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1 Reproducibility Summary

Scope of Reproducibility
The core finding of the paper is a novel architecture FamNet for handling the few‐shot
counting task. We examine its implementation in the provided code on GitHub and
compare it to the theory in the original paper. The authors also introduce a data set
with 147 visual categories FSC‐147, which we analyze. We try to reproduce the authors’
results on it and on CARPK data set. Additionally, we test FamNet on a category specific
data set JHU‐CROWD++. Furthermore, we try to reproduce the ground truth density
maps, the code for which is not provided by the authors.

Methodology
Weuse the combination of the authors’ and our own code, for partswhere the code is not
provided (e.g., generating ground truth density maps, CARPK data set preprocessing).
We also modify some parts of the authors’ code so that we can evaluate the model on
various data sets. For running the code we used the Quadro RTX 5000 GPU and had a
total computation time of approximately 50 GPU hours.

Results
We could not reproduce the density maps, but we produced similar density maps by
modifying some of the parameters. We exactly reproduced the results on the paper’s
data set. We did not get the same results on the CARPK data set and in experiments
where implementation details were not provided. However, the differences are within
standard error and our results support the claim that the model outperforms the base‐
lines.

What was easy
Running the pretrained models and the demo app was quite easy, as the authors pro‐
vided instructions. It was also easy to reproduce the results on a given data set with a
pretrained model.
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Correspondence should be addressed to Domen Vreš (dv6968@student.uni-lj.si)
The authors have declared that no competing interests exist.
Code is available at https://github.com/tersekmatija/re-LearningToCountEverything – DOI 10.5281/zenodo.6508260. – SWH
swh:1:dir:cf19f5a717c777cd1097e938ef4e6bdb735f71c7.
Data is available at https://drive.google.com/file/d/1ymDYrGs9DSRicfZbSCDiOu0ikGDh5k6S/view?usp=sharing.
Open peer review is available at https://openreview.net/forum?id=HKbgd3zmh0t.

ReScience C 8.2 (#39) – Kljun, Teršek and Vreš 2022 1

https://orcid.org/0000-0002-0893-8795
https://orcid.org/0000-0002-3743-4895
https://orcid.org/0000-0002-9225-2699
mailto:dv6968@student.uni-lj.si
https://github.com/tersekmatija/re-LearningToCountEverything
http://oadoi.org/10.5281/zenodo.6508260
https://archive.softwareheritage.org/swh:1:dir:cf19f5a717c777cd1097e938ef4e6bdb735f71c7/
https://drive.google.com/file/d/1ymDYrGs9DSRicfZbSCDiOu0ikGDh5k6S/view?usp=sharing
https://openreview.net/forum?id=HKbgd3zmh0t
https://rescience.github.io/


[Re] Learning to count everything

What was difficult
It was difficult to verify the ground truth density map generation as the code was not
provided and the process was incorrectly described. Obtaining a performant GPU was
also quite a challenge and it took quite many emails to finally get one. This also meant
that we were unable to reproduce the training of the model.

Communication with original authors
We contacted the authors three times through issues on GitHub. They were helpful and
responsive, but we have not resolved all of the issues.

ReScience C 8.2 (#39) – Kljun, Teršek and Vreš 2022 2

https://rescience.github.io/


[Re] Learning to count everything

2 Introduction

Counting objects in a scene is a task that is very simple and intuitive for humans, how‐
ever, the problem arises when there are hundreds, thousands, or even more objects in
one scene as the counting becomes difficult or impossible. Yet, sometimes it is bene‐
ficial to have a count estimation of such big amounts of objects and that is why many
approaches for counting objects have been proposed. These methods can easily outper‐
form humans, especially when there are many objects in a scene. Still, the advantage
of humans is that we are able to count objects from the majority of visual categories
with ease, which is not the case with the current object counting methods. In fact, the
counting approaches that have been proposed until now can usually handle only one
visual category at the time, and even those categories are mostly limited to a few, most
frequently humans [1, 2, 3, 4, 5], vehicles [6, 7, 8, 9, 10], and animals [11, 12]. The reason
behind these limitations in the currently proposed approaches is twofold. The major‐
ity of counting approaches requires dot annotations for thousands of objects on few
thousands of training images. The second reason is that there exists no large enough
unconstrained data set, which would allow the development of a method for counting
any visual category. Both of these limitations exist as dot annotation and development
of a large enough data is a laborious and a costly task.
In this reportwe try to reproduce the paper Learning toCount Everything [13], inwhich the
authors try to overcome both of the abovementioned limitations. Instead of mimicking
the previousworks and treating counting as a fully supervised regression task, they pose
counting as a few shot regression task. This approach is generalizable as only an input
image with a few exemplars from the same image (that represent the object of interest)
is required to achieve generalization to a completely novel visual category class. Second,
the authors of this paper also address the lack of data sets with many visual categories
as they introduce a data set including more than 6000 images from 147 visual categories.

3 Scope of reproducibility

The authors are interested in counting everything and they achieve that by posing count‐
ing as a few‐shot regression task. The core finding of the paper is a novel architecture
called FamNet that handles a few‐shot counting task together with a novel adaptation
strategy that adapts the network to any novel visual category at test time, by using only
a few exemplar objects from the novel category. Furthermore, the authors introduce a
data set containing 147 different visual categories and they show that their method out‐
performs other state‐of‐the‐art approaches – object detectors as well as few‐shot count‐
ing approaches. We test these key findings from the paper:

• FamNet outperforms other few‐shot approaches when it comes to object counting.

• FamNet performs well even on a category‐specific data set.

• Increasing the number of exemplars decreases FamNet’s error.

4 Methodology

Where available, we use the authors’ code from GitHub. We modify it so that we can
evaluate the model on different data sets. Additionally, we prepare our scripts for gen‐
erating ground truth density maps, ablation study, and preprocessing of CARPK data
set, as the authors do not provide it.
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4.1 Model descriptions
FamNet is composed of two main modules – a multi‐scale feature extraction module
and a density prediction module. The multi‐scale feature extraction module is based
on the ImageNet pretrained network, more specifically on the first four blocks from a
pretrained ResNet‐50 backbone. From the code, we find out that the authors use the pre‐
trained ResNet‐50 model from TorchVision. The density prediction module is designed
in a way to be agnostic to the visual categories. They achieve this by not feeding the
features obtained from the feature extraction module directly. Contrary, they rather
use the correlation map between the exemplar features and image features as the in‐
put to the density prediction module. We show a visualization of inputs to the density
prediction module in Appendix 7.
As mentioned, the proposed FamNet can adapt to a new visual category once trained,
using only a few exemplars. To understand the novel adaptation loss that is used during
test time we first quickly describe the Min‐Count and Perturbation losses.
Let B denote the set of provided exemplar bounding boxes (bounding boxes denoting
examples of the object, that we are counting, given to the network). For each bounding
box b ∈ B, let Zb represent the crop from the density map Z at location b.

Min-Count Loss —Min‐Count Loss is defined as

LMinCount =
∑
b∈B

max(0, 1− ||Zb||1). (1)

The idea behind this loss is that the sumof density valueswithinZb should be at least 1 as
the predicted count is a sum of predicted density values, and there is at least one object
at the location b. Meaning that if the total value of the density map in the exemplar box
is equal to or greater than 1, the loss will not increase for this location, but if the total
value of the density map in the exemplar box is smaller than 1, we increase the loss.
By inspecting the authors’ code, however, we find out that Min‐Count loss is incorrectly
implemented. Instead of using the difference between 1 and ||Zb||1, the authors use the
squared difference. In notation, the implementation of Min‐Count loss in the original
implementation is

L
implemented
MinCount =

∑
b∈B

max(0, (1− ||Zb||1)2). (2)

We address the issue and test the performance of the model for both implementations
in Section 5.

Perturbation Loss — Perturbation Loss is defined as

LPer =
∑
b∈B

||Zb −Gh×w||22, (3)

whereGh×w is a 2D Gaussian window of size h×w and standard deviation σG = 8. The
authors do not provide the reasoning for the chosen value, so we try different options to
investigate its influence. We report our findings in Section 5.2.1. This loss is inspired by
the success of tracking algorithms based on correlation filter, where algorithms learn
a filter that has the highest response at the location of the bounding box and lower re‐
sponse at all perturbed locations. We can look at the density map Z as the correlation
response between the exemplars and the image.

Adaptation loss — The final loss, called adaptation loss, is defined as a weighted combina‐
tion

LAdapt = λ1LMinCount + λ2LPer, (4)
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whereLMinCount is theMin‐Count Loss, LPer is Perturbation Loss and λ1 and λ2 are scalar
hyper‐parameters. The authors fine‐tuned them on validation set, and we use the same
values λ1 = 10−9 and λ2 = 10−4. Note that adaptation loss is only used at test time, and
MSE between predicted and ground truth density map over all pixels is used as a loss
during training.

4.2 Data sets

FSC-147 — As the majority of the data sets are dedicated to a specific visual category, the
authors collected and annotated 6135 images across 147 different visual categories. The
average image height is 774 and the average image width is 938 pixels. In each image,
all objects are dot‐annotated in an approximate center of the object. Furthermore, in a
majority of cases (96.26%) three object instances are randomly selected and are addition‐
ally annotatedwith axis‐aligned bounding boxes denoting exemplar bounding boxes. In
some cases four (3.45%), five (0.27%), or six (0.02%) object instances are additionally an‐
notated.
The data set is divided into train, validation, and test sets in a way that each of these sets
does not share any object categories. The train, validation, and test sets consist of 3659,
1286, and 1190 images, respectively.
The authors provide two sets of ground truth density maps which are the same in all but
two cases (3417.npy and 3477.npy). In the second set of ground truth density maps,
the first image appears more blurred, while different objects are counted on the latter
image (see Figure 1).

(a) Original image (b) GT density (from 1st set) (c) GT density (from 2nd set)

Figure 1. The figure shows one of the cases where the two provided ground truth density map sets
do not agree. Image (a) shows the color image, (b) shows the ground truth density map from the
first provided set, and (c) shows the ground truth density map from the second set. On (b) the
object of interest are balloons, while on (c) the objects of interest are dots on the balloons.

In the original paper, the authors compare FamNet to some common object detectors
‐ Faster R‐CNN [14], RetinaNet [15], and Mask R‐CNN [16], which were pretrained on
COCO data set [17]. Thus they select a subset of FSC‐147, which contains categories that
also appear in COCO. We manually try to find the intersecting categories and find that
17 categories appear under the same (or similar) name in both data sets. The authors in‐
clude all images from FSC‐147 from those categories in COCO‐Val and COCO‐Test splits
that they provide, and do not leave out any categories that might appear in FSC‐147 and
COCO.

Resizing of FSC-147 images before using FamNet — The authors provide a link to FSC‐147 data
set in their GitHub repository. However, the images there are already resized as a part
of preprocessing before using FamNet. The authors decided to resize all images to a
fixed height of 384 pixels. They claim that they adjusted the width of the images in the
way that the aspect ratio is preserved. As the authors provide the information about
the original dimensions of each image, we checked, whether all processed images are
correctly resized to have a height of 384 pixel and if their aspect ratio is truly preserved.
We found some cases where the aspect ratio was not preserved. We showed such cases
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to the authors, who replied that they did not preserve the aspect ratio for images with
original width of less than 384 pixels. However, the provided example with a corrupted
aspect ratio did not have a width smaller than 384.

FSC-147 ground truth density map generation — The authors do not provide the code for the
generation of ground truth density maps, but rather provide the already pre‐computed
density maps and only describe the process. While this is beneficial, as it saves com‐
putation time, it is somewhat questionable, as we do not get a full insight into how the
data set was generated, and cannot verify their claims. An issue has been opened on the
authors’ GitHub, but they did not provide the code.
We implemented our own code as described in the paper. We used Gaussian smoothing
with adaptive window size and estimated the size of the objects from distances between
dot annotations and their nearest neighbor. We averaged those distances to obtain the
size of the Gaussian window sG. The authors claim that they use the sG

4 as the standard
deviation, however, we could not reproduce the results using this value. We obtained
the closest results with sG

8 (see Figure 2 for illustrative example). When we asked the
authors about the issue, they suggested that large discrepancies might be due to them
computing ground truth deviations on larger images, and then downscaling them to
the sizes in the data set. However, we still could not reproduce the same results with
the suggested approach. This question still remains open and the issue has not been
resolved. Our code produces results most similar to the ground truth density maps,
though displacement for some points is visible.

(a) ground truth (b) σ = sG
4 (c) σ = sG

8 (d) error (|(a)− (c)|)

Figure 2. The leftmost image (a) represents the ground truth density map, image (b) represents
the ground truth density map that we generated by following the authors’ description using sG

4

as standard deviation, image (c) represents the ground truth density map obtained with the same
process as in (b), but using sG

8
as standard deviation, and image (d) represents absolute point‐wise

differences between (a) and (c). sG
8

denotes the window size of the Gaussian filter. We can see
that (a) and (c) are more similar, while some positional displacements are still noticeable.

CARPK — The authors want to check the performance of FamNet on category specific
counting task. TheyuseCARPKdata set [18], which contains around 90,000 cars recorded
in various parking lots, taken with drones. The data set is already split into train and
test set, and for each image ground truths in a form of bounding boxes are provided.
In order to convert the data set into a form suitable for the evaluation of FamNet, we
had to create the density maps that represent the ground truths, select the bounding
boxes that represent the exemplars, and resize the images to have a height of 384 pixels.
The authors do not provide any information about the preprocessing of that data set.
We first obtained the distribution for a number of exemplars in FSC‐147 data set. We
then sampled a number of exemplars n from this distribution for each image and ran‐
domly chose n bounding boxes that represent exemplars. To obtain the density maps,
we represented each car by a Gaussian filter of the size of the provided bounding box.
We set the σ of the filter to h+w

16 in order to follow the setting of σ for FSC‐147 data set.
However, we did not set the σ based on the authors’ description in the paper but based
on our findings, described in Section 4.2.3.

ReScience C 8.2 (#39) – Kljun, Teršek and Vreš 2022 6

https://rescience.github.io/


[Re] Learning to count everything

JHU-CROWD++ — Aswewant to check how the FamNet performs on a typical crowd count‐
ing data set, we extend the authors’ research and test the pretrained model on JHU‐
CROWD++ data set [19, 20]. This includes 4327 images collected under a diverse set of
conditions (adverse weather, various illumination, varying densities, etc.) and 1.51mil‐
lion annotations (dots, approximate bounding boxes, etc.).
We again had to do some preprocessing in order to get the data set in the format for
evaluation of FamNet. We used the same preprocessing as we did for CARPK data set
(see Section 4.2.4).

4.3 Hyperparameters
There are several FamNet hyperparameters that have to be set. The authors set σG = 8
used in perturbation loss (see Section 4.1.2) without any explanation why. We therefore
decided to check how different values of σG impact the error of the model. To select the
best value of σG we used grid search. We tested every even integer value between 2 and
20 and report our findings in Section 5.2.1.
We did not test λ1 and λ2 from adaptation loss (see Section 4.1.3). The authors set their
values to 10−9 and 10−4, respectively. They say that setting them to such small values is
necessary, so the adaptation loss has a similar magnitude to the training loss. We also
did not test the number of gradient descent steps and the learning rate during the test
time adaptation. The authors said that these two values were tuned along with λ1 and
λ2 on the validation set.

4.4 Experimental setup and code
To perform our experiments, we used the authors’ and our code. Authors’ code is avail‐
able on theirGitHub repository1. Weperformedour experiments by runningfiletest_extended.py,
which is an extended version of the authors’ file test.py, with some flags formanipula‐
tion of different options. To evaluate different values ofσG, weused scriptchoose_sigma.py,
which is run in a similar way as the scripts mentioned before. We also did some prepro‐
cessing and testing in our Jupyter notebooks that are self‐explanatory to run.
Model is evaluated with absolute error (MAE) and root mean squared error (RMSE), de‐
fined as:

MAE =
1

n

n∑
i=1

|ci − ĉi|, RMSE =

√√√√ 1

n

n∑
i=1

(ci − ĉi)2, (5)

where n denotes the number of instances in test/val set, ci denotes the number of se‐
lected objects on i‐th image from that set, and ĉi denotes the predicted count for that
image.

4.5 Computational requirements
All experiments were ran on GPU only (hence we do not report used CPU and RAM). We
ran our experiments on a server with Nvidia Quadro RTX 5000 GPU. Each evaluation of
FamNet on test or validation set (FSC‐147) takes around 2 minutes without the test time
adaptation and around 1 hour and 40 minutes with it. The ablation study with number
of exemplars takes around 3 hours (the execution times are shorter when the number of
exemplars is decreased). Evaluation of FamNet on subset of categories from COCO data
set takes around 40 minutes with adaptation. Evaluation of FamNet on CARPK data set
(with adaptation) takes around 1 hour and 20 minutes. We spent around 50 GPU hours
to run all of our experiments.

1https://github.com/cvlab-stonybrook/LearningToCountEverything
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5 Results

Our results support the claims of the authors about the quality of their proposed FamNet
structure. We managed to reproduce their results exactly (where the code is provided)
or up to the point that we can confirm that their model performs as they claim in com‐
parison with the other methods

5.1 Results reproducing original paper
Wereproducedmost of the results obtainedwithFamNet onFSC‐147 andCARPKdatasets.
The only exception is the ablation study with number of exemplars, where our results
do not entirely support the authors’ claim.

Evaluation of FamNet on FSC-147 dataset —We managed to get the same results as the au‐
thors when testing FamNet on FSC‐147 validation and test set, which supports the claim
that FamNet outperforms other tested few‐shot approaches. The results are given in Ta‐
ble 1 of the original paper. However, we did not test the few‐shot methods that FamNet
is compared to.

Comparison with object detectors —We tried to reproduce the comparison of FamNet with
object detectors, trained on COCO data set. The authors compare FamNet with the de‐
tectors on images from FSC‐147 data set from categories that overlap in FSC‐147 and
COCO. We did not manage to reproduce the exact results obtained by the authors (Ta‐
ble 2 in their paper), but we get the results that are within the standard error of theirs
or, in case of RetinaNet worse than theirs, and still support the claim that FamNet beats
listed object detectors. Our results are shown in Table 1. Additionally to the authors, we
report the standard error of MAE estimate, which was calculated from standard devia‐
tion. We obtained those results using TorchVision models. The authors use Detectron2
models instead, which perform worse in our experiments.

Table 1. The results of different object detectors on FSC‐147 categories intersecting with COCO
categories. Columns SE show the standard error of MAE estimates. Suffixes ‐Val and ‐Test to the
name of the data set represent the different split of FSC‐147 data set that was used.

COCO‐Val COCO‐Test
MAE SE RMSE MAE SE RMSE

Mask R‐CNN (Resnet‐50) 52.04 9.61 168.23 36.66 3.31 66.58
Faster R‐CNN (Resnet‐50) 53.57 9.64 169.12 38.88 3.57 71.46

RetinaNet (Resnet‐50) 91.17 8.75 171.85 70.2 3.34 89.85
SSD (VGG‐16) 94.96 8.50 170.45 61.57 4.0 91.11

FamNet (no adaptation) 41.13 6.32 112.92 23.23 2.42 46.79
FamNet (adaptation) 39.82 6.04 108.15 22.76 2.37 45.92

Number of exemplars ablation study —We reproduced the experiment, that tested the impact
of the number of exemplars on the performance of FamNet. However, our results (see
Table 2) do not entirely support the claim of the authors that increasing the number of
exemplars improves the performance of the FamNet. We can see that by increasing the
number of exemplars from 2 to 3, RMSE increased on both test and val set, while the
MAE increased on val set and decreased on train set.
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Table 2. The performance of FamNet on FSC‐147 data set with respect to the number of exemplars.
Columns SE show standard errors of MAE estimates.

Val set Test set
Number of exemplars MAE SE RMSE MAE SE RMSE

1 26.8 2.0 78.1 26.2 3.3 116.0
2 23.1 1.7 65.2 22.4 2.7 97.2
3 23.7 1.8 69.3 22.0 0.8 99.3

Figure 3. MAE (full blue line) of FamNet depend‐
ing on σG and the standard error of the estimate
(dotted line). The tested values were even inte‐
gers between 2 and 20.

Table 3. Evaluation of FamNet on JHU‐Crowd++,
trained on FSC‐147, compared to two othermod‐
els evaluated on the same data set. Column SE
shows the standard error of MAE estimate.

MAE SE RMSE

MCNN 188.9 / 483.4
CSR‐Net 85.9 / 309.2

FamNet (our results) 256.9 15.0 652.5

Evaluation on a category-specific data set — The authors evaluate FamNet on a CARPK data
set. We reproduced their results of FamNet trained on FSC‐147, but we did not try to
reproduce the results for FamNet trained on CARPK. As the authors do not describe the
used preprocessing, we did not get exactly the same results as they did. However, our
results are close to theirs and still support their claim that FamNet performs well on
this category‐specific data set. We got MAE 27.9 (with standard error 1.1) and RMSE
36.4, while the authors got MAE 28.8 and RMSE 44.4.

5.2 Results beyond original paper
Additionally, we tested how σG (Section 4.1.2) and correction of the Min‐Count Loss
affect the model’s performance, evaluated the model on another category‐specific data
set, visually inspected the errors of the model and effects of test time adaptation.

Impact of σG on the error of the model — Since the authors do not provide any justification
for setting σG = 8, we test how theMAE of FamNet changeswith different σG (see Figure
3). We can see that σG has practically no impact on MAE of FamNet.

Min-Count Loss correction — Sincewehavenoticed that the authors’ definition ofMin‐Count
Loss differs from their implementation (see Section 4.1.1), we tested how it affects the
error of the model. Our results did not show any significant difference in MAE and
RMSE.

Evaluation on JHU-CROWD++ — To test the performance of FamNet on category‐specific
data set even further, we evaluated it on the JHU‐CROWD++ data set (see Section 4.2.5).
We use a model trained on FSC‐147. The results are shown in Table 3. We can see that
FamNet performs worse than baselines. However, this data set is challenging (large
number of objects, small bounding boxes) and training the model on that data set with
a higher number of exemplars would likely boost the performance.
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Performance of the model without adaptation — Additionally, we visually inspect the images,
where absolute error, normalized by the ground truth count, is the highest or the lowest.
Our observations and visualisations are described in Appendix 8.

Effect of adaptation on model’s predictions — To inspect the effect of adaptation, we analysed
the most positive and negative effects of adaptation on model’s performance. We de‐
scribe the results in Appendix 9.

6 Discussion

We tried to reproduce the results from the paper Learning to count everything. We ob‐
tained the same results as in the paper for some experiments. For others, our results are
still close enough to the papers’. We confirmed that FamNet outperforms other few‐shot
approaches when it comes to object counting and that FamNet performs well even on a
category‐specific data set. Our experiments disprove the authors’ claim that increasing
the number of exemplars decreases FamNet’s error. We assume that this is due to the
fact that we discarded different exemplars than the authors. This might suggest that
choosing correct exemplars is more important than choosing more of them.

6.1 What was easy
A demo app with clear instructions helped with the understanding of the model. The
model’s architecture was understandable from the code and the paper. It was easy to
reproduce the results on FSC‐147 with a pretrained model.

6.2 What was difficult
Reproducing the ground truth densitymapswas difficult, as the process in the paper did
not lead to the paper’s results, and the code for it was not provided. We did our best to
mimic the ground truth density maps. Evaluating other models for which the code was
not providedwas challenging, as no parameters were given (e.g., confidence or intersect
over union thresholds for object detectors). We struggled obtaining a good enough GPU.
Due to lack of time, we were unable to train the model ourselves, and we delegate this
to future work.

6.3 Communication with original authors
We contacted the authors three times through issues on GitHub. They were helpful and
responsive, but we have not resolved all of the issues.
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Appendix

7 Input features to density prediction module

The authors use a density prediction module that is agnostic to the visual categories.
Instead of feeding the features obtained from the feature extraction module directly,
they rather use the correlation map between the exemplar features and image features
as the input to the density prediction module. In Figure 4 we show an example of an
input (correlation features) to the density prediction module.

(a) Input image with three exemplars

(b) Correlation maps

Figure 4. Figure shows an example of an input image (a) from FSC‐147 with three exemplars (blue
rectangles), and correlation maps between exemplar and image features (b), that are fed to the
density prediction module. Each row corresponds to one exemplar, while each column corre‐
sponds to one combination of scale (3 scales) and feature output from third or fourth block of
ResNet‐18.

8 Images with the best and the worst relative MAE on test set without
adaptation

We visually inspect the images where absolute error normalized by the ground truth
count is the highest or the lowest, and show some of the images in Figure 5. We can
see that the algorithm predicts density maps with highest relative count error in cases
where he predicts counts for wrong objects. In all three cases defined shapes which
confuse the algorithmare present. Algorithmworks the best on images, where the shape
of the object it counts is well‐defined and differs from the background, or there is no
background at all. Adaptation in some cases improves the prediction, while in some
cases it makes it worse. Thus, we investigate the affect of adaptation in the next section
of appendix.

9 Effect of adaptation on predictions

We inspect on which images the absolute error normalized by the ground truth count
is improved or worsened the most. We show examples of those images in Figure 6. We
do not observe any special pattern in the shown images. The main reason for a bigger
impact of adaptation on those images is that their relative errors were quite high/low
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and consequently absolute changes in the prediction had a bigger impact on relative
error.
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7171.jpg GT: 13 Pred: 647.7 Pred (A): 670.5

5365.jpg GT: 9 Pred: 75.7 Pred (A): 73.7

4885.jpg GT: 11 Pred: 35.0 Pred (A): 45.2

2163.jpg GT: 13 Pred: 5.9 Pred (A): 6.4

4300.jpg GT: 83 Pred: 63.7 Pred (A): 63.0

5811.jpg GT: 37 Pred: 22.1 Pred (A): 24.7

Figure 5. The first column represents input images, the second represents ground truth density
maps, while the third and the fourth represent predicted density maps without and with test‐time
adaptation, respectively. The first three rows include cases where absolute error normalized by
ground truth count is among the highest in the test set, while the last three rowswhere it is among
the lowest.
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5365.jpg GT: 9 Pred: 75.7 Pred (A): 73.7

6266.jpg GT: 17 Pred: 65.6 Pred (A): 62.6

2910.jpg GT: 14 Pred: 30.6 Pred (A): 28.4

4112.jpg GT: 11 Pred: 11.8 Pred (A): 14.1

7639.jpg GT: 20 Pred: 57.5 Pred (A): 63.9

7171.jpg GT: 13 Pred: 647.7 Pred (A): 670.5

Figure 6. The first column represents input images, the second represents ground truth density
maps, while the third and the fourth represent predicted density maps without and with test‐
time adaptation, respectively. The first three rows include cases where the test time adaptation
decreased relative error, while the last three rows include cases where the test time adaptation
had a negative impact.
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