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1 Reproducibility Summary

Scope of Reproducibility
Gao et al. [1] propose to leverage policies consisting of a series of data augmentations
for preventing the possibility of reconstruction attacks on the training data of gradients.
The goal of this study is to: (1) Verify the findings of the authors about the performance
of the found policies and the correlation between the reconstruction metric and pro‐
vided protection. (2) Explore if the defence generalizes to an attacker that has knowl‐
edge about the policy used.

Methodology
For the experiments conducted in this research, parts of the code from Gao et al. were
refactored to allow for more clear and robust experimentation. Approximately a week
of computation time is needed for our experiments on a 1080 Ti GPU.

Results
It was possible to verify the results from the original paper within a reasonable margin
of error. However, the reproduced results show that the claimed protection does not
generalize to an attacker that has knowledge over the augmentations used. Addition‐
ally, the results show that the optimal augmentations are often predictable since the
policies found by the proposed search algorithm mostly consist of the augmentations
that perform best individually.

What Was Easy
The design of the search algorithm allowed for easy iterations of experiments since ob‐
taining the metrics of a single policy can be done in under a minute on an average GPU.
It was helpful that the authors provided the code of their experiments.

Copyright © 2022 A.T. Warmerdam et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Alfonso Taboada Warmerdam (avtwarmerdam@gmail.com)
The authors have declared that no competing interests exist.
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What Was difficult
To obtain the reconstruction score and accuracy of a policy, the architecture needs to be
trained for about 10 GPU‐hours. Thismakes it difficult to verify howwell the searchmet‐
rics correlate with these scores. It also prevented us to test the random policy baseline,
as this requires the training to be repeated at least 10 times which requires significant
computational power.

Communication With Original Authors
An e‐mail was sent to the original authors regarding the differences in results. Unfortu‐
nately no response has been received so far.
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2 Introduction

Collaborative learning is becoming increasingly common. A deep learning model can
be trained bymultiple participants without the parties having to share their training set
[2, 3, 4]. Instead, they share gradients, given a public model. This allows private data to
be used for training non‐private networks. However, recent works discovered that the
shared gradients may be used to recover sensitive training samples. This development
poses a serious threat to collaborative learning. Gao et al.[1] proposes the ATSPrivacy‐
Framework as a solution for such reconstruction attacks.
The goal of the ATSPrivacy‐Framework is to use simple data augmentations, such as
translations and changes in contrast, to obfuscate the images and make them more dif‐
ficult to reconstruct. The authors show that some of these augmentations significantly
increase privacy under their attack model without severely impacting the accuracy. A
search algorithm is designed to find a combination of augmentations (referred to as a
policy) that work well. The search algorithm aims to find the policy that protects the
privacy of training images the most, while still maintaining model accuracy. A privacy
score and an accuracy score are introduced as search metrics in order to estimate the re‐
construction score of an attacker and the accuracy of the model. The accuracy score
is implemented based on techniques from Mellor et al. [5], and the privacy metric is a
novel technique. The authors claim that the metrics provide suitable estimations of the
model accuracy and reconstruction score, without needing to train the model first.
As a response on Gao et al., Balunović et al. [6] have shown that the proposed method
is not secure during early stages of training. The goal of this research is to extend the
research of Gao et al., and find out whether the method is also insecure in the final
stages of training. This will be researched by incorporating knowledge of the policies
being used as a defense into the attack model.

3 Scope of Reproducibility

The reproducibility is split into two parts. The aim of the first part is to reproduce the
claims fromGao et al., by recreating their experiments. The second part of this research
focusses on the expansion of the original framework by performing additional experi‐
ments that give insight in how the findings of the authors are able to generalize to more
intelligent attackers.

3.1 Reproduction
The first results are generated to reproduce the correlation between the proposed pri‐
vacy score as an estimation of the reconstruction score after training. This will be done
by recreating the empirical validation mentioned in the paper of Gao et al. This work
will not include experiments on researching the accuracy score, as the authors base this
decision on previous work and this experiment would require a lot of computing power
than available. Additionally, the performance of the policies found by the authors is
verified using the search algorithm created by Gao et al. Concretely, the two claims that
are reproduced are:

1. The privacy score proposed in the paper correlates with the reconstruction score
of an attack.

2. The policies selected by the search algorithm reduce the reconstruction score sig‐
nificantly while not resulting in a great loss of accuracy.
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3.2 Additional Insight
In the original paper several attackmethods have been tested, which all follow the same
strategy but with different optimizers and distance measures. This is further illustrated
in Section 4. All the attackmethods do not use any knowledge about possible augmenta‐
tions on the data. The goal of this study is to provide insight into what happens when an
attacker makes assumptions on what augmentations are used. Additionally, this claim
is supported by showing that the policies that are found by the model have very limited
diversity, which makes it easy to predict what augmentations are used. This research
provides the following insights:

1. The effectiveness of the most promising policies selected by the paper for protect‐
ing the data is greatly reduced when the attacker knows that this policy is being
used.

2. Most policies score worse than no policy on both the accuracy and privacy search
metric.

3. The policies that score better than no policy on the search metrics often consist of
the augmentations that scored best individually.

4 Methodology

4.1 Model Descriptions
Twomodels are used in the framework, the systemandattackmodels. The systemmodel
is a standard collaborative learning system where multiple parties train a global model
M. The Attack model is considered an independent party in the collaborative learning
system. The gradients are shared to all parties in each iteration and the attacker tries to
reconstruct private training samples from the shared gradients.
System Model Multiple parties train a global model M. All participants own a private
dataset D. Let L be the loss function and letW bet themodel parameters. Each iteration
a training sample (x, y) is randomly selected by all parties. After randomly selecting the
training sample, the loss L(x, y) is calculated using forward propagation and then the
gradient∇W (x, y) = ∂L(x,y)

∂W is calculated using backpropagation.
Attack Model Given a gradient ∇W (x, y) the attacker wants to find a sample and label
pair (x′, y′), such that thematching gradient∇W (x′, y′) approximates∇W . This can be
expressed by minimizing the optimization problem shown in Equation 1.

x∗, y∗ = argminx′,y′ ||∇W (x, y)−∇W (x′, y′)|| (1)

A reconstruction attack is considered successful when x∗ is very similar to x. The term
||∇W (x, y) − ∇W (x′, y′)|| is called the gradient loss. This term corresponds with the
L1‐norm, but it can also be replaced by the L2‐norm or cosine distance.
Protection In order to protect against reconstruction attacks the original dataset D is
transformed into a new dataset D̂. The new dataset is created by applying a set of trans‐
formation functions T = t1 ◦ t2 ◦ ... ◦ tn on each sample x ∈ D, resulting in x̂ = T (x).
The data owner then uses D̂ to calculate the gradients during training and shares them
with the other participants.
Privacy Score Due to the expensive computation time of the PSNR metric, it is not an
efficient method to compare the privacy effect amongst candidate policies. A new pri‐
vacy score is developed by the authors, which is intended to reflect the privacy leakage
given a transformation policy and a model which is trained only for a few epochs. The
privacy score is given by Equation 2. This equation is a numerical integration over K
steps which estimates the area under the curve of the gradient similarity during a recon‐
struction attack.
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Spri(T ) ≈
1

|D|K
∑
x∈D

K−1∑
j=0

GradSim(x′(
i

K
), T (x)) (2)

Where x′(i) = (1 − i) ∗ x0 + i ∗ T (x) and GradSim measures the gradient similarity
between two input samples (x1, x2) with the same class y, as given by equation 3.

GradSim(x1, x2) =
< ∇W (x1, y),∇(x2, y) >

||∇W (x1, y)|| · ||∇W (x2, y)||
(3)

Accuracy Score Besides the privacy requirement, it is also important to maintain model
accuracy. Mellor et al. [5] proposed a technique to explore neural architectures without
the need of model training. Based on this work Gao et al. create a technique to search
for transformations that maintain model performance. The accuracy score defined by
Gao et al. is shown in Equation 4.

Sacc(T ) =
1

N

N−1∑
i=0

log(σJ,i + ϵ) + (σJ,i + ϵ)−1 (4)

Where ϵ is a small positive value used for numerical stability, and σJ,i is the i’th eigen‐
value of the correlation matrix of the jacobian J = ( ∂f

∂x̂1
, . . . ∂f

∂x̂N
) for a randomly initial‐

ized model f and a mini‐batch of samples transformed by the target policy T : {x̂n}Nn=1.
The Search Algorithm The goal of the search algorithm is to identify a policy set by com‐
bining qualified methods. Two models should be prepared: (1) the privacy quantifica‐
tion model, (2) a model that is randomly initialized without the use of any optimization
strategies. This second model is used for accuracy quantification. Cmax policies are
randomly sampled. The privacy and accuracy scores of each policy are then calculated.
When the accuracy score is lower than a predefined threshold, the policy is rejected.
The top‐n polices are then selected based on the privacy score from the final policy set.
Enhanced Attack Model It can be expected that an attacker has knowledge about the
augmentations that are used to protect the data. Based on this assumption, a simple
variation on the attack model is explored that allows the attacker to learn a translation
along with the reconstruction of an image. This is inspired by the observation that all
the successful augmentations selected by the paper make use of translations or crops
that create large black areas in the image, but the original reconstruction algorithm is
never able to reconstruct these.
In order to learn this translation, the attempted solution x∗which is being reconstructed
by the algorithm is first put through a translation module. This module can be fine‐
tuned during the reconstruction process by the attacker in order to find a suitable trans‐
lation that reduces the gradient loss. This is done by propagating the gradients through
the differentiable translation module and training the parameters tx and ty, denoting
the shift of the image on the x and y axes respectively. Amore general affine transforma‐
tion can also be learned, but this is of little use for the given augmentations since they
don’t shear, scale or rotate the images. The implementation of this translation module
is inspired by Spatial Transformer Networks [7] which use a similar mechanism to pre‐
process data before it is given to convolutional neural networks. Figure 1 illustrates how
the enhanced algorithm works.
The parameters tx and ty from the translation module are constrained to a maximum
andminimum constant each such that the translation does not become too large. These
constraints are set depending on the augmentation policy under attack.

4.2 Datasets
Gao et al. used the CIFAR100 [8] and Fashion MNIST [9] datasets during their research.
The CIFAR100 dataset consists of 100 distinct classes, each containing 600 32x32 images.

ReScience C 8.2 (#44) – Warmerdam et al. 2022 5

https://rescience.github.io/


[Re] Privacy-preserving collaborative learning with automatic transformation search

Figure 1. Enhanced attack algorithm

There are 500 training images and 100 testing images per class. The Fashion MNIST
contains 70,000 fashion products which can be assigned to 10 distinct categories. Each
of the 10 classes contains 7,000 images. There are 60,000 training images and 10,000
testing images.

4.3 Hyperparameters
The same hyperparameters that were used in the paper are used for this reproduction.
The search algorithm is trained using 10% of the available training set for 50 epochs.
The full training of a model is done with 100% of the training set for 200 epochs. Both
are trained with a batch size of 128 and Stochastic Gradient Descent (SGD) [10] with
weight decay and Nesterov momentum [11]. The learning rate is set to 0.1 and decays
with a multistep linear scheduler after epochs 75, 125 and 175 with a gamma of 0.1. The
parameter ϵ in equation 4 is set to 10−5.
The reconstruction algorithm reconstructs one image at a time in 4800 iterations. The
same optimizer is used with the same hyperparameters, but the learning rate decays
after iterations ∼ 1800, ∼ 3000 and ∼ 4200. Cosine distance is used as the gradient
similarity metric (see Equation 1). The constraints for the enhanced attack algorithm
are set such that |tx| < 1.1 and |ty| < 0.2 for the 3-1-7 policy (see Section 4.4), |tx| < 0.4
and |ty| < 0.4 for the 43-18-18 policy and such that |tx| < 1.1 and |ty| < 0.4 for the
Hybrid policy. A value of 1 for these constraints corresponds to half the width/height of
the image frame.

4.4 Experimental Setup and Code
The codebase for the paper is available on GitHub [12]. This codebase was used in this
study as a starting point to reproduce the claims made by Gao et al. The codebase was
modified to run the experiments on systems available during this research and to run
additional experiments. The models in the framework rely on the PyTorch library [13].
The adapted code used for the experiments in this report can also be found on GitHub
[14].
At most 3 functions are drawn from a set of 50 transformations from the data augmen‐
tation library in the defence implementation. The functions are denoted as i − j − k ,
where i, j and k are the indexes of the functions from the augmentation library. Note
that functions can be applied multiple times within the same concatenation of policies.
The following experiments were conducted:

1. To verify the claimed correlation, 100 random policies were evaluated by perform‐
ing a reconstruction attack of 2500 iterations on a ResNet20 DNN on the CIFAR100
dataset.

2. To verify the claimed results, four models were fully trained using the CIFAR100
dataset and the ResNet20 DNN: with no policy, the policies 3-1-7, 43-18-18 and
finally the Hybrid policy, which randomly chooses either the 3-1-7 augmentations
or the 43-18-18 augmentations for each image. This was repeated for the F‐Mnist
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dataset with the same architecture, but using the policies 19-15-45 and 2-43-21.
Subsequently a reconstruction attack was performed using the same settings as
the original authors.

3. To give insight into the performance of the enhanced attack, the CIFAR100models
mentioned above were attacked using the enhanced reconstruction attack.

4. To give insight into the distribution of policies, 1500 benchmarks were done using
the privacy and accuracy score on the CIFAR100 dataset with the ResNet20 archi‐
tecture. Additionally, all augmentations listed in the original paper were evalu‐
ated individually in the same setting.

Accuracy is used to measure model performance. Accuracy is defined as the ratio of
correct classifications to the total number of classifications. The similarity of a recon‐
structed image to the original is measured by the Peak Signal to Noise Ratio (PSNR) [15]
of the two, which is measured in decibels and correlates to the logarithm of the mean
square differences between the pixels of one image and the other. To measure the over‐
all resistance of a model to reconstruction attacks, the average PSNR is taken over 100
reconstructions.

4.5 Computational Requirements
We had access to a single GeForce 1080 Ti GPU from the Lisa Cluster [16], which has a
Bronze 3104 (1.7GHz) processor with 12 CPU Cores and 256GM RAM of memory.
For the Cifar100 dataset with the ResNet architecture, a complete trainingcycle took 2
hours and evaluating it under the reconstruction attack took 10 hours in order to recon‐
struct 100 images. The policy search took about 1 minute per policy.

5 Results

5.1 Reproduction
Correlation privacy score and reconstruction score. In the original paper the authors
show that their proposed privacy score has a positive correlationwith the reconstruction
score of the attacker. A comparison between their results and the reproduced results
can be found in Figure 2. It can be seen that the results in the figures do not match.
When fitting a linear trend between the metrics, there appears to be no correlation in
the reproduced results. Possible explanations for this are explained in Section 6.

Figure 2. Empirical validation of the correlation between the reconstruction (PSNR) score and the
privacy score

The Performance of Selected Policies Gao et al. claim the policies selected by the search
algorithm reduce the PSNR reconstruction score significantly while not resulting in a
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great loss of accuracy. The results presented in the paper along with the results that
resulted from the reproduction can be seen in Table 1.
Some results from the reproduction differ substantially from the ones presented in the
paper, as can be seen from the red entries in Table 1. The biggest difference is the recon‐
struction score for the unaugmented policy of the Cifar100. Which differs greatly from
the reconstruction score presented in the original paper. However, it is still significantly
higher than that of the augmented policies.
The model’s accuracies are comparable in most instances. But, the accuracy found in
this research on the 3-1-7 policy of the Cifar100 dataset scores almost 13% below the
accuracy of the unaugmented policy, compared to 6% in the original paper.

Policy Theirs Ours
None 76.88 77.00
3‐1‐7 70.56 65.83
43‐18‐18 77.27 74.84
Hybrid 77.92 71.06

(a) Accuracy, Cifar100

Policy Theirs Ours
None 13.88 9.94 ±2.19
3‐1‐7 6.58 6.28 ±1.02
43‐18‐18 8.56 8.71 ±1.81
Hybrid 7.64 7.48 ±1.85

(b) PSNR, Cifar100
Policy Theirs Ours
None 95.03 93.86
19‐15‐45 91.33 94.08
2‐43‐21 89.41 93.92
Hybrid 92.23 93.51

(c) Accuracy, F‐Mnist

Policy Theirs Ours
None 10.04 9.71 ±2.38
19‐15‐45 7.01 9.88 ±1.80
2‐43‐21 7.75 7.94 ±1.30
Hybrid 7.60 8.94 ±1.71

(d) PSNR, F‐Mnist

Table 1. Comparison between model accuracies, in percentages (a), (c). Comparison between re‐
construction scores, in decibels (b), (d). Results that differ substantially are highlighted (accuracy
∆4%, PSNR∆2dB). The None policy performs no augmentations at all, and the Hybrid policy ran‐
domly choses one of the augmented policies at random, for each image. Standard deviations are
given for our PSNR scores (±σ).

Figure 3 shows a selection of image reconstructions performed by the attackmodel. Full
sets of examples used to calculate the reconstructions scores can be found in Appendix
B.

(a) Unaugmented,
Cifar100

(b) Hybrid,
Cifar100

(c) Unaugmented,
F‐Mnist

(d) Hybrid,
F‐Mnist

Figure 3. Original, augmented and reconstructed images. The images in the first row are either
the original images for the unaugmented policy, or the augmented images for the hybrid policy.
The images on the second row are the respective reconstructions found by the attack model.

5.2 Additional Insight
Attacking with knowledge of policy. Comparisons between the default attack algorithm
used in the original paper and the enhanced attack algorithm, which takes knowledge
of the policy into account, are shown in Table 2 and Figure 4. It can be seen that the
enhanced algorithm performs considerably better for all tested policies, and it even sur‐
passes the reconstruction score of the unaugmented policy for the 43-18-18 policy. More
reconstruction examples can be seen in Appendix C.
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Policy Default Enhanced
None 9.94 n/a
3‐1‐7 6.28 9.43 ±2.86
43‐18‐18 8.71 10.34 ±2.28
Hybrid 7.48 9.42 ±2.85

PSNR, Cifar100

Table 2. Comparison between reconstruction scores of the default and enhanced algorithms, in
decibels. Standard deviations are given for the enhanced PSNR scores (±σ).

(a) 3‐1‐7 (b) 43‐18‐18 (c) Hybrid

Figure 4. Comparison between reconstructions of the default and enhanced algorithms. Column
1 of (a, b, c) are images augmented by the policy. Column 2 of (a, b, c) are the reconstructions
given by the default algorithm. Column 3 of (a, b, c) are the reconstructions from the enhanced
algorithm.

Diversity of policies In the original paper a brief analysis is providedof the privacy scores
that the 50 augmentations achieve individually. The reproduced results can be seen
in Figure 5. The results closely match the results in the original paper. The 10 best
performing augmentations mostly overlap.

Figure 5. Reconstruction score of the 50 augmentations when evaluated individually. A lower score
is better. Top 5 of original authors marked in red.

In the paper the authors state that the best performing augmentations are often selected
in the best policies. To get more insight into this claim, 1500 random policies are evalu‐
ated in this research. The results can be seen in Figure 6. In this research the evaluation
set was generatedwithout a policy. It can be seen thatmost randompolicies score worse
than this benchmark. More specifically, no‐policy scored 0.32 on the privacy scorewhile
random policies scored 0.38 on average. Policies containing at least 2 of the top 10 in‐
dividually scoring augmentations do scored slightly better with a score of 0.31. Policies
consisting out of three of the top 5 policies scored better on average than 97.3% of all
policies tested.
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Figure 6. Performance in the search algorithm benchmarks of 1500 random policies. Proposed
Accuracy Score Threshold by original authors marked with dashed line. For the privacy score
Split based on if they contain at least 2 of the top 10 policies (the policies with indices: 3, 15, 1, 26,
12, 43, 25, 13, 4 and 39)

6 Discussion

The first claim, which states that the privacy score proposed in the paper correlates with
the PSNR of a reconstruction attack, cannot be supported by the reproductions, since
no correlation between the reconstruction PSNR and the privacy score has been found,
as can be seen in figure 2. A possible explanation for this could be that the model was
trained with unaugmented data instead of augmented data, as the authors of the paper
did not specify what was used to obtain the results. Due to computational constraints,
it was not feasible to train the model on the complete dataset for every policy. For that
reason the decision was made to evaluate the reconstructions attack for every policy
using a model trained on unaugmented data. Further experimentations could be done
to see if the pattern changes if this extensive test is done. A second difference between
the experiments is that due to the limitations, the attack was only tested on 20 images
instead of 100. This could make the results more uncertain, as a smaller sample size is
used.
However, the second claim, stating that the policies selected by the search algorithm
reduce the PSNR reconstruction score significantly while not resulting in a great loss
of accuracy, holds true in the reproductions for almost all the selected policies. Nev‐
ertheless, the accuracy of the 3‐1‐7 policy is significantly lower when compared to the
unaugmented policy, as can be seen in Table 1a. There is no obvious explanation for
this difference, but could be attributed to the non‐deterministic nature of the training
process of the model.
The results also hint that the protection provided by candidate policies can be circum‐
vented by incorporating a translation module into the attack algorithm. In fact, it is
possible that the augmented images are easier to reconstruct than the originals in this
scenario. This can be seen from the PSNR score of the 48-18-18 policy in Table 2, as
this score was higher than that of the unaugmented policy. A reason for this being the
case could be the smaller search space for the attacker, as the default algorithm has to
reconstruct a whole image consisting ofN ×M ×3 individual pixels for aN ×M colour
image, but the enhanced attack algorithm, thanks to its parameterization, only needs
to reconstruct the non‐black pixels and the translation parameters. For the 3-1-7 policy
for example, since roughly half the image is shifted outside the frame by the augmen‐
tations, the algorithm only needs to learn 1

2N ×M × 3 pixel values and the translation
parameters tx and ty.
The enhanced algorithm still cannot recover information from images that was deleted
by the augmentations, such as the regions of the image that are cropped out, or the
precise brightness, provided that the image is not augmented differently multiple times
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whenused for collaborative training. This could prove useful in the future for protecting
the privacy of participants in collaborative learning systems.

6.1 What Was Easy
The design of the search algorithm allowed for easy iterations of experiments since ob‐
taining the scores of a single policy can be done in under a minute. This enabled us to
test a lot of policies in different scenario’s which gave a lot of insight into the distribu‐
tion of the performance of augmentations. Well‐performing policies can often be found
within an hour.

6.2 What Was Difficult
To obtain the PSNR and accuracy score of a policy, the architecture needs to be trained
for about 10 GPU‐hours. This makes it difficult to verify how well the search metrics
correlate with these scores. It also prevented us to test the random policy baseline, as
this requires the training to be repeated at least 10 times which requires significant com‐
putational power.

6.3 Communication With Original Authors
An e‐mail was sent to the original authors regarding the differing results in the first
claim and for the mathematical intuition behind the accuracy score. Unfortunately no
response has been received so far.
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A Learning Curves

Figure 7. Model performance of ResNet20 on CIFAR100 during the training process for the repro‐
ductions.

B Reconstructions for cifar100, Default Attack Algorithm

(a) Inputs (b) Reconstructions

Figure 8. Inputs to the neural network (a) and reconstructions based on the gradients (b) for the
unaugmented policy.
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(a) Inputs (b) Reconstructions

Figure 9. Inputs to the neural network (a) and reconstructions based on the gradients (b) for the
3-1-7 policy.

(a) Inputs (b) Reconstructions

Figure 10. Inputs to the neural network (a) and reconstructions based on the gradients (b) for the
43-18-18 policy.
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(a) Inputs (b) Reconstructions

Figure 11. Inputs to the neural network (a) and reconstructions based on the gradients (b) for the
Hybrid policy.
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C Reconstructions for cifar100, Enhanced Attack Algorithm

(a) Inputs (b) Reconstructions

Figure 12. Inputs to the neural network (a) and reconstructions based on the gradients (b) for the
3-1-7 policy.

(a) Inputs (b) Reconstructions

Figure 13. Inputs to the neural network (a) and reconstructions based on the gradients (b) for the
43-18-18 policy.
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(a) Inputs (b) Reconstructions

Figure 14. Inputs to the neural network (a) and reconstructions based on the gradients (b) for the
Hybrid policy.
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