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1 Reproducibility Summary

Scope of Reproducibility
The aim of this paper is to reproduce the claimsmade in the paper Robust Counterfactual
Explanations on Graph Neural Networks [1]. The authors claim to have developed a novel
method for explaining Graph Neural Networks (GNNs) which outperforms the existing
explainer methods in three different ways, by being (1) more counterfactual, (2) more
robust to noise and (3) efficient in terms of time.

Methodology
The original author’s code contained the code necessary to train both GNNs and ex‐
plainer models from scratch. However, some alterations made by us were necessary
to be able to use it. To validate the authors’ claims, the trained RCExplainer model is
compared with other explainer models in terms of fidelity, robustness and efficiency.
We extended the work by investigating the generalisation to the image domain and ver‐
ified the authors’ implementation.

Results
For the validation of the original paper, we compare the pre‐trained model and the re‐
trained model to the results reported in the original paper. The retrained RCExplainer
outperformed the other methods on fidelity and robustness, which corresponds with
the results of the original authors. The measured efficiency of the method also corre‐
sponds to the original result. To extend the paper, this comparison is also performed
using a train‐test split, which showed no significant difference. The implementation of
the metric is investigated and concerns are raised. Finally, the method generalises well
to MNISTSuperpixels in terms of fidelity, but lacks in robustness.

What was easy
The original paper described their metrics for comparing multiple explainer models
clearly, which made it easier to reproduce. Moreover, a codebase was available which
included a pre‐trained explainer model and files for training the other models. Because
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of this, we could easily find the reason for differences between our results and those of
the paper.

What was difficult
The most difficult part of the reproduction study was determining the functionality of
the provided codebase. The original authors did provide a general README file that in‐
cluded instructions for all code parts. However, using these provided instructions, we
were not able to run this code without changes. As the provided codebase was very ex‐
tensive, it was difficult to understand and determine how the different modules worked
together.

Communication with original authors
We found it not necessary to contact the original authors for this reproduction study.
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2 Introduction

GraphNeural Networks (GNNs) [2] are a recent development in the field of deep learning,
aiming to exploit structural information by representing the input data as graphs. By
passingmessages along the nodes of the input graphs, these networks can use the struc‐
tured nature of these graphs to reason on them. This allows GNNs to achieve ground‐
breaking results in a variety of fields such as the modelling of physics systems or molec‐
ular analysis [3].
However, GNNs are similar to conventional neural networks (NNs) and can therefore
similarly be considered a black box. Hence, they do not always provide a sufficient
explanation for their outcome. Nevertheless, such an explanation might be useful in
some applications. An explanation, as presented in [1], is simply a subset of edges of
the input graph. The authors of [1], to whom we will refer as the original authors from
this point on, consider an explanation to be counterfactual if the prediction on the input
graph changes significantly when the edges in the explanation are removed from the
input graph.
Several methods to explain the reasoning of GNNs have already been proposed [4, 5,
6, 7]. However, these models fall short in that their generated explanations are neither
counterfactualnor robust to noise. These features are important for amodel because they
make the explanations concise, easy to understand for humans and more trustworthy
[1]. The original authors propose the RCExplainer model [1], which meets both criteria,
and claim it is capable of outperforming existing explainer models, on the task of graph
classification, while also being at least as time‐efficient.

3 Scope of reproducibility

With this paper, we aim to validate the original authors’ claims, their experimental setup,
and investigate the application of theirmethod to another domain. Our code1 is publicly
available and builds upon the code2 of [1].
The original authors tested the RCExplainer model on three different datasets, however,
due to long training times, we employed only one of these three. This reproduction
paper aims to validate the following claims as made by the original authors:

• The RCExplainer model produces superior counterfactual explanations in com‐
parison to previous methods based on fidelity scores for all levels of sparsity.

• The RCExplainer model is more robust to noise than competitive methods based
on ROC AUC score.

• The RCExplainermodel is at least as efficient in terms of inference time as existing
explainer models.

Moreover, we conduct a set of additional experiments to inspect the following exten‐
sions to the original paper:

• Split the dataset into a proper train test split, that is no overlap between those sets,
for training the explainer model and validating the effect on its performance in
terms of fidelity and ROC AUC scores.

• Apply the RCExplainermethod to the task of image classification using theMNIST‐
Superpixels dataset.

• Calculate the ROC AUC scores in two additional ways.
1Our source code is located at https://github.com/RomanOort/FACTAI.
2Theoriginal authors’ code is available at https://marketplace.huaweicloud.com/markets/aihub/notebook/detail/?id=e41f63d3‐

e346‐4891‐bf6a‐40e64b4a3278.
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The next section will discuss the method of [1] in more detail and introduce our addi‐
tional experiments. Section 5 reports the results to validate the original authors’ claims
as well as the results of our extensions. Finally, Section 6 reflects on our work and con‐
cludes that we were able to partly reproduce the original paper.

4 Methodology

4.1 Model description
The original authors propose a method consisting of two steps. First, the common de‐
cision logic of a GNN is extracted based on a set of linear decision boundaries (LDBs).
This set comes from aGNN that is trained for graph classification. Second, the explainer
model, based on the set of LDBs, which is a simple neural network, is trained to generate
counterfactual explanations.

Graph neural network The graph neural network, denoted by ϕ, is trained to classify
input graphs. This model consists of an arbitrary number of graph convolutional layers,
which produce an embedding vector, and a fully connected head. This head predicts
the class probabilities from the embeddings.

Explanation network The explanation model, denoted by ϕθ, is trained using the em‐
bedding vectors as produced by the GNN. The network consists of two linear layers with
ReLU activations.

Linear Decision Boundaries — The architecture of the classification GNN, ϕ, can be divided
into two distinct parts: the graph convolutional layers, denoted by ϕgc, and the fully
connected layers, denoted by ϕfc. The RCExplainer model proposed by the original
authors works by partitioning the output space of the graph convolutional layers into
a set of decision regions, one for each class of the dataset. Given that the GNN uses
piecewise linear activations on the neurons [8], its decision regions can be modelled
by a set of linear decision boundaries (LDBs), the combination of which forms a convex
polytope. As the total number of LDBs of a GNN grows exponentially with respect to the
number of neurons [9], it is intractable to compute all the LDBs of a model. However,
an LDB can be written as a linear equation of the form wT x + b = 0, where the basis w
and the bias b can be computed with the following equations:

w =
∂ (max1(ϕfc(α))−max2(ϕfc(α)))

∂α
, (1)

b = max1(ϕfc(α))−max2(ϕfc(α))−wTα, (2)

where α = ϕgc(G), so the embedding of the graph G in the output space of the graph
convolutional layers, and the max1 and max2 operations take the highest and second‐
highest value of the input respectively. The original authors, therefore, propose to uni‐
formly sample a random subset of input graphs and extract their respective LDB, in
order to circumvent the complexity of computing all LDBs, giving a subset of decision
boundaries H̃ ⊂ H.
The set of LDBs forming a decision region for a specific class is then chosen to cover
the maximum amount of graphs belonging to that class while ensuring that this region
covers as few graphs of other classes as possible. The set of LDBs H̃c that forms the
decision regions of a class c is determined by iteratively applying the following rule:

h = min
h∈H̃\H̃c

g(H̃c, c)− g(H̃c ∪ {h}, c) + ε

k(H̃c, c)− k(H̃c ∪ {h}, c)
, (3)
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where g(H̃c, c) is the total number of graphs belonging to class c that are covered by
the LDBs in H̃c, k(H̃c, c) is the total number of graphs not belonging to class c that are
covered by H̃c, and ε is a small noise term that ensures the best LDB is chosen, even
when the numerator equals zero. This rule is applied until H̃c covers all graphs of class
c, and then repeat this process for every class.

Explanations —Having extracted a decision region for each class, the original authors use
this to generate an explanation S for each graph G, where S consists of a subset of the
edges in G. This explanation is generated through the fully connected neural network
ϕθ, parameterized by θ. This model takes the node embeddings of nodes i and j gener‐
ated by ϕgc, and returns the probability that an edge between these two nodes is part of
G’s explanation. Over all node pairs, this forms the matrix M, where each entry is the
probability of the corresponding edge in the adjacency matrix belonging to S, which is
then chosen to be the set of all edges with a value greater than 0.5 inM.
The goal during training is to train a model such that the prediction of the GNN on the
explanation is consistent with the prediction on the original graph, such that ϕ(S) =
ϕ(G). Furthermore, the original authors want to ensure that removing the edges in S
from G changes the prediction on G significantly, such that ϕ(G\S) ̸= ϕ(G).
In order to satisfy these goals, the original authors define the following loss function:

L(θ) =
∑
G∈D

(λLsame(θ,G) + (1− λ)Lopp(θ,G) + βRsparse(θ,G) + µRdiscrete(θ,G)) (4)

whereLsame is a term ensuring that the explanation ofGhas the same classification asG
itself, Lopp ensures that removing S fromG changesG’s classification, the combination
of these terms ensuring that the explanations are counterfactual. Furthermore,Rsparse

is a simple L1‐regularization overM, ensuring only a small amount of edges is selected
to be part of the explanation byminimizing this term, andRdiscrete is a term that pushed
the values in M closer to either 0 or 1 to more closely resemble an actual adjacency
matrix.

4.2 Datasets
The original paper evaluates the model on three different datasets: Mutagenicity [10],
BA‐2motifs [7], and NCl1 [11]. Due to time constraints, our reproducibility paper only at‐
tempts to reproduce the results on theMutagenicity dataset. TheMutagenicity dataset is
a binary dataset containing over 4000molecules of different sizes represented as graphs
(see Table 1), with a target stating whether these molecules are mutagenic or not. Be‐
sides the Mutagenicity dataset, we also employed the MNISTSuperpixels dataset [12],
containing 60, 000 graphs, in order to evaluate the RCExplainer model on a task in a dif‐
ferent field. These graphs are obtained from the MNISTSuperpixels dataset [13], which
contains images of handwritten digits, and are based on the images that are segmented
using a superpixel segmentation [14]. This decreases the size of the graphs, by reducing
the image from 28×28 pixels to 75 superpixels. Furthermore, where the graph represen‐
tation of a standard image would be a regular grid, where each pixel is only connected
to its direct neighbours, which is identical for each image, the superpixel representa‐
tion introduces irregularity between the different images, as the segmentation of each
image is different ensuring each image has a different graph.

4.3 Experimental setup and code
This section is split into two parts: the experiments concerning the validation of the
claims made by the original paper’s authors, and the experiments which validate our
aforementioned extensions.
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Table 1. Dataset information.

Dataset # Samples Avg. # Nodes Avg. # Edges # Labels

Mutagenicity 4337 30 31 2
MNISTSuperpixels 60000 75 1393 10

Reproducibility — First, the original authors train a GNN from scratch on the classifica‐
tion task. This GNN is then used to obtain the predictions and node embeddings of
the input graphs. These embeddings and predictions are used to train the RCExplainer
model as described in Section 4.1. Subsequently, the trained RCExplainer model is com‐
pared with other explainer models in terms of fidelity, robustness and efficiency (see
Section 5.1). Due to long training times, we chose to compare the RCExplainer only to
the RCExp‐NoLDB [1] and PGExplainer models [7], all trained from scratch on 10 differ‐
ent seeds using the hyperparameters mentioned in the original paper. The GNN used
as the prediction model is the pre‐trained GNN provided alongside the codebase, with
3 graph convolutional layers.
Moreover, the original paper uses the entirety of the Mutagenicity dataset for training
the GNN, but for training the explainer network only 1742 samples are used. We follow
this same setup in our experiments. However, the original authors only mention an
80/10/10% train‐val‐test split for training the GNN, but no specific split for training the
explanation networks. After inspecting the codebase, we observed that the training set
is always a subset of the test set and, therefore, it appears that the data used for the
evaluation of the RCExplainer is not entirely unseen by the model. Consequently, we
decided to also evaluate all models using a train‐test split of 80/20%, which is a more
common split used in artificial intelligence. The results of the comparison between
both splits are discussed in Section 5.2.
Furthermore, for evaluating the model based on robustness, the area under the curve
(AUC) of a computed receiver operating characteristic curve (ROC) is calculated. In the
provided codebase there were some unclear aspects of the AUC computation, which are
addressed in Section 5.3.2.

Extension — In addition to reproducing the results of the original codebase and the orig‐
inal datasets, we applied the method in a different domain to evaluate the method’s
ability to generalise to a new domain. Where the original authors employed the Muta‐
genicity dataset, which requires a certain level of chemical knowledge in order to inter‐
pret the qualitative results. Therefore, we applied the RCExplainer model on the image
domain as we expect these qualitative results to be easier to interpret intuitively (see 5).
For this purpose, the MNISTSuperpixels dataset [12] is used. This dataset was chosen
because of its relative simplicity compared to other vision datasets.
In order to apply the RCExplainer model to the MNISTSuperpixels dataset, a GNN was
trained from scratch, using 4 graph convolutional layers, with 100 hidden units, fol‐
lowed by an embedding layer consisting of 30 units. This increase in model size is nec‐
essary to obtain results comparable to state‐of‐the‐art [15]. More details are presented in
Appendix 9. We used the hyperparameters as specified in the original paper and trained
the model for 600 epochs.
For comparison, both an RCExplainer and PGExplainer model have been trained to ex‐
plain this GNN. The training uses the default hyperparameters for both models, similar
to the comparison in the original paper. Again, following the original paper, we do not
make use of a test train split, and evaluation is performed on part of the training set.
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4.4 Computational requirements
To run all experiments, that is to say, both the reproduction study and the extension,
we made use of 6 computers with varying specifications, but that contain at least one
NVIDIA 2080TI GPU. The exact specifications can be found in Appendix 8. Table 2 states
the training time in GPU hours per model. The total training time for all models adds
up to ±454 hours of GPU runtime.

Table 2. GPU computing time in hours per model. All models without superscript are trained on
the Mutagenicity dataset. The † superscript denotes models trained on the MNISTSuperpixels
dataset.

Model RCExplainer PGExplainer RCExp‐NoLDB GNN† PGExplainer† Total

Time (h) 8 6 6 20 16 454

5 Results

5.1 Results reproducing original paper
The RCExplainer is evaluated on three metrics: fidelity, robustness, and time efficiency.
We compare the pre‐ and re‐trained RCExplainer to the results reported in the original
paper. For each of the metrics, the results are averaged over 10 different seeds and the
standard deviations are mentioned. Note that for the pre‐trained model we only have
access to a single pre‐trained model, so the metrics for this model are reported for only
a single seed.
As mentioned in Section 4.3.1, we compare the models using two different train‐test
splits. In this section, we only focus on the split as the original authors did. The findings
of the adjusted train‐test split are discussed in Section 5.2.

Fidelity The original authors use fidelity to compare which model produces explana‐
tions with the strongest counterfactual characteristics. Fidelity is the amount the pre‐
diction confidence decreases when the explanation is removed from the input graph. A
higher value indicates stronger counterfactual characteristics. This metric can be sen‐
sitive to the sparsity of explanations, which is the percentage of the remaining edges of
the input graph after deleting the explanation.
The results for this metric can be seen on the right‐hand side in Figure 1. Note that
the sparsity values are shown from 50% instead of 75%, because of a lack of datapoints
for the PGExplainer on the 75‐80% interval. Figure 1 shows that the RCExplainer has
the highest performance of the models, corresponding to the findings of the original
authors. However, the performance of the RCExp‐NoLDB and PGExplainer in Figure 1
is significantly lower than in the original authors’ paper.
As mentioned in Section 4.3.1, we use the hyperparameters as specified in the origi‐
nal paper. For comparison, the model was also evaluated using the hyperparameters
mentioned in the README file of the codebase, changing the parameters µ, λ and β
in the loss function. The corresponding results are reported in Appendix 11 and show
that changing the hyperparameters significantly affects performance. Therefore, we hy‐
pothesise that the hyperparameters are the reason for the performance discrepancies as
seen in Figure 1.

Robustness The robustness of amodel ismeasuredbyhowmuchan explanation changes
after noise is added to the input graphs. The graphs are modified by adding random
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Figure 1. A comparison between different explainer models on the metric fidelity for two different
train‐set splits.

noise to the node features and randomly adding or deleting edges. The produced expla‐
nation of each noisy input graph is compared to the ground truth, the k best (top-k) edges
of the explanation of the unmodified graph, by computing a ROC curve and computing
the AUC of this ROC curve. The higher the AUC score of the model, the more robust it
is.
Each model is evaluated for different levels of noise, measured in the percentage of
nodes and edges that are modified, ranging from 0% to 30%. The results are shown on
the right‐hand side of Figure 2. It shows that the re‐trained RCExplainer performs the
best for almost all noise values. This corresponds with the findings in the original paper.
However, similar to the fidelity results, the results of the RCExp‐NoLDB and PGExplainer
are much lower than shown in the original author’s paper. We again hypothesise that
this is explained by the hyperparameter tuning, following the same reasoning as in the
previous paragraph.

Figure 2. A comparison between different explainer models on the metric robustness for two differ‐
ent train‐set splits.

Efficiency The original authors claim their method is at least as efficient as previous
methods, and report a 0.01s± 0.02 execution time to produce a single explanation. Our
experiments show a 0.007s ± 0.0006 execution time. This slight difference is likely due
to differences in hardware platform and library versions. So, while unable to compare
the performance of the RCExplainer model to other explainers, regarding their time
efficiency, wewere able to achieve results in linewith the findings of the original authors
on the run time of the RCExplainer model.
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Figure 3. RCExplainer vs PGExplainer on the MNISTSuperpixels dataset. Fidelity performance
shows the task is too simple, and noise robustness shows RCEexplainer is outperformed.

5.2 Results beyond original paper
As mentioned in section 4.3.1, the RCExplainer is evaluated using data that has already
been encountered during training. Therefore, all models have also been evaluated on
fidelity and robustness with a train‐test split to see the effect of this experimental setup.
Figure 1 and 2 show the results of these evaluations, where the 80/20% split is shown on
the left side and the 100/100% on the right side. For both metrics, the figures show no
significant differences. This lack of difference is likely because the explainer model is
trained to explain the GNN, not the data, and therefore a train‐test split does not seem
to have a significant influence on the performance for training the explainer models.

5.3 Extension
This section discusses the results of our extensions to the original method. First, the
results of the extension to a newdomain are presented in Section 5.3.1. Then, the results
of two additional AUC computations are reported in Section 3.

MNISTSuperpixels — In order to determine whether the claims of the original authors also
extend to other domains, we measured the fidelity performance and noise robustness
of the RCExplainer on the MNISTSuperpixels dataset (see Figure 3). To compare these
curves, the same evaluation is also performed using the PGExplainer.

Fidelity Figure 3 show that both models achieve high fidelity, especially for sparsity
lower than 90%, indicating that both methods saturate the task, achieving near‐optimal
performance.
The explainers have been trained using a 100/100% train‐test split following the original
paper. While this makes it significantly easier to saturate performance on the test set,
as the samples are seen during training, results on other datasets in Section 5.1 show no
clear difference between a more conventional train‐test split and evaluating on the full
set. Therefore, we hypothesise that the explainers still generalise well to this domain.
Performing this evaluation with a split of 80/20% is still preferred, but not feasible in
this reproduction study due to the long training time of the models.
We speculate that the decrease in fidelity for higher sparsity levels is likely not due to the
model’s ability to select explanations, but rather because the explanations are smaller as
the sparsity level increases. As they become smaller, the counterfactual graph is more
similar to the original graph retaining the same prediction. While unable to verify the
performance advantage of the RCExplainer over the PGExplainer in this domain, we can
verify its ability to generalise to new domains.
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Robustness In contrast to the fidelity performance, the noise robustness shows a clear
difference according to Figure 3. This difference could be caused due to an inherent
difference in robustness threshold in the MNISTSuperpixel dataset compared to Muta‐
genicity. As not every pixel in an image is essential, and even with large parts missing, it
is still possible to correctly classify an image. The PGExplainer is more robust to noise,
remaining close to the original explanation, evenwith noisy input graphs. However, the
performance of the RCExplainer falls short, and the method appears to be less robust
to noise in this domain.

AUC computation —When examining the implementation of the AUC computation we
found this was adjusted when compared to the standard definition of the AUC‐score,
without motivation, leaving us unsure of these adjustments. The AUC‐score is used to
compare the accuracy of S′ to S, where S′ is produced from noisy input graphs to evalu‐
ate robustness to this noise. The explanation problem is formulated as a binary classifi‐
cation problem. For this classification, the original authors only consider true positives
and false positives when measuring the AUC, discarding the false negatives and giving the
metric a positive bias.
A false negative could occur when an edge in S is no longer in S′, for example, when S′

covers a different part of the original graph. If the explainer producingS′ is not robust to
noise, its AUC score could be incorrectly high if it only produces a subset of the ground
truth explanation S. This means, under noisy circumstances, an explainer only has to
predict a single correct edge to attain a perfect AUC score, instead of predicting the full
ground truth. Therefore, false negatives appear to provide important information. True
negatives are also discarded, but while their inclusion is standard practice, they only add
information about the size of the graph compared to the explanation. When evaluating
robustness, this is not as relevant and mostly reduces the difference between the scores.
Hence, we compared the originalmethod and the inclusion of the false negatives, shown
in Appendix 7. For the highest noise percentage, this yields an 0.895% AUC score de‐
crease. While this means the original method includes a slight positive bias, a bias is
also present in the other explanation methods as the same evaluation code is used. Our
foremost concern would be the comparison to other papers, where the metric might be
implemented differently. We, therefore, chose to retain the original AUC computation
method, as the bias is small and we prefer to retain the ability to compare our results to
the original paper.

6 Discussion

This paper is a reproduction study of Robust Counterfactual Explanations on Graph Neural
Networks [1]. We were partly able to reproduce the original authors’ claims that their
model produces more counterfactual explanations, is more robust to noise and is at
least as time‐efficient. The RCExplainer showed equal results, while the RCExp‐NoLDB
and PGExplainer differed, which we hypothesise is because of the hyperparameters.
For our reproduction paper, we only employed the experiments on the Mutagenicity
dataset, and compared it solely to the RCExp‐NoLDB and the PGExplainer, due to time
constraints. Moreover, the results of the experiments have been obtained for 10 different
seeds. Additionally, multiple extensions were performed to validate the experimental
setup of the original paper and apply the model to the image domain.

What was easy and what was difficult
The original authors provided a codebase that included all code to reproduce the ex‐
periments. However, the instructions within this extensive codebase did not perfectly
align with the method as proposed in the original paper. Therefore, we had to make
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some alterations to the code to be able to fully use it and hence mentioning all hyperpa‐
rameters in the original paper would improve reproducibility. Moreover, a pre‐trained
explainermodel was provided, but this only included amodel for one seed, instead of 10
seeds. Furthermore, other explainer methods, to which the original authors compare
their method were already implemented as well. Finally, the original paper described
their metrics for comparing multiple explainer models clearly, which made it easier to
reproduce.

Communication with original authors
There was no communication with the original authors, as we did not find it necessary
in order to reproduce the paper.
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Appendix

7 AUC comparison

Table 3. AUC scores under different noise levels for RCExplainer.

Noise level 0 0.05 0.1 0.15 0.2 0.25 0.3

All (FN+FP+TN+TP) 1.0000 0.9994 0.9981 0.9968 0.9960 0.9951 0.9945
Original (TP+FP) 0.9909 0.9512 0.8969 0.8475 0.8051 0.7622 0.7368
False negatives (TP+FP+FN) 0.9909 0.9503 0.8941 0.8429 0.7998 0.7560 0.7302
Original and false negatives difference 0.000% 0.091% 0.309% 0.546% 0.659% 0.811% 0.895%

Table 4. AUC scores under different noise levels for PGExplainer.

Noise level 0 0.05 0.1 0.15 0.2 0.25 0.3

All (FN+FP+TN+TP) 0.9996 0.9988 0.9974 0.9964 0.9945 0.9933 0.9926
Original (TP+FP) 0.9279 0.8810 0.8293 0.7846 0.7487 0.7179 0.6941
False negatives (TP+FP+FN) 0.9279 0.8800 0.8265 0.7809 0.7425 0.7105 0.6863
Original and false negatives difference 0.000% 0.112% 0.339% 0.479% 0.822% 1.022% 1.127%

As concerns were raised about the specifics of the AUC computation and its effect, the
AUC of different approaches are shown in Table 3 for RCExplainer and Table 4 for PG‐
Explainer. These scores are computed on the Mutagenicity dataset using the provided
pre‐trained model for RCExplainer and PGExplainer, trained using the provided script
and parameters. The effect is most notable under the highest noise levels, which causes
S′ to differ themost from S. The original approach is positively biased for all explainers,
but not equally and, therefore, affects the comparison. The effect is small enough that
we chose to ignore it to retain the ability to compare to the original paper.

8 Hardware

Table 5. Hardware specifications of the machines used for training.

CPU Intel i9‐9900 @ 3.10 GHz
GPU NVIDIA GeForce RTX 2080 Ti
Memory 64 GB

9 MNISTSuperpixels GNN Training

For the MNISTSuperpixels dataset, we deviated from the GNN architecture used by the
original authors, as it had low performance. A high accuracy of the prediction model is
important because it validates the counterfactuals produced by the explanation model.
A poorly trained prediction model may have arbitrary explanations, even if the explana‐
tion model is correctly trained, and therefore does not have meaningful counterfactu‐
als. A properly trained explanation model should allow for qualitative evaluation of the
method.
By increasing the number of layers and hidden dimensions of themodel, the larger GNN
achieves a test‐set score of 85% accuracy, just short of the test‐set score reached in [15].
This is shown in Figure 4. Training for the baseline model was stopped early due to low
performance.
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Figure 4. Validation accuracy of GNN on MNISTSuperpixels dataset.

10 MNISTSuperpixels Qualitative Results

Figure 5. Node Explanations on MNISTSuperpixels dataset.

Figure 5 shows the qualitative results of the RCExplainer model on the MNISTSuperpix‐
els dataset, using twelve randomly sampled graphs. The nodes overlayed on the images
are the centroids of the superpixels of the input images, and the brighter their colour,
the higher their probability of being included in the explanation of the model.
While the original authors mainly define the explanation to be a set of edges they also
provide a definition for an explanation consisting of nodes, which we employed for this
visualization. There, a node n ∈ N has a weight an, defined as follows:

an = max
i∈N

(Mni), (5)

where M is the matrix generated by the explanation network fθ. This means that the
weight of a node corresponds to the probability of the edge with the highest probabil‐
ity of belonging to the explanation. Every node with a weight higher than 0.5 is then
considered to be part of the explanation of that graph.
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11 Hyperparameter comparison

Figure 6. Comparison between two explainer models on the metric fidelity using a 100/100% train‐
test split.

Figure 7. Comparison between two explainer models on the metric robuustness using a 100/100%
train‐test split.
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