE I: Popular websites for help on Bash problems.

Stack Overflow https://stackoverflow.com/
Super User https://superuser.com/
Unix & Linux https://unix.stackexchange.com/
Command Line Fu https://www.commandlinefu.com/
Bash One-Liners https://www.bashoneliners.com/

1) Collection: We collected a total of 125 commands. From
each of the five websites, we collected the 25 most popular
posts that satisfy the following criteria:

• the solution is a Bash one-liner.
• the solution uses default commands included in Linux

distributions.
• the solution uses commands supported by Tellina [13].
• the solution is deterministic and can be reproduced as a

file system task.
For Stack Exchange websites (i.e., Stack Overflow, Super

User, Unix & Linux), we only considered posts tagged as bash
questions that had an accepted solution.
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2) Sampling: We randomly sampled 17 posts out of the
125 to be used as tasks for the participants. 12 posts were
for the experiment and the remaining 5 posts were for the
experiment’s training. Ten of the 17 solutions consisted of one
Bash command, and the remaining 7 had two Bash commands
(e.g., connected by a pipe). The solutions of the 17 posts used
13 distinct commands (frequency indicated in parentheses):
find (8), wc (2), grep (1), sort (1), cat (1), mv (1), cp (1),
mkdir (1), comm (1), diff (1), du (1), rmdir (1), basename (1).
We observed the same long-tailed distribution of commands
as [13] with the command find being most common and
followed by a long tail. In total, the solutions used 39 flags
and 44 arguments, averaging 2.3 flags and 2.6 arguments per
Bash one-liner.

3) Rewording: When a post referred to a file or directory
name or extension, we adapted the question and solution
to the local files and folders in the experiment file system
(section I-C5).

We paraphrased the questions to prevent posts from being
trivially found on the web by the user copy-and-pasting the
task prompt into a search engine. After our paraphrasing, the
webpage containing the original post did not appear in the top
10 Google search results (but other webpages that solved the
problem may be in the top 10 Google search results).

We controlled for the clarity of the reworded questions by
running the questions in the pilots described in section I-I and
reworded ambiguous or unclear questions. Rewording questions
introduced implicit bias, which is also present in the original
questions. We took care to be complete, precise, consistent and
to not assume previous knowledge on the Linux filesystem or
directory recursivity expectations. We addressed bias issues
reported during the pilots.

4) Operationalization: A task consisted of a prompt and an
expected outcome. The prompt is an English description of a
file system operation (e.g., “Find all files whose name starts
with foo”). The expected outcome is either a change in the file
system, such as deleted/added/modified files, or the command
output displayed on the terminal (e.g., cat foo.txt).

E. Procedure

Each participant completed the study in a location of their
choosing, unobserved to mitigate the Hawthorne effect [17],
[18].

Each participant first completed a general training, solving 3
blank tasks (i.e., tasks that do not count towards the experiment).
The general training familiarized the participant with the
environment, how tasks are presented, the use of the Meld
diff tool, the help commands available in the shell, and how
to give up on a task. Before the participant used Tellina, the
participant went through Tellina training. This was like general
training, with 2 blank tasks to solve with the use of Tellina.
This familiarized users with the Tellina web interface. For some
users (those who were allowed to use Tellina on their first
set of tasks), the two trainings occurred back-to-back at the
beginning of the experiment. For other users (those who were
allowed to use Tellina on their second set of tasks), the general

TABLE II: Factorial counterbalanced experiment design. For
example, participants in group A started with tasks A to F under
the control treatment. They finished with tasks G to L under the
Tellina treatment.

Treatment Order
Control, Tellina Tellina, Control

Taskset Order TA..F , TG..L Group A Group B
TG..L ,TA..F Group C Group D

training occurred at the beginning of the experiment, and the
Tellina training occurred midway through the experiment.

A participant could attempt a task multiple times. Every
attempt resets the file system to its original state in order to
start over from a fresh slate and enforces the use of a Bash one-
liner to solve the task. Each task had a 6-minute timeout after
which the experiment automatically skipped to the next task.
In addition, each set of task had a time limit of 25 minutes.

F. Hypotheses and Variables

The independent variable Tellina Access (TA) is whether
participants have access to Tellina or not for a task. Its values
(the experimental treatments) are:

• No (Control): The participant may use any local resource
(such as man pages and experimentation on the command
line) and any Internet resource (such as tutorials, question-
and-answer websites, and web search). This emulates how
a programmer would normally solve a file system task.

• Yes (Tellina): The participant may use Tellina and any of
the resources available in the control treatment.

We answer RQ1 using the dependent variables Success Rate
(SR) and Time Spent on Tasks (TST). SR is the fraction of
tasks solved by the participant for each condition; it is between
0 and 1, inclusive. TST is the total time in seconds that the
participant spent on the tasks. We measure the time spent from
the moment the task’s prompt appears on the participant’s
terminal until they submit the right answer, run out of time,
or abandon the task (which counts as the maximum time).

The null hypotheses are:
H10: Access to Tellina has no significant effect on Success

Rate (SR).
H20: Access to Tellina has no significant effect in Time

Spent on Task (TST).

For RQ2, we considered the responses from the survey.
We used the four Likert-scale questions to quantify Tellina’s
perceived usefulness and the four open-ended questions for
qualitative comments and feedback.

Additionally, we collected the dependent variables Number
of Attempts (NA) and Recovery Event (RE) for exploratory
purposes. NA counts the number of attempts to complete a task.
RE keeps track if the participant encountered a situation where
they left the experiment and resumed it, such as a personal
emergency or the experimental infrastructure crashing.



G. Experiment Design

The experiment used a within-subjects design, where each
participant experienced every treatment on the independent
variable: each participant does some tasks in one condition
and other tasks in the other condition. We adopted a factorial
counterbalanced design (table II) to avoid learning effects or
fatigue bias due to the order of tasksets or treatments. The
participants were distributed uniformly into the four groups.

Section I-D2 explained how we chose 17 tasks. We used
the average time spent during the pilot (section I-I) as a proxy
for task difficulty.

We used 5 of the easiest commands for participant training.
For the general training, we used 2 of the 3 easiest tasks whose
Bash one-liner solution contains one command, and 1 of the
2 easiest multi-command tasks. For the Tellina training, we
used 1 of the 3 easiest single-command tasks, and 1 of the 2
easiest multi-command tasks. Inclusion of multi-command tasks
ensured the participant is familiar with Bash one-liners and
made the training representative of the rest of the experiment.

We randomly split the remaining 12 tasks into two tasksets
of size 6, and sorted each taskset by difficulty from easiest to
hardest. We named the tasks in one taskset A to F, and named
the tasks in the other taskset G to L.

H. Analysis procedure

1) Effect: We used a four-way analysis of variance (ANOVA)
to verify the effect of independent variables (order, subject,
taskset, treatment) on dependent variables SR and TST .

SRt and SRc, TST t and TST c are calculated per partici-
pant. (t subscripts are for the Tellina treatment, and c subscripts
are for the control treatment.) We used a mortality analysis
for tasks that are abandoned, timed-out, or not completed (i.e.,
the participant ran out of time in the taskset): the task was
counted as taking the maximum time of 6 minutes.

We removed participants who did not complete the experi-
ment and manually reviewed cases where the total time spent is
1.5 times the interquartile range above or below the upper and
lower quartile respectively: we removed participants who didn’t
make serious attempts (i.e., they didn’t enter any commands,
or skipped the majority of the tasks).

2) RQ1: Assuming a normal distribution (i.e., Shapiro–Wilk)
for SRt and SRc, TST t and TST c, we answered RQ1 by
testing the null hypotheses H10 and H20.

Specifically, we tested for significant difference between
SRt and SRc. We rejected H10 and accepted the alternative
hypothesis H1a (Access to Tellina has a significant effect on
SR) if there were a significant difference with p = 0.05 as
threshold.

Similarly, we tested for significant difference between TST t

and TST c. We rejected H20 and accepted the alternative
hypothesis H2a (Access to Tellina has a significant effect in
TST ) if there were a significant difference with p = 0.05 as
threshold.

3) RQ2: We performed a qualitative analysis to answer RQ2.
We used the data from the Exit Survey.

We used questions 3), 4), 5) to analysis the perception of
the participants. We used question 2) as a sanity check and
open-ended question 7) as supporting evidence.

Questions 3), 4), 5) were Likert-scale questions rated from
1 to 7. A value of 1 represented a Strong disagreement and a
value of 7 represented a Strong agreement with the statement.
A value of 4 was neutral.

We looked at the frequency of negative and positive responses
centered from the middle of the Likert questions as evidence
to answer RQ2.

For example, for question Sometimes Tellina makes incorrect
suggestions. How often did partially correct suggestions help
you, we answered by the affirmative (i.e., Partially correct
suggestions are helpful) if most of the answers are above the
middle of the Likert scale (i.e., 5).

If most of the questions were affirmative, then it indicates
that Tellina suggestions are useful and the incorrect suggestions
are not impeding participants.

I. Pilots

Following recommendations from [19], the experiment
design went through several rounds of peer reviews and pilot
tests.

1) Pilot 1: The two tasksets contained 8 tasks each and the
training consisted of 1 general training task at the start and
1 training task before the treatment with Tellina. The tasks
had a limit of 10 minutes each and the tasksets had a limit
of 40 minutes each. The experiment environment included a
custom web interface hosting an emulated shell environment,
the Tellina website, and the exit survey. The experiment was
conducted on the web interface.

We recruited 39 students in the computer science major to
participate (24 graduate students, 15 undergraduates). None
were familiar with Tellina. All of them were familiar with
Bash. We accepted only graduate students who self-reported
to be Bash users, and we accepted only undergraduates who
had completed or were enrolled in our department’s Linux
tools course. We excluded data from 4 of the participants,
because 3 of them forgot to switch treatment conditions between
the tasksets and 1 of them did not complete the study. The
participants were not compensated.

We observed that participants in the Tellina treatment spent
on average 22% less time than without Tellina. This seems
to indicate that Tellina helps programmers to write bash
commands in less time. Furthermore, the survey indicated
that Tellina is perceived positively overall and that partially
correct suggestion were still helpful.

This pilot shed light on important issues. First, we observed
that around 20% participants were not able to complete the
experiment or the data generated was lost due bugs in the
infrastructure. To address this issue, we changed the experi-
mental infrastructure to work inside a regular Bash environment
directly. Additionally, we designed and implemented a recovery
feature allowing participants to restart the experiment where
they left off. We control for the effect of the recovery feature



by observing whether a participant has to use this feature and
check for statistically significant effect.

Second, we learned that due to the small number of
participants and dropped data, the experimental results were
not always statistically significant (p = 0.05), and that with a
larger pool of subjects, the results would be more compelling.

2) Pilot 2: The first pilot was performed with a version
of Tellina that handles 17 file system utilities. We wished to
perform our main experiment with the latest version of Tellina,
which handles 102 utilities, so we performed another pilot
experiment.

We recruited 6 graduate students and 8 undergraduate
students by convenience sampling. The graduate students
participated voluntarily and the undergraduate students were
compensated $20. All of the participants were familiar with
Bash. The experiment environment included a Bash experiment
environment, the Tellina website, and the exit survey, as
presented in Sections I-C.

We found that the initial 8 tasks each plus 2 training
tasks was too much (18 total). The number of tasks incurred
frustration and fatigue, causing participants to skip tasks or
cheat (e.g., printing the expected output with echo), particularly
for participants that were not compensated, indicating potential
quality issues with the data collected. To mitigate this effect,
we decreased the size of each taskset to 6 tasks and reduced the
time limits for tasks to 6 minutes and for tasksets to 25 minutes.
Additionally, we added 3 more training tasks (Section I-G) to
reduce the learning effect during the experiment proper.

Difficult tasks frustrated participants, especially when en-
countered early in the experiment. To mitigate this, we sorted
the tasks by increasing difficulty (based on time taken in the
pilots to date). This does not introduce fatigue bias tasks do not
change position except between treatments, which is addressed
by the factorial design.

Decreasing the number of tasks makes it harder to show
statistically significant results. We calculated that at least 60
participants are needed to obtain a power of 0.80 with a
moderate effect size (Cohen’s f = 0.25) and p = 0.05.

Similarly to the previous pilot, we noticed that some
participants didn’t switch treatments. To mitigate this issue, we
added a prompt encouraging the participants to pause and read
the new instructions indicating that the treatment had changed.
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