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1 Reproducibility Summary

1.1 Scope of reproducibility
In this paper we attempt to reproduce the results found in ”DECAF: Generating Fair Syn‐
thetic Data Using Causally‐Aware Generative Networks” by Breugel et al [1]. The goal
of the original paper is to create a model that takes as input a biased dataset and out‐
puts a debiased synthetic dataset that can be used to train downstreammodels to make
unbiased predictions both on synthetic and real data.

1.2 Methodology
We built upon the (incomplete) code provided by the authors to repeat the first experi‐
ment of [1] which involves removing existing bias from real data, and the second exper‐
iment where synthetically injected bias is added to real data and then removed.

1.3 Results
We reproduced most of the data utility results reported in the first experiment for the
Adult dataset. However, while the fairness metrics generally match the original paper
they are numerically not comparable in absolute or relative terms. For the second exper‐
iment, we were unsuccessful in reproducing results found by the authors. We note how‐
ever that we made considerable changes to the experimental setup, which may make it
difficult to perform a direct comparison of the results.

1.4 What was easy
The smaller size and tabular format of both datasets allowed for quick training and
model modifications.

1.5 What was difficult
There are several possible interpretations of the paper on both a methodological and
conceptual level. Reproducing the experiments required rewriting or adding large sec‐
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tions of code. Given these multiple interpretations it is difficult to be confident in the
reproduction. In addition, several results found by the authors appear to be counterin‐
tuitive, such as algorithms debiasing without being designed to do so and sometimes
outperforming debiasing algorithms on the same dataset.

1.6 Communication with original authors
We sent two emails to the authors describing our issues. We received a reply with a few
extra files, but no direct answer to content questions.
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2 Introduction

It is broadly acknowledged that real world data contains bias. Despite efforts to make
data collection more equitable and representative, a myriad of challenges remain. The
importance of addressing bias and fairness more broadly is gaining awareness [2], as
biased data can lead to the under‐representation of particular demographics, such as the
case of political representation in theUnited States Census[3]. As technology progressed
to the emergence of machine learning (ML) models, the same challenges persist as ML
models inherit the biases of the data and humans who created them. Models trained
on biased data can pass bias downstream to various other applications, a phenomenon
referred to as algorithmic bias[4]. Suchmodels have potential to not only perpetuate but
exacerbate social inequality. Hence, there is a clear and present need for methods that
can utilize biased data to produce unbiased results.

3 Background

The notion of using Generative Adversarial Networks (GAN) to increase fairness within
artificial intelligence is broadly supported by the literature. Various models exists such
as FairGAN[5], GANSAN[6], and Fairness GAN [7] to name but a few. Notably, fairness ef‐
forts have typically recognized a fairness‐accuracy trade‐off assumption, where a fairer
algorithm comes at the cost of accuracy. However, recent work has challenged these
assumptions, finding that the accuracy cost of fairness is negligible in some circum‐
stances[8]. Nonetheless, given the increased awareness of the nefarious effects of data
bias, many research efforts have been directed towards the debiasing of data and other
attempts to create fairer artificial intelligence[2].

3.1 DECAF premise
One such effort, and the subject of the present study, is DEbiasing CAusal Fairness (DE‐
CAF) [1]. DECAF takes a distinct approach to debiasing data, explicitly approaching
fairness from a causal standpoint with a goal of downstream model fairness. There
are three broad approaches to fairness that may be identified, (1) the preprocessing ap‐
proach, where the characteristics of the input data are changed to suppress undesirable
biases [1], (2) the algorithmicmodification approach, where the learning algorithm itself
is adapted to reduce bias [9], and (3) the postprocessing approach, where the output of
a model is manipulated to obtain the desired level of fairness[10]. The DECAF approach
falls in the first category of preprocessing because it attempts to remove bias from the
input data and subsequently from all downstream models.
The DECAF model is a generative adversarial network (GAN) that utilizes the causal
structure of directed acyclical graphs (DAGs) to remove bias from real data. The three
critical assumptions of the DECAF method are (1) the data generating process is rep‐
resented by a DAG, (2) the DAG is causally sufficient, and (3) the DAG is known for a
given dataset. DAGs are central to the method, as it is through edge manipulation that
debiasing is performed.
The model may be separated into two stages. During the training phase, the model
learns the causal conditionals of the dataset from its DAG. In the inference phase, the
data is debiased through DAG modification. Each fairness level defines a unique set of
edge removals from the original DAG, resulting in a new, intervened DAG. These inter‐
vened DAGs are given to the model to generate synthetic, fair datasets from the original
data. The synthetic datasets have similar distributions to the original data, but avoid
bias. Because the method debiases at inference time, retraining the model is not re‐
quired when using different fairness measures, thus providing inference‐time fairness.
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Once DECAF generates a synthetic and unbiased dataset, a simple multilayer percep‐
tron (MLP) is trained on this synthetic data to create an unbiased classifier that can be
used both on the original data and in other settings. Because the data used for training
theMLP has already been debiased, the authors claim that theMLP or any chosen down‐
streammodel is guaranteed to be fair since it does not incorporate any of the bias from
the original training data; this is a hallmark of the preprocessing approach to fairness.

3.2 Fairness standards
Three definitions of algorithmic fairness are used in the paper, each corresponding
to a unique modified DAG. The most lenient standard is the commonly used Fairness
Through Unawareness (FTU) definition, which entails that the protected variable, A, is
not explicitly used by the model to predict the label, Ŷ . While widely used because of
its conceptual simplicity and the fact it avoids direct discrimination, FTU nonetheless
fails to eliminate indirect discrimination.
A more stringent definition of fairness is Demographic Parity (DP), which declares that
classification probability must be independent of classes, i.e. if the protected attribute
is gender, all gender classes have the same success rate. The DP definition is considered
to be very strict because it potentially under‐utilizes feature differences between groups
in the process of blocking indirect discrimination.
Conditional Fairness (CF) lies in the middle ground between the first two definitions by
presuming that the selection rate between groups segregated by the protected attribute
must be the same when conditioned on some explanatory variable(s) determined by
prior knowledge. Each of these standards corresponds to a variation of DECAF, respec‐
tively DECAF‐ND (no debiasing), DECAF‐FTU, DECAF‐CF, and DECAF‐DP. The fairness
of each model is tested against FTU and DP metrics.

4 Scope of reproducibility and claims

The authors claim that DECAF allows for the generation of unbiased synthetic data from
biased real data and that their method does so with minimal loss in data utility com‐
pared to other approaches. Furthermore, they identify five characteristics of fair syn‐
thetic data that their method achieves: (1) allows post‐hoc distribution changes, (2) pro‐
vides fairness, (3) supports causal notions of fairness, (4) allows inference‐time fairness,
and (5) requires minimal assumptions. Additionally, they claim that DECAF is the only
method to achieve all of the five listed characteristics.
The authors identify three main contributions of their work:

(i) DECAF, a causal GAN‐based model that can use a biased datasetX to generate an
equivalent synthetic unbiased dataset X with minimal loss of data utility

(ii) A flexible causal approach for modifying DECAF to generate fair data

(iii) Guarantee that downstream models trained on the generated synthetic data will
make unbiased predictions on both synthetic and real‐life (biased) data

We aim to evaluate claims (i) and (iii) by replicating the two experiments of [1]. We will
focus on the narrow interpretation of reproducibility, namely whether the experiment
can be reproduced by independent researchers with the same setup rather than testing
against the more general standard of replicatability on different datasets. Despite the
availability of code, there were considerable problems with running the models even
with instructions given, meaning that we limited our scope to direct reproducibility. As
the authors have done, we will evaluate the data utility of the DECAFmethod with preci‐
sion, recall, and area under the receiver operation characteristic (AUROC); fairness will
be evaluated with Fairness Through Unawareness (FTU) and Demographic Parity (DP)
measures.
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5 Methodology

While code from the creators of the DECAF method is available 1, the documentation
leaves room for interpretation and the instructions given for running the code do not
reproduce the results as presented. In addition, there are several possible discrepancies
between the method described in the paper and the code provided. Thus, we made the
assumption that the paper leads and adjusted the code accordingly to match.

5.1 Methodological Code Changes
Though the DECAF class code was working, several components of the experimental
setup codewas eithermissing or not fully explained. Thus, we had to extrapolate heavily
to produce results. The major code changes required are listed below:

(i) Preprocessing: the original paper mentions standardizing continuous variables,
however, following the procedure given in the paper generates uninterpretable re‐
sults. As a solutionwe standardize all variables, including categorical ones though
we question the conceptual validity of this decision. After standardizing with Stan‐
dardScaler, we still do not obtain results as high as the reportedmetrics, so we nor‐
malize with MinMaxScaler which produces matching results in data utility. The
DECAF class employs a final sigmoid layer that converts all generated data to a
range between 0 and 1. We suspect this is the reason why the run_example.py
script will only predict labels of one class and why using a Scaler allows us to ob‐
tain meaningful predictions.

(ii) DAGs: There appears to be a mismatch with the dags provided, as neither con‐
tain all of the variables in the datasets. In addition the code provided utilized a
toy graph. The authors state that they used Tetrad to generate the DAG for the
dataset, so we attempted to generate a full causal graph for the Adult dataset, but
our generated graphs do notmatch Figure 6 and 7 of [1]. Hence, wemanually input
the graphs from the paper.

(iii) Label Generation: The paper instructs that the labels for synthetic data should be
generated by the model as they are part of the causal dependencies graph. The
original code does not generate the labels for the synthetic dataset, but instead
generates only the x values and then predicts the labels from those generated x
values using the baseline model. The code seems to omit the target variable from
the GAN input, but we feel this would leave out valuable causal information con‐
tained in the edges from the explanatory variables to the target variable. Thus,
we decided to include the target variable in the DAG, which improves our results.
In the end, we were forced to generate labels for experiment 1, while predicting
labels for experiment 2 in order to obtain interpretable results.

(iv) Downstream Classifer: The papermentions anMLP from sklearn, but the exam‐
ple code uses an XGBClassifier as the downstream classifier which caused instal‐
lation issues. We followed the paper by using an MLP.

5.2 Dataset

For the first experiment, we use the Adult dataset 2 [11] collected from the 1994 United
States Census. The dataset contains about 45,000 data points, and 2,000 data points are
set aside for the test set as specified by [1]. The protected attribute is sex, and the target

1The DECAF code is available at: https://github.com/vanderschaarlab/DECAF
2The Adult dataset is available at http://archive.ics.uci.edu/ml/index.php
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variable is income with roughly 75% in the ’<=50k’ class and the remaining 25% belong‐
ing to the ’>50k’ class. This makes sense considering the average earnings of Americans
at the time, but does make our data skewed towards one class. We manually input the
DAG from Figure 6 of [1] and use the preprocessing steps described in the previous sec‐
tion.
For the second experiment, we use the Credit Approval dataset [11] of credit card appli‐
cations. This dataset is considerably smaller than the first dataset with only 678 data
points. The original paper does not specify how large the test set is, so we choose a
typical 80%/20% split for training and testing. The protected attribute is ethnicity and
the target variable is application approval. About 55% of the applicationswere approved
while the rest were rejected, so this dataset is considerablymore balanced than the other.
Again, we have to manually input the graph from Figure 7 of the original paper. Since
the protected attribute here, ethnicity, is not binary, we first convert the variable to
be binary with 0 corresponding to ’not discriminated against’ and 1 to ’discriminated
against’. Then we use the same preprocessing steps as in the first experiment.

5.3 Hyperparameters
A hyperparameter search is not necessary for our experiments. We use the DECAF class
as given with the parameters set by the authors’ code. The onlymodification wemake is
changing thedag_seed parameter from the provided toy graph to the respective graphs
for each dataset presented on Page 28 of [1]. The DECAF generator is instantiated with
d, the number of features, sub‐networks with shared hidden layers. The generator and
discriminator both use 2 hidden layers with 2d neurons. The generator is updated once
for every 10 discriminator updates. Adam is used as the optimizer with a learning rate
of 0.001. The other GANs used for comparison are also given default parameters and
settings from their respective packages because no settings are specified by the authors.
An MLP with default parameters from sklearn is used. The default settings are 100
neurons with ReLU activation functions and Adam with a learning rate of 0.001. A Soft‐
max activation and binary cross entropy loss is used for the output layer.

5.4 Experimental setup and code
In this study, we aim to replicate the experiments of the original paper, Debiasing Cen‐
sus Data (experiment 1) and Fair Credit Approval (experiment 2), to evaluate the perfor‐
mance of DECAF when generating unbiased synthetic data from real, biased data from
the Adult dataset.
We train each model listed in Table 2 of the original paper, four DECAF GANs and three
other GANs for comparison for 50 epochs. A synthetic dataset is generated from each
model that is then used to train an MLP to classify a test set of 2,000 unmodified data
points from the original dataset. We compare these predictions with the ground truth
labels from the original data to evaluate performance and fairness. This process is re‐
peated ten times to obtain average metrics over multiple runs as specified by the au‐
thors.
To mimic the DECAF paper, precision, recall, and AUROC are used to measure the per‐
formance of the models, while FTU and DP are used to measure the fairness of the mod‐
els. Precision, recall, and AUROC are given by sklearn.metrics, and higher scores
indicate better performance. Lower FTU and DP scores indicate less bias. To calculate
FTU, we set all the labels of the protected attribute to one class and predict the labels;
repeat with the remaining class (for binary variables), and compare the difference of the
means of the two prediction sets, such that |PA=0(Ŷ |X)−PA=1(Ŷ |X)|. Then for DP, we
segregate the dataset into datapoints with one class label and datapoints with the other
label (for binary variables), and again predict the labels of each set and compare the dif‐
ference of themeans of the two prediction sets, such that |P (Ŷ |A = 0)−P (Ŷ |A = 1)|. To
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Table 1. Reproduction results on bias removal experiment on the Adult dataset.

Data Quality Fairness
Method Precision Recall AUROC FTU DP
Original data 0.881±0.006 0.917± 0.009 0.772±0.008 0.047± 0.010 0.207± 0.013
GAN 0.772± 0.098 0.344± 0.249 0.523± 0.048 0.202± 0.197 0.202± 0.182
WGAN‐GP 0.784± 0.073 0.467± 0.195 0.514± 0.067 0.208± 0.189 0.231± 0.166
FairGAN 0.835± 0.043 0.911± 0.081 0.672± 0.061 0.097± 0.113 0.157± 0.155
DECAF‐ND 0.880± 0.024 0.774± 0.047 0.734± 0.023 0.114± 0.040 0.353± 0.023
DECAF‐FTU 0.866± 0.027 0.800± 0.043 0.708± 0.043 0.041± 0.020 0.260± 0.085
DECAF‐CF 0.769± 0.012 0.954± 0.025 0.541± 0.028 0.022± 0.018 0.026± 0.023
DECAF‐DP 0.753± 0.003 0.978±0.022 0.502± 0.009 0.006±0.007 0.012±0.009

Table 2. Original results of bias removal experiment on the Adult dataset.

Data quality Fairness
Method Precision Recall AUROC FTU DP
Original data 0.920±0.006 0.936±0.008 0.807±0.004 0.116± 0.028 0.180± 0.010
GAN 0.607± 0.080 0.439± 0.037 0.567± 0.132 0.023± 0.010 0.089± 0.008
WGAN‐GP 0.683± 0.015 0.914± 0.005 0.798± 0.009 0.120± 0.014 0.189± 0.024
FairGAN 0.681± 0.023 0.814± 0.079 0.766± 0.029 0.009± 0.002 0.097± 0.018
DECAF‐ND 0.780± 0.023 0.920± 0.045 0.781± 0.007 0.152± 0.013 0.198± 0.013
DECAF‐FTU 0.763± 0.033 0.925± 0.040 0.765± 0.010 0.004± 0.004 0.054± 0.005
DECAF‐CF 0.743± 0.022 0.875± 0.038 0.769± 0.004 0.003± 0.006 0.039± 0.011
DECAF‐DP 0.781± 0.018 0.881± 0.050 0.672± 0.014 0.001±0.001 0.001±0.001

compare our replication against the original experiments of the authors, we compare
both the absolute difference and the relative difference (as a ratio) with our findings.
Our code and more details can be found on our Github repository3.

5.5 Computational requirements
Because the datasets used are small and tabular, the computational requirements are
minimal. No GPU is necessary; all models were run on an Intel Core i7‐8750h CPU. It
takes six minutes to train DECAF models on the Adult dataset [11] for 50 epochs, and
five seconds to generate synthetic data. The total runtime is approximately four hours
for experiment 1 and approximately two hours for experiment 2.

6 Results

Figure 1. Plot of precision, recall, AUROC, FTU, and DP over bias strength.

We are able to reproduce some results in experiment 1, but we can not get similar results
on the second experiment. Table 1 shows our result with synthetic data that is generated

3Our Github repository: https://anonymous.4open.science/r/DECAF-CF0A/
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using each benchmark method, after which a separate MLP is trained on each dataset
for computing the metrics, and Table.2 is the result from the original paper. Section 5.4
details how we obtained the relevant metrics. We can see DECAF does have the effect
of debiasing and there is improvement comparable with FairGAN. Like the original pa‐
per, DECAF‐ND performs the best among all methods in terms of data quality. Methods
DECAF‐FTU, DECAF‐CF, and DECAF‐DP have relatively lower scores on data quality but
perform better on fairness.
Figure 1 shows DECAF results for experiment 2 in which we remove synthetically in‐
jected bias. These results do not match the Figure 3 of original paper. This mismatch
is not surprising because the second experiment is based on the first experiment where
we suspect our setup already significantly diverges from that of the authors.

7 Discussion

Overall, we have been able to produce the results found by the authors. That being said,
there aremultiple interpretations of the results and overall saliency is relatively low. For
the purpose of this paper, we will focus primarily on the fairness metrics since the data
utility metrics are closer to the findings of the authors and fairness is the primary goal
of the method. Though the order of the fairness of various models of our results match
with the original results from the paper, our numerical figures do notmatch the authors’
results with a satisfactory level of precision. Several observations are further pursued
as plausible explanations for this phenomenon.

7.1 Interpretation of the results
As shown in Tables 1 and 2, we obtained interpretable results for all models tested in
experiment 1. For the most part, we find effects similar to the authors, but they deviate
significantly in numerical terms. More specifically, we do find that as the model varia‐
tions move from least strict to most strict definition of fairness, the fairness increases
and data utility decreases. However, there are notable deviations from the authors re‐
sults, specifically concerning the fairness metrics of the GAN. In addition, we find that
DECAF‐ND increases the level of bias compared to the original dataset which matches
the authors. However, we find a higher DP of 0.353 and a FTU of 0.114 compared to the
authors DP of 0.198 and FTU of 0.152. These results run counter to our expectations.
The results found in the Credit dataset also show the directional correctness of DECAF
in reducing bias. However, direct comparison is difficult because our results differ sig‐
nificantly from the authors’ findings. In particular, we find the FTU and DP scores is
maximized at, 0 and minimized at 1. In addition, the authors find relatively stable data
utility metrics, whereas we find a significant decrease between bias 0.25 and 0.75. The
results for bias 1 and 0 do reflect the average value found by the authors, with the excep‐
tion of recall which is significantly lower.
Furthermore, the authors did not directly interpret their chosen metrics. The original
paper designated FTU and DP measures for fairness and reported figures, but does not
explain the actual meaning of the numbers and magnitude of changes seen. For ex‐
ample, most of the reported fairness metrics are very small, but we do not have any
guidance on the significance of a .001 decrease in the FTU metric. Thus, we feel the
paper lacked explainability. Additionally, the fairness definitions themselves, the in‐
structions for calculating the fairness measures, and the given FTU and DP code are
somewhat contradictory. Calculating FTU and DP based on our interpretation of the au‐
thors’ method does not reproduce their results. Using the FTU andDP calculations from
an extra code file we received still does not produce matching results. One possibility
is that the authors’ final fairness metrics calculation code are not contained in the files
we have access to and does not match any of the implementations we attempted.
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7.2 What was easy
One aspect that eased our investigation into the reproduceability of [1] was the tabular
format and small size of the datasets we used. Training and modifying the model was
not computationally expensive or time consuming, thus we could test many different
strategies to find the closest solution.

7.3 What was difficult
Wewere originally under the impression that the DECAF code repository was fully func‐
tional as a basis for extension. Upon further examination, we found that it was not
working and did not reproduce the published results. Thus, we had to pivot from ex‐
tending their code to replicating the results with our own code which was challenging
in itself. While attempting to reproduce the experiments, we found that the instructions
given were incomplete and contradictory to the code provided.
There are multiple obstacles to replicating the experiments as described, which can
broadly be separated into conceptual and methodological issues. On the former, there
are many important research decisions that are not fully articulated, as well as results
that appear counterintuitive. For example, the authors found that their application of
GAN, a method that does not do explicit debiasing, had significantly improved fairness
metrics compared to the original dataset. One would expect that all the methods that
do not debias, namely original data, GAN, WGAN‐GP, and DECAF‐ND would perform
in the same order of magnitude in terms of fairness, but this is not the case in the au‐
thor’s initial findings. Moreover, while the DECAF models do reduce bias in line with
the level of fairness required, DECAF‐ND actually makes the dataset more biased com‐
pared to the original dataset. Our reproduction of GAN does match the expected results,
with original data, GAN, andWGAN all returning roughly the same fairness metrics. As
discussed, we successfully reproduced the overall impact of DECAF, namely higher fair‐
ness and lower data utility for more stringent definitions of fairness. However, DECAF‐
ND exhibits considerably higher bias than the original dataset and no clear intuition is
given on why this may be the case.
In addition to the conceptual challenges, there are multiple methodological issues. Fol‐
lowing the instructions provided by the authors results in numerous compatibility warn‐
ings and failed tests. As described in section 5.1, several substantial changes are needed
to generate any interpretable results. Further compounding these issues, there are in‐
consistencies in the applied method, as the code utilized in the example explicitly devi‐
ates from the approach described in the experimental setup. Wewere forced to generate
labels for experiment 1, while predicting labels for experiment 2. Attempts to use gener‐
ated labelsmade experiment 2 uninterpretable, as all key performance indicatorswould
become zero otherwise. This methodological inconsistency between experiments fur‐
ther problematizes the reproducibility of DECAF.

7.4 Overall reproducibilty
Due to the number of possible conceptual and methodological interpretations with the
code, modifications were needed as described in section 5.1. While we were successful
in producing results that could be interpreted, the numerical variations and method‐
ological deviations are so substantial that further research would be needed to assess
the overall accuracy of the authors claims. We found evidence that supports the nar‐
row interpretation of the claims made by the author, namely that DECAF reduces bias
in downstream models, and allows for the generation of debiased synthetic data. How‐
ever, the authors claim that the approach allows for minimal data utility loss. Without a
further explanation on what is considered minimal data utility loss, it is difficult to eval‐
uate this claim, especially with amount of deviation found between the authors results
and ours. While our findings on the first experiment are in line with the authors, the
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results of the second experiment are in direct contradiction to their findings. Since any
fundamental issues in experiment 1 are likely to carry over to experiment 2 we focus our
recommendations on experiment 1.
Overall, we find that the results are reproducible but difficult to interpret and compare.
Fruitful avenues of further investigation would be to re‐evaluate the fairness metrics.
Another hypothesis is that there is a more functional issue with the DECAF model itself
that would lend itself to further investigation.

7.5 Communication with original authors
We sent two emails to the authors of DECAF detailing the aforementioned code issues.
One author did respond with a few extra code files, but unfortunately did not directly
address our content questions. However, several of the interpretations we made were
retroactively confirmed by the extra code files.

8 Conclusion

During our investigation, we faced multiple significant challenges in reproducing the
results of the original paper. The biggest challenges stemmed from the number of pos‐
sible interpretations of the code and method. While we were not able to reproduce the
results in full, we believe methods like DECAF have great potential for extension. The
relevance of unbiased downstream classifiers and the evident need for bias removal in
real data will likely remain a societally relevant area of research. For instance, the Adult
dataset[11] we studied is nearing 30 years old. Perhaps an intriguing next phase could
be to pull this year’s Census data to investigate how bias has changed over time and if
DECAF is still applicable for removing likelymore nuanced and hidden bias that persists
through the increased awareness of bias and techniques for counteracting bias that exist
today.
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Appendix

8.1 Additional results

Table 3. Absolute difference between authors’ findings and our results.

Data quality Fairness
Method Precision Recall AUROC FTU DP
Original data 0.109 0.046 0.807 0.116 0.180
GAN −0.165 0.095 0.044 −0.179 −0.113
WGAN‐GP −0.101 0.447 0.284 −0.088 −0.042
FairGAN −0.154 −0.097 0.094 −0.088 −0.06
DECAF‐ND −0.107 0.143 0.047 0.038 −0.155
DECAF‐FTU −0.103 0.125 0.057 −0.037 −0.206
DECAF‐CF −0.026 −0.079 0.228 −0.019 0.013
DECAF‐DP 0.028 −0.097 0.17 −0.005 −0.011

Absolute difference is calculated as the value found by the authors minus the value
found in our reproduction.

Table 4. Performance relative to original data from authors.

Data quality Fairness
Method Precision Recall AUROC FTU DP
Original data 1 1 1.00 1.00 1.00
GAN 0.66 0.46 0.70 0.20 0.49
WGAN‐GP 0.74 0.95 0.98 1.03 1.05
FairGAN 0.74 0.85 0.95 0.08 0.54
DECAF‐ND 0.85 0.96 0.97 1.31 1.10
DECAF‐FTU 0.83 0.96 0.95 0.03 0.30
DECAF‐CF 0.81 0.91 0.95 0.3 0.22
DECAF‐DP 0.85 0.91 0.83 0.01 0.01

Relative performance is calculated as the ratio between the original data and the perfor‐
mance of the selected model on the same variable.

Table 5. Performance relative to original data in our findings.

Data quality Fairness
Method Precision Recall AUROC FTU DP
Original data 1.00 1.00 1.00 1.00 1.00
GAN 0.95 0.38 0.72 4.30 0.98
WGAN‐GP 0.97 0.51 0.71 4.43 1.12
FairGAN 1.03 0.99 0.93 2.06 0.76
DECAF‐ND 1.09 0.85 1.02 2.43 1.70
DECAF‐FTU 1.07 0.87 0.98 0.87 1.26
DECAF‐CF 0.95 0.104 0.75 0.47 0.13
DECAF‐DP 0.93 1.07 0.70 0.13 0.06

ReScience C 8.2 (#43) – Shulev et al. 2022 12

https://rescience.github.io/


[Re] Replication Study of DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

Table 6. Reproduction results on bias removal experiment on the Credit dataset.

Data quality Fairness
Method Precision Recall AUROC FTU DP
Original data 0.915±0.007 0.787± 0.009 0.840±0.004 0.013±0.008 0.011±0.007
DECAF‐ND 0.809± 0.083 0.813± 0.047 0.758± 0.080 0.085± 0.035 0.053± 0.035
DECAF‐FTU 0.821± 0.072 0.811± 0.050 0.770± 0.055 0.032± 0.028 0.065± 0.040
DECAF‐DP 0.784± 0.064 0.836±0.047 0.744± 0.055 0.045± 0.036 0.063± 0.030
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