
Masterarbeit Nr. 487

Design and implementation of a data-driven wall
function for the velocity in RANS simulations

Jihoo Kang

Issued by: Prof. Dr.-Ing. R. Radespiel
Institut für Strömungsmechanik
Head of Institute Prof: Prof. Dr.-Ing. R. Radespiel
Technische Universität Braunschweig

Supervisor: Dr.-Ing. Andre Weiner (TU Braunschweig)

Publication: 06.05.2022

Statutory Declaration in Lieu of an
Oath

Hereby I, Jihoo Kang, declare that I have authored this Masterarbeit independently and without
any external help and that I have not used any aids other than those indicated.

Braunschweig, 04.05.2022

i

Abstract

A wall function approach makes simulations at high Reynolds numbers possible to yield reliable
results even in the case of coarser meshes. However, it is difficult for the approach to obtain good
results if boundary conditions are not valid for the law of the wall. This is why a data-driven
approach is needed. A data-driven wall function can be applied to the boundary layer conditions
where the law of the wall is not applicable such as adverse pressure gradient conditions, walls
with porous media, etc.

This project aims to create a machine learning (ML) wall function that can be used for lin-
ear and non-linear flow conditions from a simple 1D geometry, which does not need any direct
numerical simulation (DNS) data. The data is obtained from a 1D channel at Reδ = 1 · 107, and
three ML models that have the labels of slopes at wall, slopes at cell faces, and velocity at faces
in wall normal direction are trained with the maximum relative error of 16%. The trained ML
models are applied to flat plate cases at Rex = 1 · 107, 3 · 106, and 6 · 106. With the correction of
diffusive fluxes, the skin friction of the scenarios for the ML models is compared to that of the
standard wall function at y+ = 0.05, 1, 2, 5, 10, 30, 50, 100. The data-driven wall function yields
a smaller confidence interval that corresponds to approximately 65% of the confidence interval
for the standard wall function scenario, which means that the skin friction of the data-driven
wall function is less mesh-dependent than that of the standard wall function. On the other hand,
an airfoil case with a chord length of 1m at Rec = 3 · 106 is also investigated. The skin friction
and the pressure coefficient of the ML models compare to those of the standard wall function at
y+ = 0.05, 1, 2, 3.5, 5, 10, 50, 100 with the correction of diffusive and convective fluxes. For the
skin friction except at y+ = 3.5, the data-driven wall function yields slightly the longer confi-
dence interval that is 108.4% of the confidence interval for the standard wall function scenario.
This implies that the data-driven wall function is more mesh-dependent than the standard wall
function for the airfoil case.

iii

Contents

Nomenclature viii

1 Introduction 1

2 Theoritical Background 5
2.1 Discretization of Momentum Equation . 5
2.2 Wall Functions . 6

2.2.1 Law of the Wall . 6
2.2.2 Spalding’s Function . 7
2.2.3 Wall Shear Stresses . 7

2.3 Data-driven Approach . 10
2.3.1 Supervised Learning . 10
2.3.2 Multilayer Perceptron . 11

3 Implementation of Numerical Methods 14
3.1 Solver Modification . 14
3.2 Flux Correction Methods . 15

3.2.1 Diffusive Flux Correction . 17
3.2.2 Convective Flux Correction . 20

4 Approximating Velocity Profile in 1D Channel Flow 22
4.1 Simulation Setup . 22

4.1.1 Flow and Boundary Conditions . 22
4.1.2 Mesh Generation . 23

4.2 Learning Parameters . 24
4.2.1 Data Generation . 24
4.2.2 Generation of Mapping Function . 26
4.2.3 Investigation of Uncertainties . 26

4.3 Results . 31
4.3.1 Model for Wall Slopes . 31
4.3.2 Model for Face Slopes . 32
4.3.3 Model for Velocities at Faces . 33

5 Wall Modeling in 2D Flat Plate 34
5.1 Simulation Setup . 34

5.1.1 Flow and Boundary Conditions . 34
5.1.2 Mesh Generation . 35
5.1.3 Related Coefficients . 35

5.2 Results . 36
5.2.1 Comparison of Skin Friction for Different Scenarios 36
5.2.2 Comparison of Skin Friction for Different y+ 39

6 Application of Modeling to NACA-0012 Airfoil 42
6.1 Simulation Setup . 42

6.1.1 Flow and Boundary Conditions . 42
6.1.2 Mesh Generation . 43
6.1.3 Related Coefficients . 44

6.2 Results . 44

v

vi Contents

6.2.1 Comparison of Pressure Coefficient for Different Scenarios 44
6.2.2 Comparison of Skin Friction for Different Scenarios 47
6.2.3 Comparison of Skin Friction for Different y+ 50

7 Generalization of Wall Models for Various Reynolds Numbers 53
7.1 Simulation Setup . 53

7.1.1 Flow and Boundary Conditions . 53
7.1.2 Mesh Generation . 54

7.2 Results . 54
7.2.1 Comparison of Skin Friction for Different y+ at Rex = 3 · 106 54
7.2.2 Comparison of Skin Friction for Different y+ at Rex = 6 · 106 57

8 Discussion 60

9 Summary 64

Bibliography 66

List of Figures xii

List of Tables xiv

A Additional Plots for Comparison of Skin Friction xv
A.1 Comparison of Skin Friction for Different Scenarios at Rex = 3 · 106 xv
A.2 Comparison of Skin Friction for Different Scenarios at Rex = 6 · 106 xviii

Nomenclature

Latin Symbols

t Time
D Diffusive coefficient
SΦ Arbitrary source term
p Pressure
V Control volume
o Control surface
f Each face in a cell
Fc All the faces in a cell
n Normal vector
U Velocity vector
Uf Velocity vector at each face
UW Velocity vector on west side
UE Velocity vector on east side
UN Velocity vector on north side
US Velocity vector on south side
Sf Surface area at each face
Sf Surface vector at each face
SW Surface vector on west side
SE Surface vector on east side
SN Surface vector on north side
SS Surface vector on south side
U∞ Ambient velocity
Ũ Normalized velocity (0-1 scale)
Uavg Integral average velocity
x x-axis in Cartesian coordinates
y y-axis in Cartesian coordinates
u Velocity in x-direction
v Velocity in y-direction
u+ Non-dimensionalized velocity in wall units
y+ Non-dimensionalized height in wall units
uτ Friction velocity
E Constant for the law of the wall
C Cost function
L Loss function
xdf df -th feature
ydl dl-th label
ŷi Prediction of i-th label

viii

Nomenclature ix

x Feature vector
y Label vector
wk Random weight with k-th epoch
m The number of training data sets
fm Mapping function
R Real number
z Sum of neurons
a Activation function
a Operation of sum and activation function
w Sigmoid function
RE Relative error
d Diameter
Re Reynolds number
Reδ Reynolds number for channel flow
Rex Reynolds number for flat plate
Rec Reynolds number for airfoil
Cf Skin friction
Cp Pressure coefficient

Greek Symbols

∇ Nabla operator
Φ Arbitrary tensor property
φ Mass flux
ν Kinematic viscosity
νeff Effective kinematic viscosity
νt Turbulent kinematic viscosity
ρ Density
Ω Continuous flow domain
ΩD Discretized flow domain
Ωc Flow domain in one cell
ε Strain tensor
τ Deviatoric stress tensor
τw Wall shear stress
κ V on Kármán constant
γw Exponent for blending at a wall
γf Exponent for blending at the first cell face normal to a wall for diffusive fluxes
γφ Exponent for blending at the first cell face normal to a wall for convective fluxes
µ Mean value
σ Standard deviation

Indices

w Wall in general
wall Wall for correction and training
f Face in general / friction for Cf
face The first cell face normal to a wall
W West

x Nomenclature

E East
N North
S South
df Number of features
dl Number of labels
i i-th neuron in (l − 1)-th layer
j j-th neuron in l-th layer
l l-th layer
n Total number of layers
∞ Ambient
eff Effective
corr Corrected
num Numerical
model Model
velBlend Velocity blending
ypBlend y+ blending
δ Channel
avg Average
x x-axis in Cartesian coordinates
y y-axis in Cartesian coordinates
c Chord
p Pressure
rep Representative
ref Reference

Abbreviations

CFD Computational Fluid Dynamics
ML Machine Learning
LES Large Eddy Simulation
RANS Reynolds-Averaged Navier-Stokes
PINN Physics-Informed Neural Network
TBNN Tensor Based Neural Network
NN Neural Network
FNN Feed-forward Neural Network
CNN Convolutional Neural Network
WMLES Wall-Modeled Large Eddy Simulation
WRLES Wall-Resolved Large Eddy Simulation
DNS Direct Numerical Simulation
UIUC University of Illinois at Urbana-Champaign
SA Spalart-Allmaras
FVM Finite Volume Method
LHS Left-Hand Side
GD Gradient Descent
SGD Stochastic Gradient Descent
MSE Mean Squared Error
MLP Multilayer Perceptron
ReLU Rectified Linear Unit

Nomenclature xi

SIMPLE Semi-Implicit Method for Pressure-Linked Equation

Chapter 1

Introduction

In fluid mechanics, computational approaches are broadly employed in order to save efforts and
resources for experiments. One of these approaches is generally known as computational fluid
dynamics (CFD) that applies to various engineering fields such as aeronautical engineering, chem-
ical engineering, automotive fields, etc. However, in simulations, the treatment of specific wall
areas such as turbine blades and pump impellers is mostly difficult to obtain reliable results since
the flows in these areas generally have high Reynolds numbers that require finer meshes. When
highly resolved mesh is used, then reliable results are to be expected. Nevertheless, a problem
arises again because an aspect ratio of a cell will be large when the mesh is exceedingly resolved.

One approach to mitigate this problem is introducing wall functions. A wall function is a function
from the asymptotic solutions for walls in canonical flows [12], which makes CFD simulations
more reliable regardless of any mesh resolutions. One paper related wall functions by Kalitzin et
al. [5] is introduced here. The authors implemented a new wall function that uses a shifted com-
putational domain started from a certain distance from the wall [5]. For the several turbulence
models such as Spalart-Allmaras (SA), k − ω, k − g, and v2 − f , the performance of the new
wall function was investigated in flat plate cases with zero pressure gradient and recirculating
flow [5]. There are three regions in a turbulent boundary layer that correspond to a viscous
sublayer, a logarithmic layer, and a buffer layer [5]. According to the results, when a first cell
center normal to the wall is located in the buffer layer, the wall function that is analytically
approximated cannot appropriately capture the behavior of the real parameter values, whereas
the wall function can support the simulation to perform well when the first cell center is in the
viscous sublayer or the logarithmic layer [5]. Thus, for the buffer layer, they employed a look-up
table that is based on an accurate numerical wall solution in a flat plate case with zero pressure
gradient, and they found that this approach was effective [5].

However, accurate solutions for a buffer layer are not available for every flow case. Hence,
another approach that is referred to as data-driven or machine learning (ML) approach needs
to be introduced so as to alleviate the problem of lack of exact solutions in the buffer layer. In
addition, this approach not only mitigates the problem in the buffer layer, but it also makes
the wall modeling applicable to more complex types of boundary layers that do not follow the
law of the wall such as a boundary layer with pressure gradients. On the other hand, there
are also disadvantages of the data-driven approach compared to the classical wall function ap-
proach. If the quality of data is too low or the data is not well distributed, the training will
not be performed well, which leads to obtaining an improper mapping function. Thus, the data
should be well distributed before training. In addition, the data-driven approach might lead to
misinterpretation of results when no physical information is involved. The results should always
be compared to the physical context after training. Over the past decades, this data-driven

1

2 1. Introduction

approach for the CFD has been developed and improved in several ways. On the one hand, ML
methods are introduced in large eddy simulations (LES). There are several types of usage of ML
in LES, but only the literature related to wall treatments will be mentioned here [21, 23]. On the
other hand, the methods are also used in Reynolds-Averaged Navier-Stokes (RANS) simulations,
and the types of usage are mainly divided into three parts. A classification of certain areas in
simulations [7], a usage of physics-informed neural networks (PINN) [8, 15, 18, 17], and a usage
of physics-free neural networks [14, 11].

For LES, Yang et al. employed a PINN that is related to the vertically integrated thin-boundary-
layer equations for directly usage of the velocity and the wall height, and the eddy population
density scalings to approximate wall shear stresses at a viscous sublayer and a logarithmic layer,
which become the actual inputs [21]. The trained neural network (NN) was applied to a wall-
modeled LES (WMLES) in the channel flow situation at a small Reynolds number, and it could
well capture the behavior of the law of the wall [21]. Zhou et al. created two feed-forward neural
networks (FNN) by using the normalized features that correspond to the wall-normal distance,
near wall velocities, and pressure gradients to predict wall shear stresses for the normal and the
streamwise directions [23]. The model was trained from the wall-resolved LES (WRLES) data
in a periodic hill case [23]. Consequently, the trained model is used to predict wall shear stresses
for a priori test, and velocity and pressure fields for a posteriori test [23].

For the first type of usage of ML in RANS, Ling and Templeton trained several ML algorithms
such as support vector machines, Adaboost decision trees, and random forests for classification
based on the direct numerical simulation (DNS) and the LES data of several canonical flows in
order to distinguish where the high uncertainty area is [7]. For a classifier, three eddy viscosity
assumptions such as the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis,
and the non-negativity of the eddy viscosity were applied to train, which would be the output
values from the non-dimensional inputs [7]. If each assumption cannot be applied or valid at one
point after the simulation, the classifier classifies the point as uncertain [7]. The ML model could
predict the high uncertainty area except the region near the wall, which implies that the wall
treatment is difficult due to lack of the prediction accuracy for observation of uncertainty areas [7].

The second type is about PINN where the information of physics is introduced as a part of
input features for training ML in this case. Ling et al. trained a deep NN to predict the
Reynolds stress anisotropy tensor from high-fidelity data [8]. The model is called tensor based
neural network (TBNN) which consists of two networks, one for five tensor invariants that cor-
respond to scalar functions of two tensors S (strain rate tensor) and R (rotation rate tensor),
and another one for ten isotropic basis tensors that are linear combinations of S and R [8]. The
inputs for the tensor part are these ten tensors, and for the scalar part are the five invariants that
are the trace of those combinations [8]. The trained model performed significantly better than
the typical RANS models without ML in order to predict the anisotropy tensor (a priori) and
find the velocity field (a posteriori) [8]. Tian et al. made a similar PINN which also corresponds
to TBNN to predict the non-local pressure Hessian term in a velocity gradient tensor [15]. The
model was trained from DNS data, and it turned out that the performance of the model was
better than the model without applying physics information [15]. The other physics-informed
ML structure that is of random forests was used to predict the Reynolds stresses by formulation
of the function of discrepancies of Reynolds stresses between DNS data and a RANS simulation
by Wang et al. [18]. Here, the automatically invariant inputs of RANS were employed that
were proposed in the other literature [8], and they were set by the domain knowledge related to
physical equation or formulation of fluid mechanics such as turbulence intensity, wall distance
based Reynolds number, pressure gradient along streamline, and so on [18]. In the test phase,
the fixed discrepancy values from the training phase were used to modify the baseline RANS
simulations to target the outputs of the baseline simulations to the trained terms [18]. Volpiani

3

et al. made a new volume forcing term in the Boussinesq hypothesis, and calculated this term
by a data-assimilation method from high-fidelity data [17]. The trained model was used in the
case of a periodic hill at different Reynolds numbers and geometries that always contains flow
separation and vortices [17]. The model precisely predicted the mean velocity fields in terms of
interpolation as well as extrapolation compared to the typical RANS model [17].

The third type is the ML models that do not use any domain knowledge of fluid mechanics
to form input features. Thuerey et al. trained a convolutional neural network (CNN) model
to find velocity and pressure field in airfoil flow situations from the data obtained from RANS
simulations with the airfoil shapes from University of Illinois at Urbana-Champaign (UIUC) [14].
They made inputs in three groups as directly used input, normalized input, and mean pressure
subtracted input, and then compared results for various network sizes [14]. The results from
the trained CNN were very similar to the original RANS solutions [14]. Meanwhile, Maulik
et al. created an ML model that can predict eddy viscosity by the surrogate modeling in the
backward-facing step case [11]. The inputs are the location and the velocity field from the data
of a simulation with the SA turbulence model, and then the eddy viscosity is the output [11].
The trained model showed similar results to the original SA model for the test cases in the paper
to predict the velocity, the eddy viscosity, and the skin friction [11]. They trained the model for
the two equation models as well, and the model well predicted the related parameters [11].

As seen above, the trend of literature is as follows. First of all, there are more papers about wall
treatment for LES, while the specific terms in equations are considered for RANS instead of wall
boundary areas. Secondly, plenty of papers deal with PINNs that mostly improve the Reynolds
stress tensor and seldom any terms in turbulence models, whereas few papers have mentioned
physics-free NN models. Thirdly, it is not obvious if the trained models were iteratively used in
the actual CFD solver to improve the simulation results. If the outputs from a trained model are
fixed and inserted once into a solver, the simulation can mimic the performance of the generic
solvers, but might not be able to improve the results.

Figure 1.1: Sketch of a bubble interface [19]

4 1. Introduction

In this work, the above three aspects will be considered. Since the literature related to RANS
rarely focuses on the wall area itself, a wall treatment method in RANS, particularly for the
SA model, will be investigated here. In addition, a physics-free NN will be introduced in which
the output labels are for the later use of the solver correction. Instead of using PINNs, the NN
simply maps the slopes at a wall and faces, and the velocity at faces in order to correct the
diffusive and the convective fluxes in the Navier-Stokes equation. Furthermore, the trained ML
model in this work will be applied to a CFD solver in OpenFOAM, which not only give the labels
to the solver, but also receive the information of the features from the solver iteratively. Similar
works can be found in two papers by Weiner et al. [20] and Weiner [19]. For both works, a
combined ML model was applied to investigate the phenomena in bubble interfaces [19, 20]. As
shown in Figure 1.1, a sketch of a bubble interface is depicted [19]. The profile of concentration
boundary layers of a bubble was investigated, then the diffusive and the convective fluxes of the
concentration field were corrected by the ratio of the ML model slope to the numerical slope at
an interface fΣ

i and the first cell face normal to the interface foi [19, 20]. Similarly, a velocity
profile of a certain fluid will be corrected in the current work instead of the concentration profile.
A detailed explanation will be demonstrated at a later stage.

In Section 2, discretization methods for the momentum equation, rudimentary theories of wall
functions, and the data-driven approach will be illustrated. In Section 3, modification of solver
and flux correction methods will be explained. Afterward, extraction of data and mapping of
labels by the NNs in a 1D channel case will be demonstrated in Section 4. Subsequently, the
trained NNs will be applied in a 2D flat plate case to improve the capturing ability of the ref-
erence skin friction values at the wall in Section 5. The case is convection-dominated, and thus
only diffusive fluxes will be corrected at a wall and the first cell face normal to the wall. In
Section 6, the trained NNs will be applied in a NACA-0012 profile setting for the identical pur-
pose. Convective fluxes will be involved in the section this time. In Section 7, the NN models
will be tested at various Reynolds number settings for the model to be investigated if it can
comprehensively capture the behavior of the actual turbulent phenomena near the wall. Finally,
discussion and summary of this work will be mentioned in Section 8 and Section 9.

Chapter 2

Theoritical Background

2.1 Discretization of Momentum Equation

In this section, discretization methods of a momentum equation will be investigated. For a
starting point, a general transport equation [10] is given by

∂Φ

∂t
+∇ · (UΦ)−∇ · (D∇Φ) = SΦ, (2.1)

whereU is the given velocity, Φ is a scalar, vector, or tensor property,D is the diffusion coefficient,
and SΦ is a source term. If Φ is a vector or tensor value, a dyadic operator is added between U
and Φ. For the momentum equation of incompressible flows to be formed, Φ is substituted for
the velocity vector field U as follows

∂U
∂t

+∇ · (U⊗U)−∇ · (ν∇U) = −∇p
ρ
, (2.2)

where ν is the kinematic viscosity, and the source term is replaced with the pressure gradient
term without volume force. In this work, the main simulations will use steady-state solvers, and
thus the temporal term disappears as follows

∇ · (U⊗U)−∇ · (ν∇U) = −∇p
ρ
. (2.3)

Figure 2.1 shows the conformation of a general flow domain that is discretized [10]. A continuous
flow domain Ω can be approximated as a discretized domain ΩD. ΩD consists of discretized cells,
and one of the cells is referred to as Ωc where the cell centered value in Ωc corresponds to xc.
With this notation, a finite volume method (FVM) is introduced by integrating over the cell Ωc

as follows

∫
Ωc

∇ · (U⊗U)dV −
∫

Ωc

∇ · (ν∇U)dV = −
∫

Ωc

∇p
ρ
dV. (2.4)

The terms on the left-hand side (LHS) of Equation (2.4) can be changed to surface integrals by

5

6 2. Theoritical Background

Figure 2.1: General discretized flow domain [10]

the divergence theorem as follows

∫
∂Ωc

(U⊗U) · ndo−
∫
∂Ωc

(ν∇U) · ndo = −
∫

Ωc

∇p
ρ
dV. (2.5)

The first term on the LHS of Equation (2.5) is called a convective term of the momentum
equation, whereas the second term on the LHS corresponds to a diffusive term. The convective
term and the diffusive term can be discretized as follows

∑
f∈Fc

(Uf ⊗Uf) · Sf −
∑
f∈Fc

(ν∇Uf) · Sf = −
∫

Ωc

∇p
ρ
dV, (2.6)

where the subscript f means each face in the cell Ωc, Fc corresponds to all the faces in the cell,
and Sf is the surface vector that is made by multiplication of the normal vector n and the surface
area at the face Sf .

2.2 Wall Functions

As mentioned in the introduction part, a wall function is a fixed profile of parameters from
the asymptotic solutions [12] to capture the proper behavior in simulations regardless of mesh
resolution. In this section, several basic theories related to wall functions will be investigated.

2.2.1 Law of the Wall

When the velocity and the height of cells are non-dimensionalized, turbulent boundary lay-
ers without pressure gradient consist of a viscous sublayer and a logarithmic layer. The non-
dimensionalized units are known as wall units. In the viscous sublayer, the function [13] is given
by

u+ = y+, (2.7)

where

2.2 Wall Functions 7

y+ = yuτ
ν (2.8)

u+ = u
uτ

(2.9)

uτ =
√

τw
ρ , (2.10)

for y+ ≤ 5.

On the other hand, the solution [3] in the logarithmic layer is given by

u+ =
1

κ
ln (Ey+), (2.11)

for y+ ≥ 30, where E = 5.0 and κ = 0.41.

The region between the viscous sublayer and the logarithmic layer is called a buffer layer located
at 5 < y+ < 30, but there is no particular law for this area, which might lead to unexpected
behavior in simulations. Therefore, several mitigation methods are available, and one of those
methods is creating a function that can capture all the regions.

2.2.2 Spalding’s Function

Spalding’s function is a function that can well fit the empirical velocity distribution and capture
the law of the wall in both of a viscous sublayer and a logarithmic layer with only one equation
[13] as follows

y+ = u+ + 0.1108[e0.4u+ − 1− 0.4u+ − 1

2
(0.4u+)2 − 1

6
(0.4u+)3 − 1

24
(0.4u+)4], (2.12)

where the fourth order term can be omitted. This original version can be modified as a new
equation1 by using κ and E as follows

y+ = u+ +
1

E
[eκu

+ − 1− κu+ − 1

2
(κu+)2 − 1

6
(κu+)3]. (2.13)

In addition, this function mitigates unstable behavior in the buffer layer as well because the value
in that area is determined by the function. Figure 2.2 demonstrates how Spalding’s function
shapes in wall units. When this function is applied as a wall function in OpenFOAM, velocity
fields for coarser meshes can also be calculated. In this work, Spalding’s function will be the
reference function for correcting convective and diffusive fluxes to calculate the effective viscosity
νeff . A detailed explanation of implementation methods will be discussed in Section 3.

2.2.3 Wall Shear Stresses

A method to investigate turbulent flow behavior near a wall is finding shear stresses at the wall.
Therefore, in this subsection, a derivation of wall shear stresses will be demonstrated. As a
starting point, Equation (2.3) is used here. This equation can be compared to the conservation

1https://www.openfoam.com/documentation/guides/latest/doc/guide-bcs-wall-turbulence-nutUSpald
ingWallFunction.html

https://www.openfoam.com/documentation/guides/latest/doc/guide-bcs-wall-turbulence-nutUSpaldingWallFunction.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-bcs-wall-turbulence-nutUSpaldingWallFunction.html

8 2. Theoritical Background

10−1 100 101 102 103
0

5

10

15

20

25

30

y+ (log scale)

u
+

Spalding’s function

Spalding
u+ = y+

u+ = 1
κ ln(Ey+)

Figure 2.2: Spalding’s function plot

form of the Cauchy momentum equation2 for incompressible flows without time derivative and
volume force, which is given by

∇ · (U⊗U)−∇ · τ = −∇p
ρ
. (2.14)

Assuming a Newtonian fluid, the following relation

∇ · τ = ∇ · (ν∇U) (2.15)

holds. The term ∇ · τ that is a divergence of the deviatoric tensor [2] should be investigated,
since shear stresses are caused by momentum diffusion. For this term to be investigated, the
following constitutive relation for incompressible flows is to be used

τ = 2νε, (2.16)

where

ε =
1

2
(∇U +∇UT). (2.17)

When Equation (2.17) is inserted into Equation (2.16), the result is given by

τ = ν(∇U +∇UT). (2.18)

Subsequently, this shear stress term can be expressed as a matrix form in a 2D space as follows

τ = ν

[
2∂xu ∂xv + ∂yu

∂xv + ∂yu 2∂yv

]
, (2.19)

2https://en.wikipedia.org/wiki/Navier-Stokes_equations

https://en.wikipedia.org/wiki/Navier-Stokes_equations

2.2 Wall Functions 9

where

U =

[
u
v

]
(2.20)

n =

[
0
−1

]
= −ny (2.21)

∇U =

[
∂xu ∂yu
∂xv ∂yv

]
(2.22)

∇UT =

[
∂xu ∂xv
∂yu ∂yv

]
. (2.23)

The surface normal vector at a wall is depicted in Figure 2.3.

x

y

n

Figure 2.3: Surface normal vector at a wall

With respect to FVM, an integral is added to all terms of the Navier-Stokes equation. Par-
ticularly, the diffusive term can be transformed by the divergence theorem as follows

∫
V
∇ · τdv =

∮
o
τ · ndA. (2.24)

Afterward, this surface integral can be changed to the sum of each face, and the shear stress
term at the wall is given by

τ · n = ν

[
2∂xu ∂xv + ∂yu

∂xv + ∂yu 2∂yv

] [
0
−1

]
= ν

[
−∂xv − ∂yu
−2∂yv

]
. (2.25)

Since the velocity in y-direction v is much slower than the velocity in x-direction u, all the terms
related to v is negligible as follows

τ · n = ν

[
−∂yu

0

]
. (2.26)

According to Equation (2.26), the wall shear stress exerts on the surface with the opposite
direction of the flow, but the sign of the term can be neglected for calculating only magnitude.
Consequently, the wall shear stress τw is given by

τw = ν · ∂u
∂y
|wall. (2.27)

10 2. Theoritical Background

In turbulent flows, νeff is the effective viscosity that consists of the molecular viscosity and the
turbulent eddy viscosity, and thus Equation (2.27) is changed to

τw = νeff
∂u

∂y
|wall = (ν + νt)

∂u

∂y
|wall. (2.28)

As shown in Equation (2.28), the wall shear stress term is formed by multiplication of the
molecular viscosity and the velocity gradient at the wall in a simulation. In the case of an
inclined or declined wall in 2D, Equation (2.28) can be calculated as

τw =
√
τ2
w,x + τ2

w,y, (2.29)

in Cartesian coordinates.

2.3 Data-driven Approach

2.3.1 Supervised Learning

Supervised learning is one of the ML types such as regression, classification, and deep learning,
whose goal is to find a mapping function between inputs and outputs. Inputs in the supervised
learning are known as features, whereas outputs are called labels. Features mean the arguments
of a mapping function, and labels are the corresponding function values [19]. A machine learning
technique is commonly used when the mapping function is not found yet, but only the data of
features and labels is available.

When it comes to a mathematical sense, a feature vector is introduced as follows

x =
[
x1 x2 x3 ... xdf

]T
, (2.30)

where df is the number of features [19]. Analogously, a label vector is also introduced as

y =
[
y1 y2 y3 ... ydl

]T
, (2.31)

where dl is the number of labels [19]. A mapping function fm [19] is defined as

fm : Rdf −→ Rdl . (2.32)

A supervised learning process is to find the fm based on the data with the number of training data
sets m. During the process, the labels are iteratively predicted until the difference between the
predicted labels and the true labels is sufficiently small. This difference is called a loss function
(or a cost function), and there are several types of loss functions such as 0-1 loss function, mean
squared error (MSE) loss function, and so on. Amongst them, the MSE loss function L [22] is
commonly used. This MSE loss function is given by

L =
1

2m

m∑
i=1

(yi − ŷi)2, (2.33)

where yi is the true label and ŷi is the prediction at i-th training set. The purpose of this training
is to minimize the loss function, and the iterative process such as gradient descent is used to find
the minimum point of the loss. In a regression problem that has a convex MSE loss function, it
is not difficult to find the global minimum, and therefore the minimal loss can straightforwardly
be found. However, in a deep learning problem using an NN, there are a number of local minima,
which means that it is difficult to discover which one is the global minimum. This causes the
training to yield different results, but these results can normally be trusted. The machine learning
in this work is conducted with a basic NN model called multilayer perceptron (MLP). Thus, the
MLP algorithm will be introduced in the next subsection.

2.3 Data-driven Approach 11

2.3.2 Multilayer Perceptron

An MLP consists of layers and neurons as shown in Figure 2.4 [9]. There are an input layer and
an output layer in one MLP, and several hidden layers are located between the input layer and
the output layer. In each layer, a number of neurons exist, and the number of neurons per layer
does not have to be identical each other. From the input layer, inputs are passed to each neuron,
and the calculation by so-called activation functions such as rectified linear unit (ReLU) and
sigmoid function is executed in each neuron. Subsequently, the information from all the neurons
is transmitted to the output layer. This process corresponds to forward pass to optimize the
model weights in the forward direction and evaluate the model outputs compared to the true
values.

Figure 2.4: Basic structure of an MLP with 2 inputs, 1 output, and 4 neurons per hidden layer
[9]

The calculation process of the forward pass consists of several stages. At one neuron location in
layer l, the initial stage of calculation is given by

zlj(x
l−1) =

N l−1∑
i=1

wl−1
ji xl−1

i = (WT · x)l−1, (2.34)

where the index i denotes each neuron in layer (l − 1), j denotes each neuron in layer l, W is a
weight matrix, and N l−1 is the number of weights in layer (l− 1) [19]. z denotes the sum of the
neurons in the previous layer, but this cannot be a new input for the new layer. A transformation
that is non-linear is needed to map a complicated function. Therefore, an activation function a
is introduced. By calculation with the activation function, a new j-th input neuron xlj at the
layer l [19] is finally given by

xlj = alj(
N l−1∑
i=1

wl−1
ji xl−1

i) = alj(z
l
j(x

l−1)). (2.35)

The mapping function fm is calculated by the same operation explained above [19] Nl times as
follows

fm(x) = aNl ◦ aNl−1 ◦ ... ◦ a1(x), (2.36)

12 2. Theoritical Background

where ◦ is the operation that calculates z and a. Consequently, a prediction at the output layer
[19] is calculated as follows

ŷi = fm(xi). (2.37)

Figure 2.5: Sketch of the gradient descent method3

In MLPs, the loss function should also be minimized by the method known as optimization for
deep learning. One of the popular optimization methods is called gradient descent (GD)3. The
GD method finds the weight that has the minimum loss value. Figure 2.53 explains how the
method works. At every iteration, the point of the weight is calculated and moved to another
location by using the derivative of the weight itself with a learning rate α [1, 4] as follows

wlk+1 = wlk − α
∂L

∂wlk
, (2.38)

where wlk is a weight at l-th layer with k-th epoch. The subscript ji is excluded in Equation
(2.38). In PyTorch, there are several advanced optimizers such as the Adam optimizer [6],
stochastic gradient descent (SGD) [16], etc. In this iterative optimization process, derivatives
should be calculated to search for the way to reach the minimum point of loss for an MLP, but
the calculation is more complicated than Equation (2.38) because there are several hidden layers
in a deep NN. For this purpose, a backpropagation [4] is to be introduced. The derivative of the
MLP is calculated from the output layer to the input layer by usage of the chain rule, and thus
the derivative at layer l [4] is calculated by the backpropagation as follows

∂L

∂wl
= −(yi − ŷi)

dŷi
dwn

dwn

dwn−1

dwn−1

dwn−2
...
dwl+1

dwl
, (2.39)

where the superscript n means the total number of layers in the MLP. Subsequently, the weight
3https://www.ibm.com/cloud/learn/gradient-descent

https://www.ibm.com/cloud/learn/gradient-descent

2.3 Data-driven Approach 13

is updated by the optimization method such as GD according to Equation (2.38). The forward
propagation and the backpropagation execute back and forth in the loop, and consequently the
mapping can be found.

Chapter 3

Implementation of Numerical Methods

3.1 Solver Modification

The cases in this work, which are 2D flat plate cases and a 2D airfoil case, are basically steady-
state simulations. Therefore, the steady-state solver simpleFoam is used. However, this basic
solver cannot be used as it is because the NN models that will be used in this project should also
be involved in this simulation. For the NN models to be applied, the simpleFoam solver must be
modified. The original version of algorithm SIMPLE1 (Semi-Implicit Method for Pressure-Linked
Equations) is briefly mentioned as follows.

1. Set the boundary conditions

2. Solve the momentum equation to compute the velocity field

3. Compute the mass fluxes at the cell faces

4. Solve the pressure equation and apply the relaxation factor

5. Correct the mass fluxes at the cell faces

6. Correct the velocities based on the new pressure field

7. Update the boundary conditions

8. Repeat 2 to 7

The basic idea of the data-driven wall modeling is correcting fluxes at a wall and the first
cell face at each adjacent cell normal to the wall. This means that the momentum equation
in simpleFoam should use cell face values instead of cell center values. Hence, the header file
UEqn.H that contains the momentum equation is to be modified.

Listing 3.1: UEqn.H
surfaceScalarField nuEff = fvc:: interpolate(turbulence ->nuEff ());
#include "nuEffCorrection.H"
#include "fluxCorrection.H"
tmp <fvVectorMatrix > tUEqn
(

fvm::div(phi , U)
+ MRF.DDt(U)
// - fvc::div(turbulence ->nuEff() * dev2(T(fvc::grad(U))))
- fvm:: laplacian(nuEff , U)

1https://openfoamwiki.net/index.php/OpenFOAM_guide/The_SIMPLE_algorithm_in_OpenFOAM

14

https://openfoamwiki.net/index.php/OpenFOAM_guide/The_SIMPLE_algorithm_in_OpenFOAM

3.2 Flux Correction Methods 15

==
fvOptions(U)

);

Listing 3.1 shows the momentum equation part in UEqn.H. In the equation, the laplacian term
needs cell face values of the effective viscosity νeff , but the term with fvc can be commented
out because it is only used for stability and the value goes to zero when a simulation converges.
Moreover, the cell face values of the effective viscosity are difficult to be applied to this term.
Before the calculation of the momentum equation, the header files nuEffCorrection.H and
fluxCorrection.H should be included to correct the effective viscosity for diffusive fluxes and
the mass flux φ for convective fluxes. Thus, the original SIMPLE algorithm is changed as follows.

1. Set the boundary conditions

2. Correct the diffusive fluxes at the wall and the first cell face

3. Correct the convective fluxes at the first cell face

4. Solve the momentum equation to compute the velocity field

5. Compute the mass fluxes at the cell faces

6. Solve the pressure equation and apply the relaxation factor

7. Correct the mass fluxes at the cell faces

8. Correct the velocities based on the new pressure field

9. Update the boundary conditions

10. Repeat 2 to 9

With this new algorithm, the momentum equation can receive the corrected νeff and φ.

Every correction method is performed in these header files including the calculation by the
NN models. A detailed explanation of this correction method will be discussed in Section 3.2.
The file datadriven_wmSimpleFoam.C for the flat plate case is the main structure of the modi-
fied solver, and the file ddwmSimpleFoam_airfoil.C is for the airfoil case. In each main solver
file, torch/script.h, findCellFaceLabels.H, and initDatadrivenTurbulenceModel.H are in-
cluded for PyTorch, cell and face indices, and initialization of the NN models, respectively.
writeData.H is the header file for writing out field values. The rest of the settings are identical
to the original simpleFoam solver.

3.2 Flux Correction Methods

In this section, flux correction methods will be discussed. The idea of the flux correction methods
is came from Figure 3.1. Figure 3.1 depicts the difference between the actual slope and the
numerical slope at the wall and the first cell face in wall units with respect to mesh resolution.
The blue graph corresponds to Spalding’s function, whereas the orange graph is the numerically
interpolated velocity. The slope at the wall always underestimates the actual slope. Meanwhile,
the slope at the first cell face normal to the wall overestimates the real one for coarser meshes,
but underestimates it for finer meshes. When it comes to the velocity value at the first cell
face, it always underestimates the actual velocity. The discrepancies lead to the results that
are largely mesh-dependent, and thus not only the wall correction but also the first cell face
correction should be employed for mesh-independent behavior.

16 3. Implementation of Numerical Methods

Figure 3.1: Error in the flux approximation with respect to the mesh resolution y+ = 40

For the flux correction methods, Equation (2.6) is used for a starting point, which is recalled as
follows∑

f∈Fc

(Uf ⊗Uf) · Sf −
∑
f∈Fc

(ν∇Uf) · Sf = −
∫

Ωc

∇p
ρ
dV.

A convection-dominated flow is applied in this work as shown in Figure 3.2.

US

SS

UN

SN

UW SW UESE

U∞

Wall

Figure 3.2: Velocities and surfaces in a convection-dominated flow at a wall

Using the notation in Figure 3.2, the convective flux in Equation (2.6) is changed to∑
f∈Fc

(Uf⊗Uf)·Sf = (UW⊗UW)·SW +(UE⊗UE)·SE+(UN⊗UN)·SN+(US⊗US)·SS . (3.1)

The difference between the magnitude of UW (UW) and UE (UE) is negligible compared to the
difference betweenUN andUS because of the boundary layer structure at the wall, and therefore
UW = UE can be applied. Subsequently, Equation (3.1) is changed to∑

f∈Fc

(Uf ⊗Uf) · Sf = (UN ⊗UN) · SN + (US ⊗US) · SS . (3.2)

3.2 Flux Correction Methods 17

On the other hand, the diffusive flux in Equation (2.6) is modified as∑
f∈Fc

(ν∇Uf) · Sf = (ν∇UW) · SW + (ν∇UE) · SE + (ν∇UN) · SN + (ν∇US) · SS . (3.3)

The difference between the gradient of the velocities at west and east is also negligible, which
leads to the equation as follows∑

f∈Fc

(ν∇Uf) · Sf = (ν∇UN) · SN + (ν∇US) · SS . (3.4)

When it comes to the convective flux for the case of a flat plate, the velocity component in
x-direction u is not zero, but the velocity component in y-direction v is almost zero that can be
negligible. Thus, Equation (3.2) is changed to∑

f∈Fc

(Uf ⊗Uf) · Sf = 0, (3.5)

where US = 0 since the velocity at a wall is zero. Hence, the convective flux is not considered in
flat plate cases. However, for the case of an airfoil, v is not zero, and therefore UN remains in
the equation as follows∑

f∈Fc

(Uf ⊗Uf) · Sf = (UN ⊗UN) · SN = [(u2cosθ+ uv(cosθ+ sinθ) + v2sinθ)|N]ny, (3.6)

where the angle between the surface of the airfoil and the x-axis is θ.

Meanwhile, for the diffusive flux in the flat plate case, both of the velocity gradients at the
north and the south faces are not zero and in a large scale. Thus, Equation (3.4) can be ex-
pressed again as∑

f∈Fc

(ν∇Uf) · Sf = (ν∇UN) · SN + (ν∇US) · SS = (ν
∂u

∂y
|N − ν

∂u

∂y
|S)ny. (3.7)

Equation (3.7) can be applied to both of the flat plate and the airfoil cases, and hence the velocity
gradients at the north and the south faces will be used for the diffusive flux correction.

Consequently, Equations (2.6), (3.5), and (3.7) can be combined to one equation for the flat
plate case, which is given by

(ν
∂u

∂y
|face − ν

∂u

∂y
|wall)ny =

∫
Ωc

∇p
ρ
dV. (3.8)

Analogously, Equations (2.6), (3.6), and (3.7) can also be combined to one equation for the airfoil
case as follows

[((u2cosθ+uv(cosθ+sinθ)+v2sinθ))|face]ny−(ν
∂u

∂y
|face−ν

∂u

∂y
|wall)ny = −

∫
Ωc

∇p
ρ
dV. (3.9)

3.2.1 Diffusive Flux Correction

A diffusive flux correction method is based on Equation (3.8) or Equation (3.9). According to
these equations, the velocity gradients or the slopes at a wall and the first cell face normal to
the wall are needed to correct the flux. The slopes influence wall shear stresses because the wall

18 3. Implementation of Numerical Methods

shear stresses are affected by the wall slopes in accordance with Equation (2.28) that is recalled
as follows

τw = νeff
∂u

∂y
|wall = (ν + νt)

∂u

∂y
|wall.

The diffusive flux correction occurs when the ratio of the ML model slope to the numerical
slope for the wall and the first cell face is multiplied to Equation (2.28) in order to improve the
prediction of wall shear stresses. Afterward, the numerical velocity gradient is changed to the ML
model slope. However, in actual simulations, this direct substitution does not work because the
velocity gradient in the simpleFoam solver is possibly implicit, which means that the information
of the next time step is involved for the gradient by employing the Euler backward method for
transient simulations or a relaxation factor. Hence, the ratio of the velocity gradient will be
applied to the effective viscosity instead of the gradient term itself. The basic correction method
by changing the effective viscosity is given by

νeff,corr = νeff,num
∂u/∂y|model
∂u/∂y|num

, (3.10)

where num stands for numerical, corr stands for corrected. The ratio of the slopes modifies the
effective viscosity, and the modified effective viscosity changes wall shear stresses.

Figure 3.3: Error in the flux approximation with respect to the mesh resolution y+ = 2

Meanwhile, it is obvious that a diffusive correction is not needed if mesh is well resolved according
to Figure 3.3 because the difference between the numerical and the actual values are almost zero,
but the effect of correction needs to gradually increase as the mesh resolution goes coarser.
Therefore, a blending method with a criterion of velocity is introduced here. The criterion of
velocity that is also considered as a normalized velocity is as follows

Ũ =
U − Uwall
U∞ − Uwall

, (3.11)

3.2 Flux Correction Methods 19

where Uwall is the magnitude of the velocity at the wall, U∞ is the magnitude of the inlet velocity,
and U corresponds to the velocity magnitude at the first cell center. If the mesh goes coarser,
the cell center velocity gets closer to the ambient velocity, which leads to Ũ = 1. This velocity
blending method can be divided into two methods that correspond to a typical blending and
a reverse blending. The typical blending method is employed for the wall correction, while the
reverse blending method is used for the first face correction. The typical blending equation is as
follows

νeff,velBlend|wall = νeff,num|wall ·
Ũγw · ∂u/∂y|model + (1− Ũ)γw · ∂u/∂y|num

∂u/∂y|num
, (3.12)

where γw is an exponent that can control the extent of blending at the wall, and γw = 0.8 is
used for this work. If the center of the first cell normal to the wall is located far from the wall,
Equation (3.12) changes to Equation (3.11) since Ũ = 1 is applied. In contrast, if the first cell
center is near the wall, no correction occurs because Ũ = 0 holds here. On the other hand, the
typical velocity blending method does not work for the first cell face correction in a simulation
because the numerical slopes get infinitely smaller, which leads to very small denominator of
the blending equation if the simulation iterates further. Thus, the reverse blending equation is
introduced which is given by

νeff,velBlend|face = νeff,num|face ·
∂u/∂y|model

Ũγf · ∂u/∂y|num + (1− Ũ)γf · ∂u/∂y|model
, (3.13)

where γf is an exponent that can control the extent of blending at the first cell face normal to
the wall, and γf = 0.7 is used here. The blending occurs in the denominator part, and therefore
the equation is more stable than the typical blending equation. The working scheme is basically
the same as the previous one, but the actual value is different since the blended value is inserted
into the denominator instead of the numerator. The reverse blending is not employed to the wall
correction since the wall correction is already stable, which means that the reverse blending is
not needed. In addition, the scale of the wall slopes are much larger than the scale of the face
slopes, and thus the reverse blending method yields significantly different values from the typical
blending method.

Subsequently, another blending method is introduced based on y+. If the y+ value is small
which means that mesh is resolved, the simulation itself can capture the actual behavior of wall
shear stresses, and thus the flux correction method is not needed. However, if the y+ value is too
large, uncertainties for the first face correction at the front of the plate increases. Therefore, only
the wall correction is used for this case. This is why the y+ blending method is employed, and
the method is divided into two equations for the wall and the first face correction, respectively.
The y+ blending equation for the wall correction is given by

νeff,ypBlend|wall = wwall · νeff,num|wall + (1− wwall) · νeff,velBlend|wall, (3.14)

where

wwall =
1

1 + exp(−0.95(15− y+))
. (3.15)

wwall is a sigmoid function that has the y+ range between 10 and 20. If y+ is smaller than 10
where wwall = 1.0, no blending and correction occur, whereas the full velocity blending works
for y+ > 20 where wwall = 0.0. On the other hand, the equation for the first face correction is
given by

νeff,ypBlend|face = wface · νeff,num|face + (1− wface) · νeff,velBlend|face, (3.16)

20 3. Implementation of Numerical Methods

where

wface =
1

1 + exp(−0.95(15− y+))
+

1

1 + exp(−0.95(y+ − 30))
. (3.17)

In this case, the first cell face correction works between the y+ range of 10 and 35 because there
is a kink at the front of the plate and a large discrepancy of skin friction at the front of the
airfoil if the same sigmoid function as Equation (3.15) is used for the first cell face correction.
For y+ > 35 where wface = 1.0, only wall correction is used as shown in Figure 3.4 because
Equation (3.17) turns the face correction off for this range.

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y+

w

Sigmoid function w for blending

wwall
wface

Figure 3.4: Sigmoid function w for y+ blending

3.2.2 Convective Flux Correction

A correction method for the convective flux is needed for an airfoil case because the velocity
component that is perpendicular to a wall is involved unlike flat plate cases. Equation (3.9)
shows that the convective flux only at the first cell face is involved for the momentum equation
to hold. Therefore, the ratio of the ML model slope to the numerical slope at the first cell face
normal to the wall is applied to the convective flux phi or φ in OpenFOAM as follows

φcorr = φnum
Umodel|face
Unum|face

, (3.18)

where Umodel|face and Unum|face are the velocity magnitudes at the first cell face normal to the
wall. Since the ML model yields the velocity from the 1D setting and the correction needs the
velocity ratio, the convective flux correction occurs by the magnitude of the velocity.

The same blending methods for the diffusive flux correction are applied to the convective flux
correction. First of all, the velocity blending method is given by

φvelBlend|face = φnum|face ·
Ũγφ · Umodel|face + (1− Ũ)γφ · Unum|face

Unum|face
, (3.19)

where γφ = 1.0 is a blending exponent for the convective flux at the first cell face normal to the
wall. Here, the typical blending method is used because this part is numerically stable. Secondly,
the y+ blending method is involved as follows

φypBlend|face = wface · φnum|face + (1− wface) · φvelBlend|face, (3.20)

3.2 Flux Correction Methods 21

where the same wface from Equation (3.17) is employed, and therefore the convective flux cor-
rection at the first face also works between the y+ range of 10 and 35.

Chapter 4

Approximating Velocity Profile in 1D
Channel Flow

4.1 Simulation Setup

4.1.1 Flow and Boundary Conditions

In order to extract proper data of the features and the labels that will be mentioned in Subsection
4.2.1, a geometry near a wall region is needed. In this work, a 1D channel flow setting will be
employed due to two reasons. First of all, if a geometry is as simple as possible, data generation
time will markedly be reduced. Secondly, any high fidelity data is not needed regardless of the
availability of DNS data if this 1D approach is introduced.

The flow condition in the 1D channel mimics the condition in the 2D flat plate case1 in Open-
FOAM with the Reynolds number (Reδ) 10 million given in Table 4.1.

Variable Value
U∞ 69.4m/s
ν 1.388 · 10−5m2/s

d 2.0m

Reδ 1 · 107

Model Spalart-Allmaras

Table 4.1: Flow condition in a 1D channel case

The geometry is described in Figure 4.1. The channel height is 2.0m, but only a half of the
height will be used by setting the top patch as symmetryPlane. The detail of mesh generation
will be discussed in Subsection 4.1.2.

In SA model, several boundary conditions are needed for such as nut, nuTilda, U, and p. It
is a one-equation model, and hence only nuTilda is needed instead of k, omega, and epsilon.
These boundary conditions are specified in 0 or 0.orig folder in each case in OpenFOAM. For
pressure, the boundary condition at the wall is zeroGradient. For nut, the value at the wall
should be a fixed value of 0.0 since only the molecular viscosity exists at the wall. For nuTilda,
the value should also be 0.0 at the wall because nuTilda is a modified version of nut for SA
model. For velocity, an inlet velocity condition is needed, but the condition cannot be specified

1https://www.openfoam.com/documentation/guides/latest/doc/verification-validation-turbulent-f
lat-plate-zpg.html

22

https://www.openfoam.com/documentation/guides/latest/doc/verification-validation-turbulent-flat-plate-zpg.html
https://www.openfoam.com/documentation/guides/latest/doc/verification-validation-turbulent-flat-plate-zpg.html

4.1 Simulation Setup 23

bottomWall patch

top patch
UxU∞

x

y

d

Figure 4.1: Geometry of a channel flow

in the boundary condition section since this simulation is 1D. Therefore, only zero velocity is
specified in the U dictionary at the wall in this case. Instead, a source term should be added
in the fvOptions file in the system folder. If a momentum source with an average velocity of
U∞ = 69.4 is added, the condition with the U∞ from the inlet in 2D can be mimicked in 1D by
keeping the identical Reynolds number.

4.1.2 Mesh Generation

A mesh generation method can determine the range of y+ that will be used in 2D simulations.
If meshes are very coarse, the velocity profile from a simulation will not be defined in a small y+

range, and thus the slopes in that area cannot be found. In opposite, the velocity profile will not
correctly be estimated in a large y+ range if meshes are immensely resolved. Furthermore, the
calculation speed for the exceedingly resolved meshes is dramatically slow. Therefore, the range
of y+ is set from approximately 1.5 to 500 in the 1D channel case.

Figure 4.2 is a conceptual picture that shows how the mesh in the actual 1D simulation looks like.
For the range of y+ to be set as the above, 1600 cells for y-direction is needed with the grading
of 400. The mesh generation has a decent procedure because there is no specific geometry in this
1D channel. Thus, by using blockMesh in OpenFOAM, the mesh can be generated without any
other tools.

Since this simulation corresponds to 1D, the left patch and the right patch are cyclic, and
thus velocity profiles can be developed as time increases. The solver in the simulation will be
pimpleFoam that can be introduced for transient simulations. The mapping function from this
1D simulation will be applied to incompressible steady-state 2D cases, and therefore the velocity
development concerning the location in 2D is to be considered as the velocity development with
regards to the time in 1D channel flow. For instance, a velocity profile in 1D is considered as the
profile at the front of the plate in a 2D flat plate case if this 1D profile is at an early time step,
whereas a velocity profile at a late time step in 1D is the profile at the end of the plate in 2D.

24 4. Approximating Velocity Profile in 1D Channel Flow

bottomWall patch

top patch (symmetryPlane)

0.5dleft patch (cyclic) right patch (cyclic)

U∞

Figure 4.2: Mesh setting for a 1D channel flow geometry

4.2 Learning Parameters

4.2.1 Data Generation

Data generation for the 1D channel flow is defined as saving features and labels in every time
step. The features in this case are the height of each cell face with the variable name y_face and
the integral average velocity in x-direction avgU until the certain number of cells as well as the
labels are the slope at the wall dUdy_wall, the slope at each face dUdy_face, and the velocity in
x-direction at each face Ux_face. Table 4.2 shows the brief description of the features and the
labels.

Features Description
y_face Height of each cell face in y-direction
avgU Average velocity by integral method in x-direction
Labels Description

dUdy_wall Slope at the wall
dUdy_face Slope at the faces
Ux_face Velocity at each face in x-direction

Table 4.2: Description of the features and the labels

y_face is set as the height value at each face including the wall face because the flux correction
methods need the information at the wall and the first cell face normal to the wall. For the first
cell face, the height of this face is changed over a mesh setting, and therefore the feature y_face
is employed. avgU is calculated not by the arithmetic average but by the area-based average of
the numerical velocity since the area-based average velocity is more sensitive for mesh resolution
than the arithmetic average velocity. The blue shaded area in Figure 3.1 means the integral
value for each cell. The calculation is given by

Uavg =
u1V1 + u2V2 + ...+ unVn

V1 + V2 + ...+ Vn
, (4.1)

where the index n denotes n-th cell, and Vn is the volume of the n-th cell. Since the mapping in
the 1D channel is performed on the high resolved mesh, the blue shaded area for the numerical
velocity becomes identical to the area for the true velocity from the simulation. dUdy_wall is
depicted as the red dotted line at the wall in Figure 3.1, and dUdy_wall is the red dotted line at
the first cell face in the same figure. They are located at the wall face and the faces at each cell

4.2 Learning Parameters 25

in the 1D channel, and hence they are predicted by the mapping method with the information of
the average velocity. However, in Figure 3.1, the slopes are based on Spalding’s function, while
the slope labels are based on the velocity profile from the simulation. Ux_face is the true velocity
value at the first cell face that corresponds to the blue line at the face located at y+ = 40 in
Figure 3.1. Analogously, this face velocity is based on Spalding’s function in the figure, whereas
the velocity label is based on the velocity profile from the simulation.

The appropriate time range should be set to save appropriate values of the features and the
labels. In 2D cases, the velocity profile near an inlet is not fully developed, while the profile near
an outlet is highly likely to be fully developed. Therefore, the information of velocity profiles at
early time steps, which are not fully developed, is strongly needed. First of all, 50 steps with
0.0002s write interval are set for the early stage of the flow. Afterward, 90 steps with 0.001s
write interval are set for the late stage of the flow, which creates total 140 time steps.

0 10 20 30 40 50 60 70
Velocity Ux

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

y

Velocity profile

Figure 4.3: Velocity profiles for all time steps

100 101 102 103

y+

0

5

10

15

20

25

u+

Velocity profile in wall units

Figure 4.4: Velocity profiles for all time steps in wall units

On the one hand, Figure 4.3 shows how the velocity profiles shape for all the time steps used in
the simulation, and it turns out that the data is well distributed. On the other hand, Figure 4.4

26 4. Approximating Velocity Profile in 1D Channel Flow

demonstrates that the velocity profiles from the beginning to the end of the time steps in wall
units keep getting closer to the law of the wall as the time increases.

4.2.2 Generation of Mapping Function

In this subsection, the mapping method will be discussed. Firstly, since arbitrary inlet conditions
could be used for other simulations, all the features and the labels should be non-dimensionalized
as follows

x1 =
yface
lref

(4.2)

x2 =
avgU − Uwall
U∞ − Uwall

(4.3)

y1 =

(
dU

dy

∣∣∣∣
wall

)
· lref
U∞

(4.4)

y2 =

(
dU

dy

∣∣∣∣
face

)
· lref
U∞

(4.5)

y3 =
Ux,face − Uwall
U∞ − Uwall

, (4.6)

where

lref =
ν

U∞
. (4.7)

Afterward, all the features and the labels are to be scaled as 0-1 scale by min-max scaling.

Regarding MLP, a simple NN model structure will be used, which has the identical number
of neurons per each hidden layer. The related datasets are divided into three parts such as train-
ing sets, validation sets, and test sets with the percentage of 60%, 20%, and 20%, respectively.
The indices for each set are to be determined by using a multinomial method in PyTorch so
that the datasets will randomly be divided. Currently, only one NN model is employed, which
consists of two inputs and three outputs, but from Section 4.3, this model is divided into three
models for better accuracy.

The optimization of the model is performed by the Adam optimizer, and the best model for
the training sets and the validation sets will be saved during the training if a new loss value is
smaller than the loss of the previous best model. No stopping criterion will be used, but the
training will be executed with the enough number of epochs.

4.2.3 Investigation of Uncertainties

Here, an investigation is needed to find the hyper-parameters that yield the least uncertainties.
In this study, the inlet velocity and the molecular viscosity are 50.0m/s and 1.0 ·10−5m2/s, while
the Reynolds number is kept identical as shown in Table 4.3.

4.2 Learning Parameters 27

Variable Value
U∞ 50.0m/s
ν 1.0 · 10−5m2/s

d 2.0m

Reδ 1 · 107

Model Spalart-Allmaras

Table 4.3: Flow condition for uncertainty check

The investigation consists of four parts that are pertinent to activation functions, the number of
layers, learning rates, and the number of neurons per layer, which can be hyper-parameters of
the model. For each section, 10 random seeds are to be introduced with 10000 epochs, and the
range of MSE loss values are investigated.

Figure 4.5: MSE loss values for activation functions by box plots

Figure 4.6: MSE loss values for the number of layers by box plots

Figure 4.5 demonstrates the MSE loss values for each activation function with box diagrams. It
shows that the ReLU function has the shortest range and the smallest mean value of MSE loss,

28 4. Approximating Velocity Profile in 1D Channel Flow

and therefore it can be concluded that the ReLU function yields the most certain and similar value
to the original one compared to the other functions. The next part is in terms of the number of
layers. The model with 5 layers (4 hidden layers) has the best performance in accordance with
Figure 4.6 in spite of one outlier. Figure 4.7 shows the loss values for various learning rates,
and then the models with the learning rate 0.001 and with the rate 0.003 yield the similar best
results. In this work, 0.001 will be used for more stable training. Lastly, when it comes to the
number of neurons per layer shown in Figure 4.8, the model with 50 neurons shows the least loss
value and the smallest error range. Consequently, it turns out that the best model combination
should be with the ReLU activation function, 5 layers, the learning rate 0.001, and 50 neurons
per layer.

Figure 4.7: MSE loss values for learning rates by box plots

Figure 4.8: MSE loss values for the number of neurons by box plots

4.2 Learning Parameters 29

Currently, uncertainties of the best combination is to be investigated. According to Figure 4.9,
the box plot of the best model shows the least MSE loss compared to all the values in the other
box plot figures.

The best model

0.000012

0.000014

0.000016

0.000018

0.000020
M

SE
 lo

ss

Figure 4.9: Box plot of MSE for the best model

The histogram in Figure 4.10 demonstrates that most of the datasets have the relative prediction
error for all the labels with less than 3% where a relative error for a label yi is defined as follows

RE(yi) =
|(yi − yi,min)− (ŷi − yi,min)|

yi,max − yi,min
=

|yi − ŷi|
yi,max − yi,min

. (4.8)

10 5 0 5 10 15
Relative prediction error in %

0

5000

10000

15000

20000

25000

Bi
n

co
un

t

Figure 4.10: Relative error for the best model by histogram

30 4. Approximating Velocity Profile in 1D Channel Flow

On the other hand, heat maps for the prediction are also investigated as per Figures 4.11, 4.12,
and 4.13 for three labels. The heat map for wall slopes in Figure 4.11 shows that the maximum
relative error occurs near the wall. In Figure 4.12, it is obvious that the maximum relative error
is located at the fast velocity region that corresponds to the early time steps. Lastly, Figure
4.13 demonstrates that the relative error for the whole region is fairly small. Comprehensively,
regardless of the labels, the error occurs at the early time step region. Hence, the front part of
a 2D flat plate should carefully be investigated at a later stage.

0.0 0.2 0.4 0.6 0.8 1.0
yfacenorm

0.0

0.2

0.4

0.6

0.8

1.0

av
gU

no
rm

Heat map for wall slope

0

1

2

3

4

5

6

7

8

M
ax

im
um

 re
la

tiv
e

er
ro

r i
n

%
Figure 4.11: Relative error heat map for wall slopes

0.0 0.2 0.4 0.6 0.8 1.0
yfacenorm

0.0

0.2

0.4

0.6

0.8

1.0

av
gU

no
rm

Heat map for face slope

0

2

4

6

8

10

12

14

M
ax

im
um

 re
la

tiv
e

er
ro

r i
n

%

Figure 4.12: Relative error heat map for face slopes

4.3 Results 31

0.0 0.2 0.4 0.6 0.8 1.0
yfacenorm

0.0

0.2

0.4

0.6

0.8

1.0

av
gU

no
rm

Heat map for Ux at faces

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ax

im
um

 re
la

tiv
e

er
ro

r i
n

%

Figure 4.13: Relative error heat map for velocity at faces

4.3 Results

In this section, training results of the mapping function will be shown. As mentioned in Sub-
section 4.2.2, one modification is executed for the model to yield better results. The NN model
is divided into three NN models so that the training accuracy can be improved. The features
y_face and avgU predict dUdy_wall for one model, dUdy_face for the other model, and Ux_face
for the last model. The values of the hyper-parameters of the previous best model are kept in
the training phase, and the flow condition is identical to the condition mentioned in Table 4.1.
After the training of three models, they will be combined together by using a tracing method
from PyTorch and used in 2D simulations in OpenFOAM.

4.3.1 Model for Wall Slopes

The previous model is already divided into three models, and thus all the three models have
two features and one label, respectively. This model receives y_face and avgU, and yields the
prediction of dUdy_wall.

Figure 4.14 shows the convergence behavior of the loss function of this model with 10000 epochs,
and both of the loss values for the training sets and the validation sets are within the scale
of 1 · 10−4. The mapping performance heat map for wall slopes is plotted as shown on the
left side in Figure 4.17. The maximum relative error for the entire region is approximately
0.16, and therefore the mapping performance is fairly good compared to the original data. The
discrepancies mostly occur near the wall and at the fastest range of the velocity, which implies
that the error occurs at the early stage of the 1D simulation.

32 4. Approximating Velocity Profile in 1D Channel Flow

Figure 4.14: Training loss for the wall slope model

4.3.2 Model for Face Slopes

This model receives y_face and avgU, and yields the prediction of dUdy_face. Since the range
of the datasets is quite broad compared to the other models, the training was conducted with
20000 epochs.

Figure 4.15: Training loss for the face slope model

Figure 4.15 shows the training loss function convergence. The scale of the training sets’ loss is
1 · 10−6, while the scale of the validation sets’ loss is 1 · 10−4. The mapping performance heat
map for face slopes is plotted as shown on the middle in Figure 4.17. The maximum error for
the entire region is approximately 0.08 near the wall. Otherwise, the error is extremely small.
Therefore, it can be concluded that the mapping performance is markedly good.

4.3 Results 33

4.3.3 Model for Velocities at Faces

This model receives y_face and avgU, and yields the prediction of Ux_face. The training was
conducted with 10000 epochs again as the first model. The training loss convergence is displayed
in Figure 4.16, and both of the losses for the training sets and the validation sets are within the
scale of 1 · 10−5.

Figure 4.16: Training loss for the wall slope model

The mapping performance heat map for Ux_face is plotted as shown on the right side in Figure
4.17. The maximum relative error is approximately 0.045, which implies that the mapping
performance is also remarkably good.

0.0 0.2 0.4 0.6 0.8 1.0
yfacenorm

0.0

0.2

0.4

0.6

0.8

1.0

av
gU

no
rm

0.0 0.2 0.4 0.6 0.8 1.0
yfacenorm

0.0 0.2 0.4 0.6 0.8 1.0
yfacenorm

0.00 0.04 0.08 0.12 0.16

L (yUx|wall)
0.00 0.02 0.04 0.06 0.08

L (yUx|face)
0.00 0.01 0.02 0.03 0.04

L (Ux|face)

Figure 4.17: Heat map for the maximum relative error in different segments of the feature space
(integral average velocity and height of each cell face); Prediction of wall slopes
(left), prediction of face slopes (middle), prediction of face velocity in x-direction
(right)

Chapter 5

Wall Modeling in 2D Flat Plate

5.1 Simulation Setup

5.1.1 Flow and Boundary Conditions

In this section, the trained NN models will be applied to a 2D flat plate case1. The geometry
is shown in Figure 5.1, and the detailed boundary conditions are also indicated. The Reynolds
number (ReL is used in the NASA case, but Rex is used in this project.) 5 million is for the plate
length of 1m. However, a 2m-plate will be used in this case, and therefore the actual Reynolds
number is 10 million that is the same as the Reynolds number in Section 4. The Mach number
is mentioned as 0.2 in Figure 5.1, but the inlet velocity is slower than one third of the speed of
sound. Thus, the simulation in this work will be incompressible.

Figure 5.1: A 2D flat plate geometry1

Before the starting point of the plate, there is a small space for flow development from the inlet.

1https://turbmodels.larc.nasa.gov/flatplate.html

34

https://turbmodels.larc.nasa.gov/flatplate.html

5.1 Simulation Setup 35

This is an open space that is not blocked by any objects, and thus this part will be set as the
symmetryPlane patch. Other patches will be explained in the next subsection.

Since the flow condition in the 1D channel was imitated from this case, the inlet velocity and the
molecular viscosity for this case are identical to the values in Table 4.1. Regarding the height of
the control volume, it is sufficiently set as 1m, and hence this patch will not interrupt the validity
of the simulation. Here, the SA model is also introduced, which means that the same variables
as those in Section 4.1.1 are involved in this simulation. However, the boundary conditions for
each variable are different because two cases have different types of patches. For instance, the
initial velocity condition, 69.4m/s, can be defined to the inlet patch without creating any source
terms in the fvOptions dictionary since this case is 2D. The pressure boundary condition is zero
pressure gradient.

5.1.2 Mesh Generation

The mesh of this flat plate case is designed for various y+ values, and it looks similar to the 1D
case mesh shown in Figure 4.2 but has one dimension more. For the small space before the plate
starts, 96 cells in x-direction and 385 cells in y-direction, whereas 449 cells in x-direction and 385
cells in y-direction for the 2m plate. The variation of y+ is determined by various values of grad-
ing. For example, the grading factor of 50000 is for y+ = 0.05, the factor of 950 is for y+ = 2, and
the factor of 5 is for y+ = 100 as indicated in Table 5.1. This indicates that the mesh near the
wall is more resolved if the grading factor is larger. For the flat plate case, total eight y+ values
will be involved that correspond to 0.05, 1, 2, 5, 10, 30, 50, and 100. The y+ values for mesh
setting are based on the standard wall function. The actual y+ values without wall functions will
be smaller than the values with wall functions because the linear interpolation is used for the nu-
merical slopes for the case without wall functions, which leads to underestimation of skin friction.

y+ Grading
0.05 50000

1 2200

2 950

5 300

10 130

30 30

50 15

100 5

Table 5.1: Mesh setting for a flat plate case

With regards to boundary patches, the inlet patch and the outlet patch have patch type
patches because the actual flow comes and goes through these boundaries. The topWall patch
has the wall type patch with a slip condition so that this location would not interrupt the
simulation. The small space before the plate is called symmetry in the case, and this space has
the symmetryPlane type patch as explained above. Finally, the bottomWall patch also has the
wall type but with a non-slip condition so that turbulent behavior at the wall can be investigated.

5.1.3 Related Coefficients

For the flat plate case, the performance of the trained ML models can be determined by calcu-
lating one of the coefficients known as skin friction Cf . The formula of the skin friction is given

36 5. Wall Modeling in 2D Flat Plate

by

Cf =
τw

1
2ρU

2
∞
. (5.1)

Here, the density ρ is not considered because the simulation is incompressible. Therefore, ρ = 1.0
holds or it can be deleted from Equation (5.1). Then, the equation is given by

Cf =
τw

1
2U

2
∞
. (5.2)

5.2 Results

In this section, a comparison of skin friction for four scenarios will be shown. The four scenarios
are as follows.

1. No wall function

2. Standard wall function

3. Data-driven wall function with blended wall correction

4. Data-driven wall function with blended wall and first cell face correction

The third scenario is also called a wall correction case, while the fourth scenario can be called a
wall/face correction case. Regarding the standard wall function, nutUSpaldingWallFunction is
used for νt.

5.2.1 Comparison of Skin Friction for Different Scenarios

For y+ = 0.05, 1, and 2, no correction occurs regardless of the scenarios. Hence, the skin friction
graphs look the same as shown in Figures 5.2, 5.3, and 5.4.

0.0 0.2 0.4 0.6 0.8 1.0
Rex ×107

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Skin friction Cf for y+ = 0.05, SpalartAllmaras model

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 5.2: Comparison of skin friction values for y+ = 0.05

5.2 Results 37

0.0 0.2 0.4 0.6 0.8 1.0
Rex ×107

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Skin friction Cf for y+ = 1, SpalartAllmaras model

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 5.3: Comparison of skin friction values for y+ = 1

0.0 0.2 0.4 0.6 0.8 1.0
Rex ×107

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Skin friction Cf for y+ = 2, SpalartAllmaras model

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 5.4: Comparison of skin friction values for y+ = 2

For y+ = 5, the local y+ values are larger than 10 at the front of the plate in the case of the wall
correction and the wall/face correction. Thus, these local y+ values let the correction happen,
and the correction influences an increase of skin friction at the back of the plate for the wall
correction scenario as shown in Figure 5.5. For the wall/face correction scenario, the skin friction
values are back to normal again.

0.0 0.2 0.4 0.6 0.8 1.0
Rex ×107

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Skin friction Cf for y+ = 5, SpalartAllmaras model

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 5.5: Comparison of skin friction values for y+ = 5

For y+ = 10, the skin friction fluctuates for the first three scenarios, but the last scenario that
is the wall/face correction shows the stable behavior as shown in Figure 5.6.

38 5. Wall Modeling in 2D Flat Plate

0.0 0.2 0.4 0.6 0.8 1.0
Rex ×107

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Skin friction Cf for y+ = 10, SpalartAllmaras model

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 5.6: Comparison of skin friction values for y+ = 10

From y+ = 30, the scenario without wall functions shows very bad estimations, whereas the
other scenarios yield the fine results as shown Figures 5.7, 5.8, and 5.9. Particularly, the wall
correction scenario shows the superior result except at the very front of the plate. However,
there is a kink at the front of the plate although the first cell face correction is excluded for the
higher y+.

0.0 0.2 0.4 0.6 0.8 1.0
Rex ×107

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Skin friction Cf for y+ = 30, SpalartAllmaras model

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 5.7: Comparison of skin friction values for y+ = 30

0.0 0.2 0.4 0.6 0.8 1.0
Rex ×107

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Skin friction Cf for y+ = 50, SpalartAllmaras model

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 5.8: Comparison of skin friction values for y+ = 50

The wall/face correction scenario is basically the same as the wall correction scenario for y+ ≥ 35
because the y+ blending turns the face correction off for that region.

5.2 Results 39

0.0 0.2 0.4 0.6 0.8 1.0
Rex ×107

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Skin friction Cf for y+ = 100, SpalartAllmaras model

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 5.9: Comparison of skin friction values for y+ = 100

5.2.2 Comparison of Skin Friction for Different y+

The skin friction values for the first scenario that corresponds to no wall function for each y+

are depicted in Figure 5.10. The case of no wall function cannot capture the behavior of the
reference value for the higher y+. Moreover, there is a small discrepancy at the buffer layer,
y+ = 10.

0.0 0.2 0.4 0.6 0.8 1.0
Rex ×107

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Comparison of skin friction Cf for different y+ (without wall function)

Wieghardt

y+ = 0.05

y+ = 1

y+ = 2

y+ = 5

y+ = 10

y+ = 30

y+ = 50

y+ = 100

Figure 5.10: Skin friction for the no wall function scenario

0.0 0.2 0.4 0.6 0.8 1.0
Rex ×107

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Comparison of skin friction Cf for different y+ (with wall function)

Wieghardt

y+ = 0.05

y+ = 1

y+ = 2

y+ = 5

y+ = 10

y+ = 30

y+ = 50

y+ = 100

Figure 5.11: Skin friction for the standard wall function scenario

40 5. Wall Modeling in 2D Flat Plate

The second scenario that is with the standard wall function yields the results as shown in Figure
5.11. The skin friction value looks well except at y+ = 10, and there are small differences from
the reference value at the front of the plate.

The third scenario is the data-driven approach with the blended wall correction, and the re-
sult is shown in Figure 5.12. The blended wall correction works well, but there is still an outlier
case at y+ = 10.

0.0 0.2 0.4 0.6 0.8 1.0
Rex ×107

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Comparison of skin friction Cf for different y+ (wall correction, blending)

Wieghardt

y+ = 0.05

y+ = 1

y+ = 2

y+ = 5

y+ = 10

y+ = 30

y+ = 50

y+ = 100

Figure 5.12: Skin friction for the data-driven wall function with wall correction scenario

The result of the last scenario that corresponds to the data-driven wall function with wall and
face correction case is shown in Figure 5.13.

0.0 0.2 0.4 0.6 0.8 1.0
Rex ×107

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Comparison of skin friction Cf for different y+ (wall/face correction, blending)

Wieghardt

y+ = 0.05

y+ = 1

y+ = 2

y+ = 5

y+ = 10

y+ = 30

y+ = 50

y+ = 100

Figure 5.13: Skin friction for the data-driven wall function with wall/face correction scenario

This approach mitigates the discrepancy at y+ = 10 and are almost mesh-independent. However,
the distribution of the skin friction values should be investigated to determine the performance
of the correction. Therefore, Figure 5.14 depicts the distribution of the skin friction for three
scenarios by employing the standard deviation σ. The graph shows the range of 2σ which has
95% of the confidence interval. Here, the first scenario is excluded because the skin friction
values are spread for higher y+. As shown in the figure, the data-driven wall function with wall
and face correction yields the best performance amongst the other cases. the data-driven wall
function with wall correction gives the moderate performance, but the performance is less better

5.2 Results 41

than that of the standard wall function case.

0.0 0.2 0.4 0.6 0.8 1.0
Rex ×107

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Comparison of Cf between standard wall function and data-driven wall model

µ, data-driven model (wall corr.)

µ± 2σ, data-driven model (wall corr.)

µ, standard wall function

µ± 2σ, standard wall function

µ, data-driven model (wall/face corr.)

µ± 2σ, data-driven model (wall/face corr.)

Figure 5.14: Distribution of skin friction for each scenario

There is one more method to evaluate the performance that corresponds to the mean value of
the standard deviation range for each scenario. Table 5.2 indicates the representative mean
value and standard deviation for each scenario, which can show the performance of each model
or wall function in one figure. According to this table, the wall correction scenario has slightly
broader range of the confidence interval than the standard wall function scenario. The wall/face
correction scenario yields the smallest range of the confidence interval.

Scenario µrep ± 2σrep

No wall func. 0.002718± 0.002234

Standard wall func. 0.003674± 0.000429

Wall corr. 0.003606± 0.000532

Wall/face corr. 0.003505± 0.000284

Table 5.2: Representative mean value with the confidence interval for the flat plate case

Chapter 6

Application of Modeling to NACA-0012
Airfoil

6.1 Simulation Setup

6.1.1 Flow and Boundary Conditions

In this section, the trained NN models will be applied to a 2D airfoil case. The geometry
is shown in Figure 6.11. However, the boundary conditions used here are different from the
original reference case. First of all, the Reynolds number (Rec) for the chord length of 1m is
3 million. The original Mach number is 0.15, and then the inlet velocity is also slower than
one third of the speed of sound. Thus, the airfoil simulation will be incompressible. Since the
simulation is incompressible, the speed of sound and the Mach number need not to be considered.
Therefore, the molecular viscosity and the inlet velocity are set to be 1.0·10−5m2/s and 30.0m/s,
respectively.

Figure 6.1: Boundary conditions for airfoil case1

1https://turbmodels.larc.nasa.gov/naca0012_val.html

42

https://turbmodels.larc.nasa.gov/naca0012_val.html

6.1 Simulation Setup 43

As shown in Table 6.1, the angle of attack is 0◦, the chord length of the airfoil is 1.0m, and the
SA model is used. The pressure boundary condition is also zero pressure gradient.

Variable Value
U∞ 30.0m/s
ν 1.0 · 10−5m2/s

c 1.0m

Angle of Attack 0◦

Rec 3 · 106

Model Spalart-Allmaras

Table 6.1: Flow condition in a 2D airfoil case

6.1.2 Mesh Generation

The mesh of the airfoil case is also designed for various y+ values, but it is much more complicated
due to the airfoil shape itself that is divided into several sections. The mesh in OpenFOAM is
based on a plot3d format, but the blockMesh format is also available used for the other project2.
The mesh of the blockMesh format is employed for this work.

For y+ to be modified, only three sections are to be revised among all the mesh regions in the
control volume, which correspond to yMid, yGradAirfoil, and yTrail in the blockMeshDict
file as mentioned in Figure 6.22. For the airfoil case, total eight y+ values will also be involved,
but they correspond to 0.05, 1, 2, 3.5, 5, 10, 50, and 100 because the buffer layer range for this
case is a bit different from the flat plate case, which carefully needs to be investigated. Table 6.2
demonstrates how many cells (yMid and yTrail) or grading values (yGradAirfoil) are used to
set proper y+ in this airfoil case.

Figure 6.2: Modifiable section of the mesh near the airfoil2

With regards to boundary patches, the inlet patch and the outlet patch have the patch type
patches with a freestream setting. Since all the direction of the control volume is open, the
remaining patch is airfoil that has the wall patch type.

On the other hand, there is a stability issue for the smaller y+ in the airfoil case. The velocity
near the wall becomes exceedingly fast at the early time steps, approximately until 100 iterations.
Afterward, due to the rapid velocity, the ratio of the ML model slope to the numerical slope
becomes immensely large, which leads to the simulation crash. Therefore, the numerical slopes
at the wall and the first cell face are limited in this simulation before the velocity reduces to a
valid range.

2https://github.com/AndreWeiner/naca0012_shock_buffet

https://github.com/AndreWeiner/naca0012_shock_buffet

44 6. Application of Modeling to NACA-0012 Airfoil

y+ yGradAirfoil yMid yTrail
0.05 8000 200 30

1 350 200 30

2 150 200 40

3.5 65 200 40

5 50 200 40

10 15 200 40

50 1 180 40

100 1 100 40

Table 6.2: Mesh setting for a 2D airfoil case

6.1.3 Related Coefficients

For the airfoil case, the performance of the ML model can also be determined by skin friction
Cf . In addition, pressure coefficient Cp is investigated that is given by

Cp =
p− p∞
1
2ρU

2
∞
. (6.1)

The density ρ is not considered here because the simulation is incompressible. Therefore, ρ = 1.0
holds or it can be deleted from Equation (6.1) which is given by

Cp =
p− p∞

1
2U

2
∞

. (6.2)

Unlike skin friction, pressure coefficient is virtually mesh-independent since pressure is much less
sensitive to the location than wall shear stresses. Hence, this coefficient will be calculated to
examine if the simulation is valid.

6.2 Results

In this section, a comparison of skin friction for four scenarios that are the same as the flat plate
case will be shown. For the standard wall function, nutUSpaldingWallFunction is also used
here. When it comes to the reference data for skin friction, the data at Rec = 3 · 106 is not
available. Hence, the simulation data of the finest mesh setting that corresponds to y+ = 0.05
at Rec = 3 · 106 is used for the airfoil case. For pressure coefficient, the experimental data3

is available so that the data can be indicated in the plots. Since the angle of attack of this
simulation is 0◦, the results at the upper part and the lower part of the airfoil will mostly be the
same if the simulation is sufficiently stable. The line style of the graph for the upper airfoil is
mentioned in all the figures, and all the dotted lines with corresponding colors are for the lower
airfoil. Therefore, for the unstable case, the dotted lines that correspond to the lower part of the
airfoil are shown in the figures although the angle of attack is 0◦.

6.2.1 Comparison of Pressure Coefficient for Different Scenarios

The pressure coefficient graphs show the consistent behavior and well fit to the experimental data
regardless of the scenarios as depicted in Figures 6.3, 6.4, 6.5, 6.7, 6.8, 6.9, and 6.10. However,
a strange behavior is found for the wall correction scenario and the wall/face correction scenario
at y+ = 3.5 as shown in Figure 6.6. Thus, it can be expected that the skin friction values for the
correction methods cannot capture the behavior of the reference graph for the case of y+ = 3.5.

3https://turbmodels.larc.nasa.gov/NACA0012_validation/CP_Gregory_expdata.dat

https://turbmodels.larc.nasa.gov/NACA0012_validation/CP_Gregory_expdata.dat

6.2 Results 45

0.0 0.2 0.4 0.6 0.8 1.0
c

−0.5

0.0

0.5

1.0

C
p

Pressure coefficient Cp for y+ = 0.05, SpalartAllmaras model

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Experimental data

Figure 6.3: Comparison of pressure coefficient for y+ = 0.05

0.0 0.2 0.4 0.6 0.8 1.0
c

−0.5

0.0

0.5

1.0

C
p

Pressure coefficient Cp for y+ = 1, SpalartAllmaras model

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Experimental data

Figure 6.4: Comparison of pressure coefficient for y+ = 1

0.0 0.2 0.4 0.6 0.8 1.0
c

−0.5

0.0

0.5

1.0

C
p

Pressure coefficient Cp for y+ = 2, SpalartAllmaras model

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Experimental data

Figure 6.5: Comparison of pressure coefficient for y+ = 2

46 6. Application of Modeling to NACA-0012 Airfoil

0.0 0.2 0.4 0.6 0.8 1.0
c

−0.5

0.0

0.5

1.0

C
p

Pressure coefficient Cp for y+ = 3.5, SpalartAllmaras model

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Experimental data

Figure 6.6: Comparison of pressure coefficient for y+ = 3.5

0.0 0.2 0.4 0.6 0.8 1.0
c

−0.5

0.0

0.5

1.0

C
p

Pressure coefficient Cp for y+ = 5, SpalartAllmaras model

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Experimental data

Figure 6.7: Comparison of pressure coefficient for y+ = 5

0.0 0.2 0.4 0.6 0.8 1.0
c

−0.5

0.0

0.5

1.0

C
p

Pressure coefficient Cp for y+ = 10, SpalartAllmaras model

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Experimental data

Figure 6.8: Comparison of pressure coefficient for y+ = 10

6.2 Results 47

0.0 0.2 0.4 0.6 0.8 1.0
c

−0.5

0.0

0.5

1.0

C
p

Pressure coefficient Cp for y+ = 50, SpalartAllmaras model

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Experimental data

Figure 6.9: Comparison of pressure coefficient for y+ = 50

0.0 0.2 0.4 0.6 0.8 1.0
c

−0.5

0.0

0.5

1.0

C
p

Pressure coefficient Cp for y+ = 100, SpalartAllmaras model

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Experimental data

Figure 6.10: Comparison of pressure coefficient for y+ = 100

6.2.2 Comparison of Skin Friction for Different Scenarios

For y+ = 0.05 and 1, no correction occurs regardless of the scenarios. Hence, the skin friction
graphs look the same as shown in Figures 6.11 and 6.12. For y+ = 2 shown in Figure 6.13, there
is also no correction, but the slight discrepancy between the simulation and the reference data
exists due to the turbulence model itself.

0.0 0.2 0.4 0.6 0.8 1.0
c

0.000

0.002

0.004

0.006

0.008

0.010

C
f

Skin friction Cf for y+ = 0.05, SpalartAllmaras model

The finest mesh

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 6.11: Comparison of skin friction values for y+ = 0.05

48 6. Application of Modeling to NACA-0012 Airfoil

0.0 0.2 0.4 0.6 0.8 1.0
c

0.000

0.002

0.004

0.006

0.008

0.010

C
f

Skin friction Cf for y+ = 1, SpalartAllmaras model

The finest mesh

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 6.12: Comparison of skin friction values for y+ = 1

0.0 0.2 0.4 0.6 0.8 1.0
c

0.000

0.002

0.004

0.006

0.008

0.010

C
f

Skin friction Cf for y+ = 2, SpalartAllmaras model

The finest mesh

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 6.13: Comparison of skin friction values for y+ = 2

For y+ = 3.5, fluctuations are generally found in Figure 6.14. The first two scenarios (with-
out/with wall functions) show the small fluctuations and estimate the skin friction a bit larger.
However, the wall correction case illustrates a really unstable behavior particularly at the end of
the airfoil. The wall/face correction case is even depicted out of the range of the plot.

0.0 0.2 0.4 0.6 0.8 1.0
c

0.000

0.002

0.004

0.006

0.008

0.010

C
f

Skin friction Cf for y+ = 3.5, SpalartAllmaras model

The finest mesh

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 6.14: Comparison of skin friction values for y+ = 3.5

Unlike the flat plate case, the local y+ values do not exceed 10 before y+ = 10, and therefore
the correction does not occur at y+ = 5. As shown in Figure 6.15, there are small fluctuations

6.2 Results 49

for all the scenarios, but the graphs are much more stable than the results at y+ = 3.5.

0.0 0.2 0.4 0.6 0.8 1.0
c

0.000

0.002

0.004

0.006

0.008

0.010

C
f

Skin friction Cf for y+ = 5, SpalartAllmaras model

The finest mesh

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 6.15: Comparison of skin friction values for y+ = 5

As indicated in Figure 6.16, three scenarios that correspond to no wall function, wall correc-
tion, and wall/face correction can capture the behavior of the reference graph compared to the
standard wall function scenario.

0.0 0.2 0.4 0.6 0.8 1.0
c

0.000

0.002

0.004

0.006

0.008

0.010

C
f

Skin friction Cf for y+ = 10, SpalartAllmaras model

The finest mesh

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 6.16: Comparison of skin friction values for y+ = 10

0.0 0.2 0.4 0.6 0.8 1.0
c

0.000

0.002

0.004

0.006

0.008

0.010

C
f

Skin friction Cf for y+ = 50, SpalartAllmaras model

The finest mesh

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 6.17: Comparison of skin friction values for y+ = 50

From y+ = 50 shown in Figures 6.17 and 6.18, the scenario without wall functions for the airfoil
case also shows very bad estimations, whereas the other scenarios yield the fine results. However,

50 6. Application of Modeling to NACA-0012 Airfoil

the wall correction scenario and the wall/face correction scenario show high discrepancies from
the reference graph. The y+ blending turns the face correction off for the wall/face correction
scenario for y+ ≥ 35 also in the airfoil case.

0.0 0.2 0.4 0.6 0.8 1.0
c

0.000

0.002

0.004

0.006

0.008

0.010

C
f

Skin friction Cf for y+ = 100, SpalartAllmaras model

The finest mesh

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure 6.18: Comparison of skin friction values for y+ = 100

6.2.3 Comparison of Skin Friction for Different y+

The skin friction values for the no wall function scenario for each y+ are depicted in Figure 6.19.
This scenario cannot capture the behavior of the reference graph for the higher y+. There are
discrepancies from the reference data at y+ = 3.5 and 5.

0.0 0.2 0.4 0.6 0.8 1.0
c

0.000

0.002

0.004

0.006

0.008

0.010

C
f

Comparison of skin friction Cf for different y+ (without wall function)

The finest mesh

y+ = 0.05

y+ = 1

y+ = 2

y+ = 3.5

y+ = 5

y+ = 10

y+ = 50

y+ = 100

Figure 6.19: Skin friction for the no wall function scenario (airfoil)

The second scenario that is with the standard wall function yields the results as shown in Figure
6.20. The skin friction values for higher y+ are estimated greater than the reference.

The result of the wall correction scenario is shown in Figure 6.21. The skin friction values are
estimated worse than the standard wall function case. Especially, large discrepancies generally
appear at the front of the airfoil. For y+ = 3.5, the skin friction estimation is unstable.

6.2 Results 51

0.0 0.2 0.4 0.6 0.8 1.0
c

0.000

0.002

0.004

0.006

0.008

0.010

C
f

Comparison of skin friction Cf for different y+ (with wall function)

The finest mesh

y+ = 0.05

y+ = 1

y+ = 2

y+ = 3.5

y+ = 5

y+ = 10

y+ = 50

y+ = 100

Figure 6.20: Skin friction for the standard wall function scenario (airfoil)

0.0 0.2 0.4 0.6 0.8 1.0
c

0.000

0.002

0.004

0.006

0.008

0.010

C
f

Comparison of skin friction Cf for different y+ (wall correction, blending)

The finest mesh

y+ = 0.05

y+ = 1

y+ = 2

y+ = 3.5

y+ = 5

y+ = 10

y+ = 50

y+ = 100

Figure 6.21: Skin friction for data-driven wall function with wall correction case (airfoil)

The result of the last scenario that corresponds to the wall/face correction case is shown in
Figure 6.22. Basically, the same problem as the third scenario occurs here, and the skin friction
estimation is even much more unstable for y+ = 3.5.

0.0 0.2 0.4 0.6 0.8 1.0
c

0.000

0.002

0.004

0.006

0.008

0.010

C
f

Comparison of skin friction Cf for different y+ (wall/face correction, blending)

The finest mesh

y+ = 0.05

y+ = 1

y+ = 2

y+ = 3.5

y+ = 5

y+ = 10

y+ = 50

y+ = 100

Figure 6.22: Skin friction for the data-driven wall function with wall/face correction scenario
(airfoil)

The distribution of the skin friction values are also to be investigated for the airfoil case as indi-

52 6. Application of Modeling to NACA-0012 Airfoil

cated in Figure 6.23. The y+ = 3.5 case for all the scenarios is excluded because the simulations
of the wall correction and the wall/face correction scenarios diverge, which leads to an enormous
increase of the mean value for two scenarios. As shown in the figure, the wall correction and the
wall/face correction scenarios show similar performance. The performance for two scenarios is
better than that for the standard wall function at the front-middle of the airfoil, but worse at
the very front of the airfoil.

0.0 0.2 0.4 0.6 0.8 1.0
c

0.000

0.002

0.004

0.006

0.008

0.010

C
f

Comparison of Cf between standard wall function and data-driven wall model

µ, data-driven model (wall corr.)

µ± 2σ, data-driven model (wall corr.)

µ, standard wall function

µ± 2σ, standard wall function

µ, data-driven model (wall/face corr.)

µ± 2σ, data-driven model (wall/face corr.)

Figure 6.23: Distribution of skin friction for each scenario

Here, the representative mean and standard deviation are to be calculated since the performance
comparison is unclear only with the plot. As indicated in Table 6.3, the wall correction and the
wall/face correction scenarios yield slightly worse performance than the standard wall function
numerically.

Scenario µrep ± 2σrep

No wall func. 0.003531± 0.003122

Standard wall func. 0.004578± 0.000701

Wall corr. 0.004355± 0.000782

Wall/face corr. 0.004345± 0.000760

Table 6.3: Representative mean value with the confidence interval for the airfoil case

Chapter 7

Generalization of Wall Models for
Various Reynolds Numbers

A generalization of the data-driven wall function will be demonstrated in this section. Two
more flat plate cases with different Reynolds numbers will be investigated that correspond to
Rex = 3 · 106 and 6 · 106. Since the comparison plots of skin friction for the different scenarios
for these cases yield virtually the same implication, these plots are located in Appendix A.

7.1 Simulation Setup

7.1.1 Flow and Boundary Conditions

The flow settings and the boundary conditions for these two cases are basically the same as those
in Section 5, but the molecular viscosity and the inlet velocity are different. Table 7.1 shows the
flow conditions for the case at Rex = 3 · 106.

Variable Value
U∞ 15.0m/s
ν 1.0 · 10−5m2/s

d 2.0m

Rex 3 · 106

Model Spalart-Allmaras

Table 7.1: Flow condition in the flat plate case at Rex = 3 · 106

Table 7.2 shows the flow conditions for the case at Rex = 6 · 106.

Variable Value
U∞ 30.0m/s
ν 1.0 · 10−5m2/s

d 2.0m

Rex 6 · 106

Model Spalart-Allmaras

Table 7.2: Flow condition in the flat plate case at Rex = 6 · 106

53

54 7. Generalization of Wall Models for Various Reynolds Numbers

7.1.2 Mesh Generation

The mesh generation method is virtually the same as Section 5.1.2. However, grading settings
must be modified to keep the identical y+ values for every flat plate case. Table 7.3 shows the
corresponding mesh settings for the flat plate case at Rex = 3 · 106.

y+ Grading
0.05 12500

1 600

2 250

5 75

10 30

30 10

50 3

100 1

Table 7.3: Mesh setting for a flat plate case at Rex = 3 · 106

Table 7.4 shows the settings for the flat plate case at Rex = 6 · 106.

y+ Grading
0.05 20000

1 1300

2 550

5 160

10 70

30 20

50 8

100 2

Table 7.4: Mesh setting for a flat plate case at Rex = 6 · 106

7.2 Results

7.2.1 Comparison of Skin Friction for Different y+ at Rex = 3 · 106

0 500000 1000000 1500000 2000000 2500000 3000000
Rex

0.000

0.002

0.004

0.006

C
f

Comparison of skin friction Cf for different y+ at Re = 3e6 (without wall function)

Wieghardt

y+ = 0.05

y+ = 1

y+ = 2

y+ = 5

y+ = 10

y+ = 30

y+ = 50

y+ = 100

Figure 7.1: Skin friction for the no wall function scenario at Rex = 3 · 106

The skin friction values for the no wall function scenario for each y+ are depicted in Figure 7.1.

7.2 Results 55

The case without wall functions cannot capture the behavior of the reference value for y+ ≥ 30.
However, for the other y+, the skin friction values are sufficiently stable. There are still discrep-
ancies at the front of the plate.

The standard wall function scenario yields the results as shown in Figure 7.2. The skin fric-
tion value fluctuates at y+ = 10, and the skin friction at the other y+ comprehensively shows
larger deviations from the reference graph than the skin friction for the no wall function scenario
except from y+ = 30.

0 500000 1000000 1500000 2000000 2500000 3000000
Rex

0.000

0.002

0.004

0.006

C
f

Comparison of skin friction Cf for different y+ at Re = 3e6 (with wall function)

Wieghardt

y+ = 0.05

y+ = 1

y+ = 2

y+ = 5

y+ = 10

y+ = 30

y+ = 50

y+ = 100

Figure 7.2: Skin friction for standard the wall function scenario at Rex = 3 · 106

The result of the wall correction scenario is shown in Figure 7.3. The wall correction yields the
best results compared to the other scenarios.

0 500000 1000000 1500000 2000000 2500000 3000000
Rex

0.000

0.002

0.004

0.006

C
f

Comparison of skin friction Cf for different y+ at Re = 3e6 (wall correction, blending)

Wieghardt

y+ = 0.05

y+ = 1

y+ = 2

y+ = 5

y+ = 10

y+ = 30

y+ = 50

y+ = 100

Figure 7.3: Skin friction for the data-driven wall function with wall correction scenario at
Rex = 3 · 106

56 7. Generalization of Wall Models for Various Reynolds Numbers

The result of the wall/face correction scenario is shown in Figure 7.4. This is almost the same
as the previous scenario, but the skin friction for y+ = 30 is overestimated at the very front of
the plate.

0 500000 1000000 1500000 2000000 2500000 3000000
Rex

0.000

0.002

0.004

0.006

C
f

Comparison of skin friction Cf for different y+ at Re = 3e6 (wall/face correction, blending)

Wieghardt

y+ = 0.05

y+ = 1

y+ = 2

y+ = 5

y+ = 10

y+ = 30

y+ = 50

y+ = 100

Figure 7.4: Skin friction for the data-driven wall function with wall/face correction scenario at
Rex = 3 · 106

Figure 7.5 depicts the distribution of the skin friction for three scenarios except the no wall
function scenario. The data-driven wall function with wall correction yields the best performance
amongst the other scenarios. The performance of the data-driven wall function with wall/face
correction is less better than that of the wall correction scenario.

0 500000 1000000 1500000 2000000 2500000 3000000
Rex

0.000

0.002

0.004

0.006

C
f

Comparison of Cf between standard wall function and data-driven wall model at Re = 3e6

µ, data-driven model (wall corr.)

µ± 2σ, data-driven model (wall corr.)

µ, standard wall function

µ± 2σ, standard wall function

µ, data-driven model (wall/face corr.)

µ± 2σ, data-driven model (wall/face corr.)

Figure 7.5: Distribution of skin friction for each scenario at Rex = 3 · 106

7.2 Results 57

Table 7.5 indicates the representative mean value and standard deviation for each scenario as
a numeric. According to the table, the wall correction scenario has the smallest range of the
confidence interval than the other scenarios.

Scenario µrep ± 2σrep

No wall func. 0.003381± 0.002597

Standard wall func. 0.004542± 0.000762

Wall corr. 0.004295± 0.000504

Wall/face corr. 0.004303± 0.000529

Table 7.5: Representative mean value with the confidence interval for the flat plate case at
Rex = 3 · 106

7.2.2 Comparison of Skin Friction for Different y+ at Rex = 6 · 106

The skin friction values for the no wall function scenario for each y+ are depicted in Figure 7.6.
The case of no wall function yields bad estimations for y+ ≥ 30. However, for the other y+, the
skin friction values are also stable as the case in Subsection 7.2.1.

0 1000000 2000000 3000000 4000000 5000000 6000000
Rex

0.000

0.002

0.004

0.006

C
f

Comparison of skin friction Cf for different y+ at Re = 6e6 (without wall function)

Wieghardt

y+ = 0.05

y+ = 1

y+ = 2

y+ = 5

y+ = 10

y+ = 30

y+ = 50

y+ = 100

Figure 7.6: Skin friction for the no wall function scenario at Rex = 6 · 106

0 1000000 2000000 3000000 4000000 5000000 6000000
Rex

0.000

0.002

0.004

0.006

C
f

Comparison of skin friction Cf for different y+ at Re = 6e6 (with wall function)

Wieghardt

y+ = 0.05

y+ = 1

y+ = 2

y+ = 5

y+ = 10

y+ = 30

y+ = 50

y+ = 100

Figure 7.7: Skin friction for the standard wall function scenario at Rex = 6 · 106

The standard wall function scenario yields the results as shown in Figure 7.7. The skin friction
value is overestimated at y+ = 10, but the skin friction looks acceptable at the other y+.

58 7. Generalization of Wall Models for Various Reynolds Numbers

The result of the wall correction scenario is shown in Figure 7.8. The wall correction also yields
the best results compared to the other scenarios as Subsection 7.2.1.

0 1000000 2000000 3000000 4000000 5000000 6000000
Rex

0.000

0.002

0.004

0.006

C
f

Comparison of skin friction Cf for different y+ at Re = 6e6 (wall correction, blending)

Wieghardt

y+ = 0.05

y+ = 1

y+ = 2

y+ = 5

y+ = 10

y+ = 30

y+ = 50

y+ = 100

Figure 7.8: Skin friction for the data-driven wall function with wall correction scenario at
Rex = 6 · 106

The result of the wall/face correction scenario is shown in Figure 7.9. This shows almost identical
results to the previous scenario, but the skin friction for y+ = 10 shows a bit overestimation.

0 1000000 2000000 3000000 4000000 5000000 6000000
Rex

0.000

0.002

0.004

0.006

C
f

Comparison of skin friction Cf for different y+ at Re = 6e6 (wall/face correction, blending)

Wieghardt

y+ = 0.05

y+ = 1

y+ = 2

y+ = 5

y+ = 10

y+ = 30

y+ = 50

y+ = 100

Figure 7.9: Skin friction for the data-driven wall function with wall/face correction scenario at
Rex = 6 · 106

Figure 7.10 depicts the distribution of the skin friction for three scenarios except the no wall
function scenario. The wall correction scenario yields the best performance amongst the other
scenarios. The performance of the wall/face correction scenario is less better than that of the
wall correction scenario.

7.2 Results 59

0 1000000 2000000 3000000 4000000 5000000 6000000
Rex

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
f

Comparison of Cf between standard wall function and data-driven wall model at Re = 6e6

µ, data-driven model (wall corr.)

µ± 2σ, data-driven model (wall corr.)

µ, standard wall function

µ± 2σ, standard wall function

µ, data-driven model (wall/face corr.)

µ± 2σ, data-driven model (wall/face corr.)

Figure 7.10: Distribution of skin friction for each scenario at Rex = 6 · 106

Table 7.6 indicates the representative mean value and standard deviation for each scenario as a
numeric. According to the table, the wall correction scenario has the smallest range of confidence
interval than the other scenarios.

Scenario µrep ± 2σrep

No wall func. 0.002975± 0.002417

Standard wall func. 0.004030± 0.000572

Wall corr. 0.003826± 0.000368

Wall/face corr. 0.003832± 0.000387

Table 7.6: Representative mean value with the confidence interval for the flat plate case at
Rex = 6 · 106

Chapter 8

Discussion

This project aims to create a data-driven wall function from a very simple geometry. Section 4
demonstrates the first stage of the procedure of the work that is about how to make ML models
in a 1D channel geometry. For the data generation part, the label of face slopes in datasets
contains a lot of zero values for the early time steps as shown in Figure 4.3, which means that
the totally same label values regardless of the feature y_face. This made the ML model for
face slopes difficult to train. However, the integral average velocity avgU can distinguish all the
zero points, which can mitigate the training difficulty. The ML model for face slopes yields less
maximum relative error than the ML model for wall slopes. The largest error region is mainly
near the wall for all the models because the scale of the slopes is the largest there, and the
distance of the value between two points near the wall are the largest as well.

Regarding the actual simulation in a flat plate for application of the trained models in Sec-
tion 5, there is no issue for smaller y+ values since no correction is applied, which leads to the
same results for all the scenarios. Differences occur from the case y+ = 5, and only the wall
correction scenario shows the slightly larger skin friction compared to the others. This implies
that the skin friction is reduced when the face correction turns on, which is the same as the
original expectation of the slope correction according to Figure 3.1. The wall correction makes
the skin friction larger because the real slope is larger than the numerical slope. Afterward, the
face correction reduces the skin friction since the real slope is smaller than the numerical one. For
y+ = 10, the situation is almost identical. The skin friction for three scenarios even fluctuate,
but the wall/face correction method mitigates this fluctuation, and capture the behavior of the
reference one. From y+ = 30, the wall/face correction scenario is almost the same as the wall
correction scenario because no face correction occurs from the local y+ = 35. This setting is
applied due to two reasons. Firstly, the underestimation of skin friction and the kink exist at
the very front of the plate. This could happen because the ML model slope at this region is
almost zero, and thus the skin friction could be underestimated. However, the true reason is
yet uncertain. For the wall correction case, there is still a kink, but it is much more reduced
compared to the case with involvement of face correction. Secondly, the correction is differently
executed for higher y+. The wall correction increases the skin friction from the case without wall
functions, but the face correction slightly increases the skin friction as well. Figure 8.1 shows
the νeff correction ratio that corresponds to Equation (3.10). After a number of iterations, the
ratio becomes larger than 1.0 and stably maintain 2.0 at the middle and the end of the plate
for y+ = 100, which means that the face correction increases the skin friction. For y+ = 10,
the ratio is also larger than 1.0 but fluctuates between 1.0 and 2.0 at the middle and the end
of the plate. Due to the velocity blending method, the correction method works well as per the
original concept at the buffer layer, whereas the method yields the unexpected results compared
to the concept at the logarithmic layer. However, this phenomenon would not be because the

60

61

correction ratio at y+ = 10 is smaller than 1.0, but the fluctuation of the ratio could somehow
mitigate the unstable behavior of the skin friction. At the front of the plate for both y+, the skin
friction at y+ = 10 can capture the reference graph due to the large correction ratio, whereas
the skin friction at y+ = 100 shows the kink at the same location. Hence, it turns out that
the νeff correction ratio should be much larger than 1.0 (8.0 in this case) to avoid a creation
of a kink at the front of the plate. With regards to the performance of each scenario, it can be
concluded that the wall/face correction scenario yields the best performance because the 95%
confidence interval for that scenario is the smallest. However, at the middle and the end of the
plate, the confidence interval of the wall and the wall/face correction cases is slightly larger than
the interval of the standard wall function case. This implies that the data-driven wall function
for the flat plate case can generally mitigate the mesh-dependency, but shows worse performance
than the standard wall function at the middle and the end of the plate.

0 20 40 60 80 100
Iteration step

0

2

4

6

8
eff correction ratio at 1st face for y + = 10 and 100 (model slope/numerical slope)

Front (at 10th cell), y + = 10
Middle (at 200th cell), y + = 10
End (at 440th cell), y + = 10

Front (at 10th cell), y + = 100
Middle (at 200th cell), y + = 100
End (at 440th cell), y + = 100

Figure 8.1: νeff correction ratio for y+ = 10 and 100

In Section 6, the trained ML models are applied to a 2D NACA-0012 airfoil case. The pressure
coefficient graphs are plotted well compared to the experiment data except the case y+ = 3.5
because the local pressure values are virtually mesh-independent along with y-axis in a zero
pressure gradient condition. For the skin friction, the buffer layer region is different from the
flat plate case. The unstable fluctuations occur at y+ = 3.5 for the airfoil case, whereas they
occur at y+ = 10 for the flat plate case. Since the same blending methods are used in the airfoil
case, no correction happens at y+ = 3.5 and 5 which means that the skin friction values cannot
be mitigated. They are all overestimated, and even the skin friction for the wall/face correction
scenario is out of range at y+ = 3.5, but this problem is due to the turbulence model itself, which
is not related to the data-driven approach. Meanwhile, the skin friction at y+ = 10 that is still
in the buffer layer is well mitigated compared to the standard wall function, and the wall/face
correction case shows slightly better performance than the wall correction case. For higher y+,
the analogous problem occurs at the front of the airfoil that corresponds to the underestimation
of skin friction. The gap between the reference and the data-driven approach in the airfoil case
is larger than the gap in the flat plate case. The reason might be that the wall slopes at the
front are underestimated, and thus the wall shear stresses are also underestimated compared to

62 8. Discussion

the reference. When it comes to the convective flux correction, the result can be found in the
y+ = 10 case because the range of the local y+ is between 10 and 35. However, the skin friction is
not much different between the wall and the wall/face correction scenarios, which means that the
diffusive flux correction and the convective flux correction at the first cell face are not markedly
influenceable. The reason would be that the application of the ratio of the velocity magnitude
(speed) for the flux phi is based on 1D. The magnitude of the velocity for the convective flux at
the first cell face is actually (u2cosθ+uv(cosθ+sinθ) +v2sinθ), which means that the velocities
in x-direction and y-direction are involved together. However, the ML models are trained in
the 1D channel, and hence only the velocity magnitude in x-direction is used for training. The
ratio of the velocity magnitude is only between 0.9 and 1.1, which is quite a small amount of
correction. Currently, the exact method is not yet found whether the speed in x-direction and
y-direction can be used to correct φ as a ratio basis or the velocity vector should be calculated to
create another FVM equation in the first place. It can be concluded that at least a 2D geometry
setting must be employed when convective fluxes are involved to be correctly calculated. The
performance of each scenario for the airfoil case is given by Figure 6.23 and Table 6.3. Although
no correction is applied to the case y+ = 3.5, the turbulence model itself yields the bad results
for the wall correction and the wall/face correction scenarios. Hence, for this performance eval-
uation, the case y+ = 3.5 is excluded. The wall correction and wall/face correction scenarios
show worse results than the standard wall function scenario even though they have the smaller
confidence interval range approximately between the range c = 0.1 and 0.4. The deviation at
the front airfoil is large, which is the reason of the worse performance.

0 20 40 60 80 100
Iteration step

10 4

10 3

Average eff at y = 0.00104

Front (at 10th cell), y+ = 0.05
Middle (at 200th cell), y+ = 0.05
End (at 440th cell), y+ = 0.05

Front (at 10th cell), y+ = 100
Middle (at 200th cell), y+ = 100
End (at 440th cell), y+ = 100

Figure 8.2: Average νeff for y+ = 0.05 and 100

In Section 7, two additional flat plate cases are investigated that correspond to be at Rex = 3·106

and 6 · 106. The results are virtually identical to the results in Section 5. Regarding the case at
Rex = 3 · 106, the skin friction for the wall/face scenario at y+ = 30 is slightly overestimated at
the front of the plate compared to the wall correction scenario. This is because the local y+ at
the front is still less than 30, and thus the additional correction at the first cell face is executed.
On the other hand, the skin friction for the wall/face scenario at y+ = 10 is slightly increased
compared to the wall correction scenario for the case at Rex = 6 · 106. The face correction in
this case also increases the skin friction. According to the results in Section 7, it can be con-

63

cluded that the data-driven approach is effective for various Reynolds numbers in flat plate cases
since the confidence intervals for the data-driven wall function are smaller than the standard
wall function scenario. Therefore, this data-driven approach can be used for mesh-independent
results at least in flat plate cases.

The possible error sources are already explained in this section. Firstly, the ML model slopes for
the first cell face normal to the wall at the front of the plate are almost zero for higher y+, which
could be an error source for the diffusive flux correction. Secondly, only one dimension is involved
for the convective flux correction. Furthermore, there is one general source of showing inconsis-
tent results that could be supposed. When it comes to the equation of the SA turbulence model,
νeff is calculated from the equation. The νeff used in the equation is a cell-centered value, and
therefore it is mesh-dependent. Figure 8.2 shows the average νeff values at y+ = 0.05 and 100
with almost the same distance (yface,0.05 = 0.001043330676 and yface,100 = 0.001044526213).
The νeff difference between two cases is enormously huge, and thus this could be the reason of
the inconsistent results of simulations. In this work, the correction is executed only by multi-
plying the ratio of the slopes or the velocities. If νeff from the turbulence equation itself yields
such a discrepancy, the simulation will yield bad results for coarser meshes regardless of the label
calculation of the data-driven wall function.

Chapter 9

Summary

A data-driven approach is one of the popular methods in engineering and academic fields. This
work uses the approach to invent a new data-driven wall function for mesh-independent behavior
in turbulent flows. The related data is extracted from a 1D channel geometry by simulating 140
time steps shown in Section 4. Afterward, the training is performed with a simple NN structure
that has the same number of neurons per hidden layer. Two features that are y_face and avgU
and three labels that correspond to dUdy_wall, dUdy_face, and Ux_face are used for training,
and the ML model is divided into three models for accuracy. After training, the maximum rel-
ative error near the wall region for three models is approximately 16%, particularly for the wall
slope model, but the relative error for the other region is less than 5%.

The trained models are applied to a flat plate case at Rex = 1 · 107 in Section 5. By changing
grading settings, skin friction values for total eight y+, which correspond to 0.05, 1, 2, 5, 10, 30,
50, 100, are investigated. Since there is no vertical velocity component, only diffusive fluxes are
corrected. The skin friction for the wall/face correction scenario is the best result which means
that the data is not much spread from the mean value. The wall correction scenario shows worse
result than the standard wall function scenario due to the case at y+ = 10. The length of the
confidence interval of the wall/face correction scenario is approximately 66.2% of the length of
the standard wall function scenario, which implies that the data-driven approach is more mesh-
independent than the standard wall function.

The next case is an airfoil case with a chord length of 1m at Rec = 3 · 106 mentioned in
Section 6. This simulation investigates skin friction values and pressure coefficients for eight y+

that are 0.05, 1, 2, 3.5, 5, 10, 50, 100. Since the buffer layer region is different from the flat plate
case, y+ = 3.5 is included instead of y+ = 30. The vertical velocity component is involved in
this airfoil case, and therefore convective fluxes are also corrected. For the pressure coefficient,
the results of all the scenarios can capture the behavior of the experimental data except the
case y+ = 3.5 for the wall correction and the wall/face correction scenarios. Regarding the skin
friction, the data-driven wall correction scenarios yield the bad estimations because of the huge
underestimation at the front of the airfoil. Moreover, the simulations at y+ = 3.5 for these
two scenarios yield the really bad results, which means that the correction at the buffer layer is
enormously unstable. Except the case at y+ = 3.5, the standard wall function yields the best
results compared to the other scenarios. The length of the confidence interval of the wall/face
correction scenario is approximately 108.4% of the length of the standard wall function scenario,
which means that the data-driven approach is not that effective for airfoil cases.

Section 7 demonstrates how the trained ML models work for various Reynolds numbers in flat
plate cases, and two cases at Rex = 3 · 106 and Rex = 6 · 106 are investigated. Skin friction

64

65

values for y+ = 0.05, 1, 2, 5, 10, 30, 50, 100 are found again. The wall correction scenario
shows the best result, and the length of the confidence interval of the wall correction scenario
is approximately 66.1% of the length of the standard wall function scenario for Rex = 3 · 106.
For Rex = 6 · 106, the wall correction scenario shows the best result, and shows slightly better
performance than the wall/face correction scenario. The length of the confidence interval of the
wall correction scenario for this case is approximately 64.3% of the length of the standard wall
function scenario, which also implies that the data-driven approach is more mesh-independent
than the standard wall function. Generally, the best scenario of the data-driven approach yields
more mesh-independent behavior, approximately 65% of the confidence interval for three flat
plate cases.

In this project, the convective flux correction was not properly implemented. It is obvious
that the convective flux correction rarely affected the results because the correction is based on
the 1D geometry that does not have any vertical velocity components. Hence, a new approach
that introduces a simple 2D geometry would be implemented for an appropriate convective flux
correction method. On the other hand, it was found that the effective viscosity νeff at the
first cell center (approximately y = 0.00104) for the coarser meshes was exceedingly larger than
that at the same location for the finer meshes. This yielded the inconsistent results in terms
of refinement of meshes. In the future, this uncertainty that is caused by the turbulence model
in OpenFOAM is to be investigated. Finally, this project studied the flows that are with the
zero pressure gradient condition. The identical ML model will be able to be used later on for
various flow situations such as a flat plate case with a back pressure gradient condition, a back-
ward facing step case, etc. The working pipeline is already set, and thus it is possible that the
performance of the trained ML models is investigated for other cases as well.

Bibliography

[1] Marcin Andrychowicz, Misha Denil, Sergio Gómez, Matthew W Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient descent
by gradient descent. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016.

[2] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, feb 2000.

[3] Peter Bradshaw and George P. Huang. The law of the wall in turbulent flow. Proceedings of
the Royal Society of London. Series A: Mathematical and Physical Sciences, 451(1941):165–
188, oct 1995.

[4] Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering. Cambridge
University Press, jan 2019.

[5] Georgi Kalitzin, Gorazd Medic, Gianluca Iaccarino, and Paul Durbin. Near-wall behavior
of RANS turbulence models and implications for wall functions. Journal of Computational
Physics, 204(1):265–291, mar 2005.

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. December
2014.

[7] J. Ling and J. Templeton. Evaluation of machine learning algorithms for prediction of
regions of high reynolds averaged navier stokes uncertainty. Physics of Fluids, 27(8):085103,
aug 2015.

[8] Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds averaged turbulence mod-
elling using deep neural networks with embedded invariance. Journal of Fluid Mechanics,
807:155–166, oct 2016.

[9] Shuaiqiang Liu, Anastasia Borovykh, Lech A. Grzelak, and Cornelis W. Oosterlee. A neu-
ral network-based framework for financial model calibration. Journal of Mathematics in
Industry, 9(1), sep 2019.

[10] Tomislav Marić, Jens Höpken, and Kyle G. Mooney. The OpenFOAM Technology Primer.
Zenodo, 2021.

[11] Romit Maulik, Himanshu Sharma, Saumil Patel, Bethany Lusch, and Elise Jennings. A
turbulent eddy-viscosity surrogate modeling framework for reynolds-averaged navier-stokes
simulations. Computers & Fluids, 227:104777, sep 2021.

[12] Tsan Hsing Shih, Louis Povinelli, Nan-Suey Liu, Mark Potapczuk, and John Lumley. A
generalized wall function. NASA Technical Memorandum, aug 1999.

[13] D. B. Spalding. A single formula for the “law of the wall”. Journal of Applied Mechanics,
28(3):455–458, sep 1961.

66

Bibliography 67

[14] Nils Thuerey, Konstantin Weißenow, Lukas Prantl, and Xiangyu Hu. Deep learning methods
for reynolds-averaged navier–stokes simulations of airfoil flows. AIAA Journal, 58(1):25–36,
jan 2020.

[15] Yifeng Tian, Daniel Livescu, and Michael Chertkov. Physics-informed machine learning of
the lagrangian dynamics of velocity gradient tensor. Physical Review Fluids, 6(9):094607,
sep 2021.

[16] Yoshimasa Tsuruoka, Jun'ichi Tsujii, and Sophia Ananiadou. Stochastic gradient descent
training for l1-regularized log-linear models with cumulative penalty. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP: Volume 1 - ACL-IJCNLP '09.
Association for Computational Linguistics, 2009.

[17] Pedro Stefanin Volpiani, Morten Meyer, Lucas Franceschini, Julien Dandois, Florent Renac,
Emeric Martin, Olivier Marquet, and Denis Sipp. Machine learning-augmented turbu-
lence modeling for RANS simulations of massively separated flows. Physical Review Fluids,
6(6):064607, jun 2021.

[18] Jian-Xun Wang, Jin-Long Wu, and Heng Xiao. Physics-informed machine learning approach
for reconstructing reynolds stress modeling discrepancies based on DNS data. Physical
Review Fluids, 2(3):034603, mar 2017.

[19] Andre Weiner. Modeling and simulation of convection-dominated species transfer at rising
bubbles. Ph.D. Thesis at Technical University of Darmstadt, 2020.

[20] Andre Weiner, Dennis Hillenbrand, Holger Marschall, and Dieter Bothe. Data-driven
subgrid-scale modeling for convection-dominated concentration boundary layers. Chemi-
cal Engineering & Technology, 42(7):1349–1356, may 2019.

[21] X. I. A. Yang, S. Zafar, J.-X. Wang, and H. Xiao. Predictive large-eddy-simulation wall
modeling via physics-informed neural networks. Physical Review Fluids, 4(3):034602, mar
2019.

[22] Ning Zhang, Shui-Long Shen, Annan Zhou, and Ye-Shuang Xu. Investigation on per-
formance of neural networks using quadratic relative error cost function. IEEE Access,
7:106642–106652, 2019.

[23] Zhideng Zhou, Guowei He, and Xiaolei Yang. Wall model based on neural networks for LES
of turbulent flows over periodic hills. Physical Review Fluids, 6(5):054610, may 2021.

List of Figures

1.1 Sketch of a bubble interface [19] . 3

2.1 General discretized flow domain [10] . 6
2.2 Spalding’s function plot . 8
2.3 Surface normal vector at a wall . 9
2.4 Basic structure of an MLP with 2 inputs, 1 output, and 4 neurons per hidden

layer [9] . 11
2.5 Sketch of the gradient descent method3 . 12

3.1 Error in the flux approximation with respect to the mesh resolution y+ = 40 . . . 16
3.2 Velocities and surfaces in a convection-dominated flow at a wall 16
3.3 Error in the flux approximation with respect to the mesh resolution y+ = 2 . . . 18
3.4 Sigmoid function w for y+ blending . 20

4.1 Geometry of a channel flow . 23
4.2 Mesh setting for a 1D channel flow geometry . 24
4.3 Velocity profiles for all time steps . 25
4.4 Velocity profiles for all time steps in wall units 25
4.5 MSE loss values for activation functions by box plots 27
4.6 MSE loss values for the number of layers by box plots 27
4.7 MSE loss values for learning rates by box plots 28
4.8 MSE loss values for the number of neurons by box plots 28
4.9 Box plot of MSE for the best model . 29
4.10 Relative error for the best model by histogram 29
4.11 Relative error heat map for wall slopes . 30
4.12 Relative error heat map for face slopes . 30
4.13 Relative error heat map for velocity at faces . 31
4.14 Training loss for the wall slope model . 32
4.15 Training loss for the face slope model . 32
4.16 Training loss for the wall slope model . 33
4.17 Heat map for the maximum relative error in different segments of the feature space

(integral average velocity and height of each cell face); Prediction of wall slopes
(left), prediction of face slopes (middle), prediction of face velocity in x-direction
(right) . 33

5.1 A 2D flat plate geometry1 . 34
5.2 Comparison of skin friction values for y+ = 0.05 36
5.3 Comparison of skin friction values for y+ = 1 . 37
5.4 Comparison of skin friction values for y+ = 2 . 37
5.5 Comparison of skin friction values for y+ = 5 . 37
5.6 Comparison of skin friction values for y+ = 10 . 38
5.7 Comparison of skin friction values for y+ = 30 . 38
5.8 Comparison of skin friction values for y+ = 50 . 38
5.9 Comparison of skin friction values for y+ = 100 39
5.10 Skin friction for the no wall function scenario . 39
5.11 Skin friction for the standard wall function scenario 39
5.12 Skin friction for the data-driven wall function with wall correction scenario 40
5.13 Skin friction for the data-driven wall function with wall/face correction scenario . 40
5.14 Distribution of skin friction for each scenario . 41

xii

List of Figures xiii

6.1 Boundary conditions for airfoil case1 . 42
6.2 Modifiable section of the mesh near the airfoil2 43
6.3 Comparison of pressure coefficient for y+ = 0.05 45
6.4 Comparison of pressure coefficient for y+ = 1 . 45
6.5 Comparison of pressure coefficient for y+ = 2 . 45
6.6 Comparison of pressure coefficient for y+ = 3.5 46
6.7 Comparison of pressure coefficient for y+ = 5 . 46
6.8 Comparison of pressure coefficient for y+ = 10 . 46
6.9 Comparison of pressure coefficient for y+ = 50 . 47
6.10 Comparison of pressure coefficient for y+ = 100 47
6.11 Comparison of skin friction values for y+ = 0.05 47
6.12 Comparison of skin friction values for y+ = 1 . 48
6.13 Comparison of skin friction values for y+ = 2 . 48
6.14 Comparison of skin friction values for y+ = 3.5 48
6.15 Comparison of skin friction values for y+ = 5 . 49
6.16 Comparison of skin friction values for y+ = 10 . 49
6.17 Comparison of skin friction values for y+ = 50 . 49
6.18 Comparison of skin friction values for y+ = 100 50
6.19 Skin friction for the no wall function scenario (airfoil) 50
6.20 Skin friction for the standard wall function scenario (airfoil) 51
6.21 Skin friction for data-driven wall function with wall correction case (airfoil) . . . 51
6.22 Skin friction for the data-driven wall function with wall/face correction scenario

(airfoil) . 51
6.23 Distribution of skin friction for each scenario . 52

7.1 Skin friction for the no wall function scenario at Rex = 3 · 106 54
7.2 Skin friction for standard the wall function scenario at Rex = 3 · 106 55
7.3 Skin friction for the data-driven wall function with wall correction scenario at

Rex = 3 · 106 . 55
7.4 Skin friction for the data-driven wall function with wall/face correction scenario

at Rex = 3 · 106 . 56
7.5 Distribution of skin friction for each scenario at Rex = 3 · 106 56
7.6 Skin friction for the no wall function scenario at Rex = 6 · 106 57
7.7 Skin friction for the standard wall function scenario at Rex = 6 · 106 57
7.8 Skin friction for the data-driven wall function with wall correction scenario at

Rex = 6 · 106 . 58
7.9 Skin friction for the data-driven wall function with wall/face correction scenario

at Rex = 6 · 106 . 58
7.10 Distribution of skin friction for each scenario at Rex = 6 · 106 59

8.1 νeff correction ratio for y+ = 10 and 100 . 61
8.2 Average νeff for y+ = 0.05 and 100 . 62

A.1 Comparison of skin friction values for y+ = 0.05 at Rex = 3 · 106 xv
A.2 Comparison of skin friction values for y+ = 1 at Rex = 3 · 106 xv
A.3 Comparison of skin friction values for y+ = 2 at Rex = 3 · 106 xvi
A.4 Comparison of skin friction values for y+ = 5 at Rex = 3 · 106 xvi
A.5 Comparison of skin friction values for y+ = 10 at Rex = 3 · 106 xvi
A.6 Comparison of skin friction values for y+ = 30 at Rex = 3 · 106 xvii
A.7 Comparison of skin friction values for y+ = 50 at Rex = 3 · 106 xvii
A.8 Comparison of skin friction values for y+ = 100 at Rex = 3 · 106 xvii
A.9 Comparison of skin friction values for y+ = 0.05 at Rex = 6 · 106 xviii
A.10 Comparison of skin friction values for y+ = 1 at Rex = 6 · 106 xviii
A.11 Comparison of skin friction values for y+ = 2 at Rex = 6 · 106 xviii
A.12 Comparison of skin friction values for y+ = 5 at Rex = 6 · 106 xix
A.13 Comparison of skin friction values for y+ = 10 at Rex = 6 · 106 xix
A.14 Comparison of skin friction values for y+ = 30 at Rex = 6 · 106 xix
A.15 Comparison of skin friction values for y+ = 50 at Rex = 6 · 106 xx
A.16 Comparison of skin friction values for y+ = 100 at Rex = 6 · 106 xx

List of Tables

4.1 Flow condition in a 1D channel case . 22
4.2 Description of the features and the labels . 24
4.3 Flow condition for uncertainty check . 27

5.1 Mesh setting for a flat plate case . 35
5.2 Representative mean value with the confidence interval for the flat plate case . . 41

6.1 Flow condition in a 2D airfoil case . 43
6.2 Mesh setting for a 2D airfoil case . 44
6.3 Representative mean value with the confidence interval for the airfoil case 52

7.1 Flow condition in the flat plate case at Rex = 3 · 106 53
7.2 Flow condition in the flat plate case at Rex = 6 · 106 53
7.3 Mesh setting for a flat plate case at Rex = 3 · 106 54
7.4 Mesh setting for a flat plate case at Rex = 6 · 106 54
7.5 Representative mean value with the confidence interval for the flat plate case at

Rex = 3 · 106 . 57
7.6 Representative mean value with the confidence interval for the flat plate case at

Rex = 6 · 106 . 59

xiv

Appendix A

Additional Plots for Comparison of
Skin Friction

A.1 Comparison of Skin Friction for Different Scenarios at Rex =
3 · 106

For y+ = 0.05, 1, and 2, no correction occurs as shown in Figures A.1, A.2, and A.3.

0 500000 1000000 1500000 2000000 2500000 3000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 0.05, SpalartAllmaras model (Re = 3e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.1: Comparison of skin friction values for y+ = 0.05 at Rex = 3 · 106

0 500000 1000000 1500000 2000000 2500000 3000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 1, SpalartAllmaras model (Re = 3e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.2: Comparison of skin friction values for y+ = 1 at Rex = 3 · 106

xv

xvi A. Additional Plots for Comparison of Skin Friction

0 500000 1000000 1500000 2000000 2500000 3000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 2, SpalartAllmaras model (Re = 3e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.3: Comparison of skin friction values for y+ = 2 at Rex = 3 · 106

For y+ = 5 shown in Figure A.4, there is no difference amongst all the scenarios since the local
y+ values are less than 10 for all regions unlike Section 5.

0 500000 1000000 1500000 2000000 2500000 3000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 5, SpalartAllmaras model (Re = 3e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.4: Comparison of skin friction values for y+ = 5 at Rex = 3 · 106

For y+ = 10 shown in Figure A.5, the skin friction fluctuates for the standard wall function
scenario, but the other scenarios show the stable behavior except small fluctuations at Rex =
1 · 106.

0 500000 1000000 1500000 2000000 2500000 3000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 10, SpalartAllmaras model (Re = 3e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.5: Comparison of skin friction values for y+ = 10 at Rex = 3 · 106

A.1 Comparison of Skin Friction for Different Scenarios at Rex = 3 · 106 xvii

From y+ = 30 depicted in Figures A.6, A.7, and A.8, the scenario without wall functions also
shows very bad estimations, and the standard wall function scenario yields the overestimated
results. The other two scenarios show the stable results apart from the area of the front plate.
The wall/face correction scenario is the same as the wall correction scenario for y+ ≥ 35.

0 500000 1000000 1500000 2000000 2500000 3000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 30, SpalartAllmaras model (Re = 3e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.6: Comparison of skin friction values for y+ = 30 at Rex = 3 · 106

0 500000 1000000 1500000 2000000 2500000 3000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 50, SpalartAllmaras model (Re = 3e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.7: Comparison of skin friction values for y+ = 50 at Rex = 3 · 106

0 500000 1000000 1500000 2000000 2500000 3000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 100, SpalartAllmaras model (Re = 3e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.8: Comparison of skin friction values for y+ = 100 at Rex = 3 · 106

xviii A. Additional Plots for Comparison of Skin Friction

A.2 Comparison of Skin Friction for Different Scenarios at Rex =
6 · 106

For y+ = 0.05, 1, and 2, no correction occurs as shown in Figures A.9, A.10, and A.11.

0 1000000 2000000 3000000 4000000 5000000 6000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 0.05, SpalartAllmaras model (Re = 6e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.9: Comparison of skin friction values for y+ = 0.05 at Rex = 6 · 106

0 1000000 2000000 3000000 4000000 5000000 6000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 1, SpalartAllmaras model (Re = 6e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.10: Comparison of skin friction values for y+ = 1 at Rex = 6 · 106

0 1000000 2000000 3000000 4000000 5000000 6000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 2, SpalartAllmaras model (Re = 6e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.11: Comparison of skin friction values for y+ = 2 at Rex = 6 · 106

A.2 Comparison of Skin Friction for Different Scenarios at Rex = 6 · 106 xix

For y+ = 5 shown in Figure A.12, no correction occurs for all the scenarios since the local y+

values are still less than 10 for this Reynolds number.

0 1000000 2000000 3000000 4000000 5000000 6000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 5, SpalartAllmaras model (Re = 6e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.12: Comparison of skin friction values for y+ = 5 at Rex = 6 · 106

For y+ = 10 shown in Figure A.13, the skin friction fluctuates for the standard wall function
scenario, but the other scenarios show the stable behavior except small fluctuations at around
Rex = 1.5 · 106.

0 1000000 2000000 3000000 4000000 5000000 6000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 10, SpalartAllmaras model (Re = 6e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.13: Comparison of skin friction values for y+ = 10 at Rex = 6 · 106

0 1000000 2000000 3000000 4000000 5000000 6000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 30, SpalartAllmaras model (Re = 6e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.14: Comparison of skin friction values for y+ = 30 at Rex = 6 · 106

xx A. Additional Plots for Comparison of Skin Friction

From y+ = 30 depicted in Figures A.14, A.15, and A.16, the behavior of all the scenarios is
virtually the same as the case at Rex = 3 · 106.

0 1000000 2000000 3000000 4000000 5000000 6000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 50, SpalartAllmaras model (Re = 6e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.15: Comparison of skin friction values for y+ = 50 at Rex = 6 · 106

0 1000000 2000000 3000000 4000000 5000000 6000000
Rex

0.000

0.002

0.004

0.006

C
f

Skin friction Cf for y+ = 100, SpalartAllmaras model (Re = 6e6)

Wieghardt

No wall func.

Standard wall func.

Wall corr.

Wall/face corr.

Figure A.16: Comparison of skin friction values for y+ = 100 at Rex = 6 · 106

	Nomenclature
	Introduction
	Theoritical Background
	Discretization of Momentum Equation
	Wall Functions
	Law of the Wall
	Spalding's Function
	Wall Shear Stresses

	Data-driven Approach
	Supervised Learning
	Multilayer Perceptron

	Implementation of Numerical Methods
	Solver Modification
	Flux Correction Methods
	Diffusive Flux Correction
	Convective Flux Correction

	Approximating Velocity Profile in 1D Channel Flow
	Simulation Setup
	Flow and Boundary Conditions
	Mesh Generation

	Learning Parameters
	Data Generation
	Generation of Mapping Function
	Investigation of Uncertainties

	Results
	Model for Wall Slopes
	Model for Face Slopes
	Model for Velocities at Faces

	Wall Modeling in 2D Flat Plate
	Simulation Setup
	Flow and Boundary Conditions
	Mesh Generation
	Related Coefficients

	Results
	Comparison of Skin Friction for Different Scenarios
	Comparison of Skin Friction for Different y+

	Application of Modeling to NACA-0012 Airfoil
	Simulation Setup
	Flow and Boundary Conditions
	Mesh Generation
	Related Coefficients

	Results
	Comparison of Pressure Coefficient for Different Scenarios
	Comparison of Skin Friction for Different Scenarios
	Comparison of Skin Friction for Different y+

	Generalization of Wall Models for Various Reynolds Numbers
	Simulation Setup
	Flow and Boundary Conditions
	Mesh Generation

	Results
	Comparison of Skin Friction for Different y+ at Rex= 3106
	Comparison of Skin Friction for Different y+ at Rex= 6106

	Discussion
	Summary
	Bibliography
	List of Figures
	List of Tables
	Additional Plots for Comparison of Skin Friction
	Comparison of Skin Friction for Different Scenarios at Rex = 3106
	Comparison of Skin Friction for Different Scenarios at Rex= 6106

