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1 Reproducibility Summary

Scope of Reproducibility
StylEx is an approach for classifier‐conditioned training of a StyleGAN2 model [1], in‐
tending to capture classifier‐specific attributes in its disentangled StyleSpace [2]. At‐
tributes can be adjusted to generate counterfactual explanations of the classifier deci‐
sions. StylEx is domain and classifier‐agnostic, while its explanations are claimed to
be human‐interpretable, distinct, coherent and sufficient to produce flipped classifier
decisions. We verify these claims by reproducing a selection of the experiments in the
paper.

Methodology
We verified a selection of the experimental results on the code available by the authors.
However, the training procedure, network architecture and hyperparameter configura‐
tions were missing. As such, we re‐implemented the model and available TensorFlow
code in PyTorch, to enable a more comprehensive reproducibility of the proposed case
studies. All experiments were run in approximately 20‐50 GPU hours per dataset, de‐
pending on the batch size, gradient accumulation and GPU used.

Results
We verified that the publicly available pre‐trained model has a ’sufficiency’ measure
within 1% of the value reported in the paper. Additionally, we evaluate the Fréchet in-
ception distance (FID) scores of images generated by the released model. We show that
the FID score increases with the number of attributes used to generate a counterfac‐
tual explanation. Custom models were trained on three datasets, with a reduced image
dimensionality (642px). Additionally, a user study was conducted to evaluate the distinc‐
tiveness and coherence of the images. We report a significantly lower accuracy in the
identification of the extracted attributes and ’sufficiency’ scores on our model.

Copyright © 2022 N.V.D. Vleuten et al., released under a Creative Commons Attribution 4.0 International license.
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[Re] Explaining in Style: Training a GAN to explain a classifier in StyleSpace

What was easy
Itwas easy to run the provided JupyterNotebook, and verify the results of the pre‐trained
models on the FFHQ dataset. Extending an existing StyleGAN2 model implementation
to fit this study was relatively easy.

What was difficult
Reproducing the experiments on the same scale as the authors, as well as the develop‐
ment of the full training procedure, model architecture and hyperparameters, partic‐
ularly due to underspecification in the original paper. Additionally, the conversion of
code from TensorFlow to PyTorch.

Communication with original authors
We correspondedwith the first author of the paper through several emails. Through our
mail contact, additional details were released on the network architecture, the training
procedure and the hyperparameter configurations.
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Figure 1. Top‐1 automatically detected attributes for perceived‐gender classifiers (left: version 1,
right: version 2) and perceived‐health of leaves classifiers (middle). Similarly to the original pa‐
per, the counterfactual images are marked by a frame. Displayed probabilities correspond to the
person being male for ‘perceived gender’ and the leaf being healthy for ‘perceived health’. More
attributes can be found in the appendix.

2 Introduction

Existing post hoc visual explainability measures, such as heatmaps[3], can highlight
regions that influence model decisions. However, they do not visualize non‐spatially
localized attributes, nor do they indicate how these areas may be changed to influence
the classification. Counterfactual explanations, which are statements of the form ”Had
the input x been x′, the classifier output would have been y′ instead of y”, has been pro‐
posed as an alternative which both allows for the visualization of salient features and
directly explains how they can be altered to achieve an alternative classification.
As such, these explanations are promising as they can provide a suggestive recourse to
non‐domain experts in a machine learning‐based decision system. The effectiveness of
visual methods strongly depends on the intuitive difference that humans observe; there‐
fore one of the primary objectives is to find interpretable, salient attributes. Secondary
objectives involve the visualization and control of the impact of these attributes on the
classifier output.
In thiswork, we reproduce thepaper ‘Explaining in Style: Explaining aGAN in StyleSpace’
[4]. The paper proposes a novelmethod for explaining the classification of a given image,
by altering discovered human‐interpretable features discovered to affect the classifica‐
tion output. We re‐implemented the model in PyTorch together with the unreleased
training procedure, as the original TensorFlow implementation lacked the training pro‐
cedure code. We performed training on the FFHQ and PlantVillage dataset using a lower
resolution. Using our implementation, we check whether the results are consistent
with the descriptions provided in the paper. We substantiate this with the addition of
a human‐grounded evaluation of the generated images. Additionally, we used the FID
measure to evaluate the image quality of the counterfactual generated images.

3 Scope of Reproducibility

The StylEx model, in addition to the AttFind algorithm defined in the paper, is pre‐
sented as a viable option for generating counterfactual explanations of black‐box classi‐
fiers. The StylEx procedure aims tomake individual style coordinates classifier‐relevant,
through a novel training procedure which is outlined in 4. As no benchmark metrics
exist to evaluate and assess attribute‐based counterfactual explanations, the authors
propose three evaluation criteria themselves: 1) visual coherence, 2) distinctness and 3)
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‘effect of attributes on classification’ (sufficiency). We reformulate these criteria as the
main claims of the paper in the following manner:

1. Visual Coherence: Attributes detected by StylEx should be clearly identifiable by
humans.

2. Distinctness: The attributes extracted by StylEx should be distinct.

3. Sufficiency: Changing attributes should result in a change of classifier output,
where changing multiple attributes has a cumulative effect.

4 Methodology

To evaluate claim 1 and 2, the authors conduct a user study in two parts. To evaluate
claim 3, they study the percentage of flipped classifications when modifying top‐k (in
their case k = 10) attributes. To reproduce these claims, we conduct the same experi‐
ments, albeit at a lower dimensionality of 642px. The complex network architecture of
StyleGAN, as well as the encoder, requires a significant number of training epochs un‐
til its convergence and thus, training these at the full resolution of 2562px is extremely
computationally expensive.
We verify the sufficiency scores of the released model, by making use of the supplied
Jupyter Notebook. However, several elements crucial for reproduction were missing,
including the training procedure, the omission of hyperparameter configurations and
the details on the optimization procedure. As such, we ported the available TensorFlow
code to PyTorch, and implemented the missing parts, to enable a more comprehensive
reproducibility of StylEx.
We reimplemented the StylEx procedure in PyTorch, using an open‐source StyleGAN2
model implementation as a starting point1.
For running our code, we havemade use of an NVIDIA GTX 1080 Ti, RTX 2070 Super and
a laptop RTX 3060 graphics card, running on different machines. In the conduction of
the user study, we have made use of the online survey tool Qualtrics [5].

4.1 Model descriptions
In addition to a pre‐trained classifierC, StylEx is comprised of three trainable elements,
which are a 1) generatorG, 2) a discriminatorD and 3) an encoderE. TheD andG follow
the StyleGAN2 model architecture, with minor alterations toD which will be explained
below. Figure 2 provides an overview of the network architecture.
Some design details were unspecified or omitted in the original paper. We contacted the
authors to provide clarification on these details, which are stated as follows:

1. StylEx is trained using both encoder input and noise input transformed through
StyleGAN2’s mapping network, using alternating steps;

2. The output of D is a weighted sum of the 2‐dimensional output of its last layer
with the classifier probabilities of the 1) original image if using the encoder, 2)
randomly sampled image if using noise input;

3. Lrec and Lcls are only calculated during the generator training steps.

The GAN is trained jointly with the encoder, which embeds an image into the W latent
space of StyleGAN2, forming a latent vector w. A recent observation by [7] highlighted
the disentanglement of this space (called StyleSpace) that is used in StylEx to extract
classifier‐specific attributes. Logits of the original image C(x) are then appended to

1https://github.com/lucidrains/stylegan2‐pytorch
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Figure 2. StylEx network architecture: with the respective classifier C, generatorG, discriminator
D and encoder E. For clarification, we have slightly adapted the visualization to include the
StyleVectorizer which obtains the latent vector w from z [6], after learning that the authors have
used alternating training 1

w, to condition the training on classifier inputs. The current architecture includes a
StyleVectorizer that obtains the latent vector w from z, which is sampled from a normal
distribution. In alternating steps, the generator was fed input from the encoder and in‐
put from the StyleVectorizer mapping network [6]. The original authors noticed a slight
improvement in image quality using alternating training, compared to only using the
encoder input.
Note that we used two slightly different implementation choices for training our mod‐
els. The first implementation does not include the discriminator change mentioned in
2, while the second implementation does and uses probabilities instead of logits for con‐
catenation to w. We call these two choices ‘Model 1’ and ‘Model 2’ in results on datasets
where we have trained both. We additionally noted that the MobileNet classifier ‘Model
1’ was trained with did not performwell on the faces. This is why, for both faces models,
a ResNet classifier was used to perform the AttFind algorithm. Additionally, we skipped
discriminator filtering for ‘Model 2’. Discriminator filtering skips encoded images the
discriminator deems unrealistic. We did this because the discriminator was too unsta‐
ble to give reliable estimates. This might explain the poor performance of this model.
We are unsure if this was caused by the changes to the architecture, training time or just
bad luck.
This expanded latent vector w, either obtained by the encoder or StyleVectorizer, is
passed on to the StyleGAN2 model, where it is transformed into the StyleSpace by a set
of concurrent affine transformations to style vectors s0, ..., sn. These style vectors are
used to generate novel images, that aim to reconstruct the original image as closely as
possible. Several losses are used to aid the training procedure. The cumulative training
loss for the algorithm is a sum of losses, denoted as follows:

StylExLoss = Ladv + Lreg + Lrec + Lcls. (1)

A logistic adversarial loss [8] Ladv is used as in standard GAN training, followed by the
regularization lossLreg, as described in the original StyleGAN [1] paper. The reconstruc‐
tion loss Lrec is given by the sum of Lx

rec + Lw
rec + LLPIPS, where the first two terms

are the L1 distance between original and reconstructed input image, and the original
and reconstructed w latent vector, respectively. The LLPIPS term is the LPIPS distance
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between original and reconstructed input, as described in [9]. This loss ensures that re‐
constructed images resemble the original input as close as possible, to serve as an input
for generating counterfactual examples. The classifier loss is defined as the Kullback‐
Leibler divergence between the original input imageX and the newly generated image
G(E(X), C(X)) , defined as follows: Lcls = DKL[|C(x′)||C(x)]. This loss ensures that
the generator does not disregard image attributes that are important for the classifica‐
tion.
To extract classifier‐specific attributes, the AttFind algorithm is proposed in the paper.
As input, it takes the trainedmodelD and a set ofN images of which the predicted labels
do not match the target label y. For each class label, AttFind encodes the images and
iteratively tries to find a set Sy ofM style coordinates that represent the largest possible
shift to the opposing class. Next to this, it finds the set of directions Dy ∈ {±1}M in
which the attribute needs to be adjusted to flip the classifier decision. In each iteration,
it considers all style coordinatesK and determines the coordinate with the largest effect.
All images in which changing this coordinate results in a large effect on their probability
are removed from the iteration. The process is repeated until no images are left, or until
M attributes are found.

4.2 Datasets
We reproduce a selection of the findings of the authors on two of the given datasets in
our PyTorch implementation:

1. CelebA [10] The original Large‐scale CelebFaces Attributes (CelebA) dataset2 con‐
tains 200000 image entries, each containing 40 attribute annotations. We have
trained classifiers on the ‘perceived gender’ attribute.

2. FFHQ [11]The original Flickr‐Faces‐HQdataset containing 70000 images of human
faces. This datasetwas used for StylEx training, while the pre‐trained classifierwas
trained on the CelebA dataset, following the procedure of the original paper.3

3. Plant‐Village: This dataset contains 54303 entries of plant images, with 38 cate‐
gories. This dataset was used to train the classifier to differentiate between sick
and healthy leaves.

For the classification tasks, the FFHQ dataset was split into train/validation/test sets of
70/15/15, while the Plant‐Village retained a proportion of 70/20/10.

4.3 Hyperparameters
Original research: For the partial reproduction of Table 3 of the original paper, we lim‐
ited ourselves to a sample of n = 250 images, rather than the n = 1000 randomly sam‐
pled images, as denoted in the Jupyter Notebook.
Reimplementation: The computational costs of training StylEx precluded an in‐depth
hyperparameter search. For all modules except the encoder, we found a learning rate
of 2e − 4 for the Adam optimizer, with β1 = 0.5 and β2 = 0.9. We found the training to
diverge unless the encoder learning rate was lowered significantly to 1e− 5. We ascribe
this difference to the significantly smaller input size in our models or subtle implemen‐
tation differences from the original paper that are unknown to us.
The classifier used in the paper was MobileNetV1 [12], but we opted for a MobileNetV2
[13] or ResNet‐18 models[14]. The authors asserted that the use of advanced networks
identified more subtle cues from the datasets on the classification problems at hand,
and for this purpose, we opted for ResNet‐18. Additionally, we observed that the Mo‐
bileNet model did not perform well on the CelebA dataset for gender classification on

2https://www.kaggle.com/jessicali9530/celeba‐dataset
3This is a detail that was revealed through contact with the authors.
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this image resolution. The components of the Lrec loss were scaled according to au‐
thors’ suggestion in our correspondence: 0.1 for Lx

rec and LLPIPS, 1 for Lw
rec. Other loss

components were not scaled.
On the local GPUs, weused a batch size of 4with 8 gradient accumulation steps, whilewe
use a batch size of 16 with 4 gradient accumulation steps on the computer cluster. For
the training of the MobileNet V2 classifier and the ResNet‐18 classifier, we finetuned
the pretrained models by slowly unfreezing the top layers, we have set the learning rate
to lr = 1e − 4, used a batch size of 128 and used the Adam [15] with default PyTorch
parameters.

4.4 Experimental setup and code
We aimed to follow the experimental setup as close as possible for our experiments.
Our PyTorch implementation is available on GitHub4 to further support and advance
reproducibility in machine learning research. The repository provides explanations to
run the described experiments.

4.5 Computational requirements
Locally, ourmodels were trained on two differentmachines, which contained a 1) laptop
NVIDIA RTX 3060, 2) an NVIDIA RTX 2070 Super. A computer cluster containing GTX
1080 Ti GPUs was also used to train some of our models. The first machine makes use
of the Windows operating system, while the latter two are Linux‐based. For both the
FFHQ dataset as well as the Plant‐Village dataset, training was done until convergence,
which was reached in 150K training steps for the FFHQ dataset and 260K training steps
on the Plant‐Village dataset.
On the local GPUs, a batch size of 4 (RTX 3060) and 8 (RTX 2070 Super) was used along‐
side gradient accumulation for 8 (RTX 3060) and 2 (RTX 2070 Super) steps. On the com‐
puter cluster, a batch size of 16 was used, with a gradient accumulation parameter of
4. Depending on the hyperparameters of the batch size and gradient accumulation, the
computational time to run the experiments ranged between 20‐50 GPU hours. Training
for 150000 steps took 20 hours on an RTX 2070 Super.

5 Results

5.1 Results reproducing original paper

Sufficiency —Wecalculate the percentage of flipped classifications after changing the top‐
10 most influential attributes found by the AttFind procedure. The results can be seen
in table 1. Our results using the author’s model are within 1% of the accuracy reported
in the paper. Our models show significantly worse performance on both perceived gen‐
der (51% vs 83.2%) and plant healthiness (30% vs 91.2%), showing that the attributes
discovered are not very relevant for classification.

Coherency and Distinctness — Similar to the original paper, we have conducted a user study
(n = 54) to evaluate the distinctiveness of the found attributes and the coherence of
the generated images. The user study was divided into two parts ‐ 1) a classification
study and 2) a verbal description study, following a similar setup as presented in [16].
For the classification study, users are shown one animation of four images in a grid
format. The two images on the left switch between their original image and have the
same transformation applied. The two images on the right swap between their original
image and one of two transformations. The user then has to find the transformation on

4https://github.com/NoahVl/Explaining‐In‐Style‐Reproducibility‐Study
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Dataset Ours

FFHQ - Perceived Age 94.8%
FFHQ ‐ Perceived Gender (Model 1, s = 2) 51%
FFHQ ‐ Perceived Gender (Model 2, s = 1) 21%
Plant Village ‐ Perceived Health (s = 2) 30%

Table 1. Percentage of flipped classifications on different datasets. Row in italics shows our exper‐
iment on the original authors’ model. s represents the shift size used to generate the results. The
shift sizes have been chosen by qualitatively looking at the produced images.

the right that matches with those on the left. In the verbal description study, the users
were asked to look at an animation of four images, and consequently describe in 1‐4
words the changing attribute.
We have done this for the plant dataset as well as the FFHQ datasets. The order of the
datasets was randomized to avoid biases and learning effects. All participants are under‐
graduate and graduate students who have some affinity with and knowledge ofmachine
learning. None of them reported having color blindness. In Appendix 7, a few examples
can be found on the posed questions (without animations) and the type of provided an‐
swers. The full user evaluation data and questions from the questionnaire can be found
on our GitHub repository, under the folder all_user_studies.

Dataset Wu et al. Lang et al. Ours

FFHQ ‐ Perceived Gender 0.783 (±0.186) 0.96 (±0.047) Model 1: 0.52 (±0.2081)
Model 2: 0.79 (±0.1599)

Plant Village ‐ Perceived Health 0.91 (±0.081) 0.916 (±0.081) 0.66 (±0.323)

Table 2. User study results. Partial reproduction of Table 2 of the original paper, on a subset of the
datasets.

Although our results seem to slightly outperform the results by Wu et al. (2021) on the
perceived gender classifier, it does not seem to outperform the method posed by Lang
et al. (2021).

5.2 Results beyond original paper

0 2 4 6 8 10
70

80

90

100

110

120

130

140

Number of perturbed attributes

FI
D

FFHQ ‐ Age ‐ Lang et al.
FFHQ ‐ Gender ‐ Model 1
FFHQ ‐ Gender ‐ Model 2

Plant‐Village

Figure 3. FID scores after perturbing
top‐k attributes.

FID scores — To investigate the impact of attribute per‐
turbation on the quality of the generated images, we
compute the Fréchet Inception Distance (FID) [17]
between the original images and the generated im‐
ages, as described by Seitzer18. We perturbed the im‐
ages with increasingly more attributes in a cumula‐
tive fashion, starting from zero perturbed attributes,
which corresponds to only encoding and decoding
the image. For the pre‐trained model from the orig‐
inal authors, we used the provided subset of 250 la‐
tent vectors and their corresponding original images
that were found in FFHQ. For our models, we used
subsets of 100 images (500 images for model 2) due
to computational constraints with regard to running
the AttFind algorithm. Our results, seen in 3, show
that the FID increases with the number of stacked
perturbed attributes.
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This result is not surprising for three reasons. Firstly, making an image to be classi‐
fied as another class might introduce perturbations for a certain class that are out‐of‐
distribution for that particular class. For example, a man with lipstick does not appear
often in the male class. Therefore, counterfactuals are more likely to be out of distribu‐
tion to a particular degree. Secondly, a combination of perturbations seems to be more
likely to produce an image that ismore out of distribution thanwhen one perturbation is
applied individually. For example, a womanwith thicker eyebrows in combination with
more facial hair might be more out of distribution than one of those perturbations indi‐
vidually. Moreover, we noticed that perturbing several attributes leads to an increasing
number of image artefacts, which could be an additional cause for the increasing FID
score. This holds both for the original authors’ models and our implementation.

6 Discussion

Our experimental results support the claims made in the original paper ‐ the attributes
detected by StylEx are identifiable by humans to a certain degree, distinct and sufficient.
However, due to the significantly lower resolution and poorer image quality of the mod‐
els, these results are not comparable to the ones displayed in the original paper.
Reflection on our reproducibility study An important insight obtained during the con‐
duction of the study is that the provided code did not cover the entire scope of the paper.
Through a thorough study of both the code aswell as the paper, we quickly noted discrep‐
ancies and missing elements that were fundamental ‐ such as the network architecture,
scaling of the losses and the hyperparameter configurations ‐ to the original research.
We believe that researchers could enhance transparency and reproducibility inmachine
learning research by the addition of a reproducibility statement within their research,
including the used hardware, releasing written software and adding details relevant to
the paper (e.g. such as clarifications on the exact network architecture). Moreover, it
is important to detail hyperparameter search spaces and final parameter settings for all
the used architectures and baselines. We believe that transparency is fundamental to
stimulating the large‐scale deployment of machine learning algorithms.

6.1 What was easy
It was relatively easy to run the code as the provided Jupyter Notebook by the authors.
The provided notebook was thoroughly documented and written in a consistent coding
style, making the interpretation of the notebook easier. However, the provided note‐
book lacked the elements to fully reproduce the research; the training procedure of the
network was missing, only one pre‐trained model was provided and four datasets were
missing that we were required to add. As such, we had to implement the framework
in PyTorch, while porting the limited released code from TensorFlow. Adding a dataset
not used in the original notebook to accommodate the experiments was a relatively easy
task.

6.2 What was difficult
Given the limited computational resources that were available to us, reproducing the ex‐
periments at the same computational scale as the authors were deemed to be the largest
challenge. For the training of the model, the original authors made use of 8 NVIDIA
V100s, which took the original authors a week to train at the full resolution of 2562px,
whereas we were restricted to the use of the computer cluster, Colab/Kaggle, and our lo‐
cal GPUs. Due to this limitation, we had to scale down the resolution of the new images
across the different datasets significantly. We scaled down the resolution of the gen‐
erated images across the different datasets to a resolution of 642px, which reduced the
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fidelity of the reconstructed images. Additionally, we experienced the following issues
with the original paper:

1. Little to no hyperparameters were given in the paper, e.g. on the scaling of the
losses, the learning rates etc;

2. Ambiguities about the trainingprocedure: the classifier in thenotebookwas trained
on CelebA, instead of the FFHQ dataset, which we did not expect. This appeared
to be a design choice by the authors, as the CelebA dataset contained labels, which
the network could leverage information from. Additionally, softmax logits ap‐
peared to be added to the discriminator – which was not mentioned explicitly in
the paper – but appeared to follow the cGAN [19] training procedure;

3. Ambiguities on the network architecture: It was not entirely clear what the di‐
mensionality and the function were of the z vector, as the paper did not explicitly
mention this;

4. Ambiguities about the preprocessing pipeline of the images before it enters the
encoder/classifier ‐ in contact with the authors, they appeared to scale the RGB
values from [−1, 1].

The original authors did provide the hyperparameter configurations early on, which
slightly reduced the time to explore the different possibilities, but the provided learning
rate for example was too high for us. Additionally, the conversion of the AttFind algo‐
rithm from TensorFlow to PyTorch also proved to be a somewhat difficult exercise. The
challenge predominantly concerned the integration of this algorithm within the new
PyTorch codebase, which required a thorough understanding of the internal workings
of the algorithm.

6.3 Communication with original authors
Three emails were sent to the first author of the paper. In these emails, we have asked
for additional details on the proposed network architecture, hyperparameter configura‐
tions and the training procedure of the networks. These details were not noted in the
paper, nor in the provided code. Answers to these questions were provided promptly.
Unfortunately, they were not able to share their code for the training procedure, as it
contained too many internal dependencies from their perspective.
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Appendix

7 User Study

7.1 Classification Study
The participants were provided with the following instructions for the classification
study:

• Look at the animations on the left. Both are examples of the same transformation
(change in the image).

• Then look at the two candidates on the right, A (top‐right) and B (bottom‐right).

• Choose which one does a similar transformation to those on the left.

Figure 4. Sample question in the classification study, on the plants dataset.

Correct answer: B
Accuracy: 20/54 participants were correct.

7.2 Verbal Description Study
Theparticipantswere providedwith the following instructions for the verbal description
study:

• Look at the animation.

• Describe in 1‐4 words the single most prominent attribute that changes for all im‐
ages.

Users description: lighting, colour/color, brightness, changes
Most common word: lighting
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Figure 5. Sample question in the verbal description study, on the plants dataset.

8 Top attributes

8.1 FFHQ - Model 1

Figure 6. Perceived Age ‐ Model 1. Classifier‐specific interpretable attributes

None 8.2 (#42) – Vleuten et al. 2022 13

https://rescience.github.io/


[Re] Explaining in Style: Training a GAN to explain a classifier in StyleSpace

8.2 Plant Village

Figure 7. Perceived Health. Classifier‐specific interpretable attributes
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8.3 FFHQ - Model 2

Figure 8. Perceived Age ‐ Model 2. Classifier‐specific interpretable attributes
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