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Reproducibility Summary

Scope of Reproducibility
The studied paper proposes a novel output layer for graph neural networks (the graph
edit network ‐ GEN). The objective of this reproduction is to assess the possibility of
its re‐implementation in the Python programming language and the adherence of the
provided code to the methodology, described in the source material. Additionally, we
rigorously evaluate the functions used to create the synthetic data sets, on which the
models are evaluated. Finally, we also pay attention to the claim that the proposed ar‐
chitecture scales well to larger graphs.

Methodology
Formost of ourwork, wewere able to use the code, provided in the supplementary repos‐
itory. We also offer our own variations of the experimental setup, with an alternative
method of risk estimation. A portion of the report is also devoted to a more exhaustive
description of the included data generating functions, otherwise not offered original
paper.

Results
We were able to reproduce GEN’s out‐performance of a chosen baseline and its perfect
scores on synthetic data sets. We also confirm the author’s claims of the sub‐quadratic
scaling of GEN’s forward passes and deduce that they reported the scaling of back‐passes
too favourably. We conclude our work with scepticism of the chosen experiments’ suit‐
ability to evaluate the model’s performance and discuss our findings.

What was easy
All the provided code has extensive documentationwhichmade the paper’s experiments
easy to reproduce. The entire code base is readable, modular and adheres to established
practices on code readability. The authors also provide some unit tests for all of their
models and have pre‐implemented several useful diagnostic measures.

Copyright © 2022 V. Stropnik and M. Oražem, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Vid Stropnik (vs2658@student.uni-lj.si)
The authors have declared that no competing interests exist.
Code is available at https://github.com/MarusaOrazem/reproducibility_challenge – DOI 10.5281/zenodo.6505384. – SWH
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[Re] Graph Edit Networks

What was difficult
Running some of the provided code on a consumer‐grade laptop (as reported in the
original work) was prohibitively expensive. The lack of transparency about the code
base’s runtimes made our work here much more difficult. Another time‐consuming
task was the debugging of a section of author‐provided code. We’ve helped the authors
identify the problem, which has now been resolved.

Communication with original authors
The authors were prompt with their responses, welcomed our efforts in reproducing
their work and made themselves available for any questions. Upon our request, they
happily provided additional implementations, not originally available in their reposi‐
tory, and offered their counter‐arguments to some methodological concerns that we
expressed to them.

1 Introduction

The studied paper proposes a novel output layer for graph neural networks (GNNs), the
graph edit network (GEN). This layer yields a sequence of graph edits δ . Particularly, the
graph edit schema considered in the work is the one initially proposed in [1], describing
notions of node insertions (insx), deletions (delx) and replacements (repli,x), as well
as edge insertions (einsi,j) and deletions (edeli,j). Note that the subscripts x in node
edits refer to the attributes of the edited node (in repli,x, the additional subscript i
denotes the to‐be replaced attributes), and i, j in the edge edits refer to the indices of
nodes between which the edited edge can be found.
These finite sequences of edits, also referred to as edit scripts δ̄t = [δ1t , δ

2
t , . . . , δ

n
t ], are

general enough to describe any graph‐to‐graph transformation and are not only very
interpretable for humans, but also computationally efficient. Both of these properties
establish GENs as a useful tool for work in the domain of graph time series prediction.
More particularly, GENs perform time series prediction under the Markovian assump‐
tion, which states that knowing the graphGt and themapping functionψt, derived from
the edit script δ̄t, is sufficient for predicting the graph found in the next step of the time
series as

Gt+1 = ψt(Gt); ψt := δ1t ◦ δ2t ◦ · · · ◦ δnt ; ∀δit ∈ δ̄t,

where the subscript t denotes the time‐dependant index in the time series.

2 Scope of Reproducibility

The authors of the reproduced work formally prove theorems, stating that finding a
mapping ψ between pairs of time‐adjacent graphs is sufficient for constructing train‐
ing data for GENs. They propose that their GNN architecture be trained to reproduce
specific teaching signals for this function ψ, which may be derived from any gathered
training time series of graphs. This is done by first finding reference pair mappings
ψt : Gt → δ̄t(Gt) ≡ Gt → Gt+1 from the training series via graph edit distance approxi‐
mators1, and then computing teaching signals via an algorithm, provided in the paper’s
supplementary material.
The authors empirically underpin this corollary by showing that the GEN performs well
in a series of graph time‐series prediction tests. They define several data generating

1Approximation is used due to the NP‐hard nature of the graph edit distance in general, as shown in [2].
In practice, exploiting domain knowledge may also lead to sensible mappings ψt. As an example of domain
knowledge exploitation, the authors cite [3].
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processes (DGPs), from which the GEN attempts to learn the user‐defined functions ψ,
which remain hidden to the algorithm. The tests can be roughly split into three classes,
which have corresponding experiments in section 4. The explicit conclusions of the
experimental subsection of the original paper are that the GENoutperforms the selected
baselines in all of the observed tasks.
In our work, we compare the GEN to one of the baselines ‐ themodified version of Varia‐
tional graph autoencoders (VGAE). As in the original work, we observe amodification of
the method, suggested by [4], where the method attempts to directly infer the the graph
in the next step of the time series. In the other experiments, we interpret claims about
GEN’s performance on different datasets directly.
Since the graphs, generated by the author‐defined DGPs, are of a completely synthetic
nature and very limited in scale, the authors also attempt to establish that GENs scale
well to real‐world networks. In their experimentation, they only pay attention to the
scaling efficiency of the architecture and not to the quality of the predictions themselves.
From the described conclusions, we identify the following claims, made in the experi‐
mental section of the paper, that we will be exploring:

Claim (i): GENs, trained with either hinge or crossentropy loss, outperform the mod‐
ified VGAE on all three dynamical graph system DGPs.

Claim (ii): GENs, trainedwith user defined losses, achieve a perfect accuracy score on
both dynamical tree DGPs.

Claim (iii): The runtime of forward passes of a GEN, trained on the social network
dataset (with orwithout edgefiltering), scales sub‐quadratically as thenum‐
ber of nodes in a graph increases.

Claim (iv): The runtime of backward passes of a GEN, trained on the social network
dataset with edge filtering, scales approximately linearly, as the number of
nodes in a graph increases.

An additional contribution of our work is the thorough study and description of the
synthetic datasets, used to evaluate the GENs performance. We pay special attention
to this part of the paper, as they were not exhaustively described in the original work.
This examination helps us shed light on the performance of the GEN in the discussion
section and evaluate the suitability of the used exprimental approachs. It also provides
a more in‐depth descriptive resource to other researchers in the field, that might find
these DGPs useful for their own work.

3 Methodology

Throughout our reproduction attempt, we have made great use of the code, provided
in a supplementary repository to the original paper [5]. To replicate the author’s ex‐
perimental environment, we try to make the same assumptions and hyperparameter
choices than those provided either in the original paper, or the documentation of the
supplementary repository. A fork of this repository with our changes and additions is
available at [6].

3.1 Model descriptions
In the first class of experiments, we train 2 GEN models, one using the adapted cross‐
entropy loss (GEN‐XE) and the other using the adapted hinge loss (GEN), described in
the paper. Both models are parametrized by their input, output and hidden dimension‐
alities, as well as their used nonlinearities. Given the short edit scripts expected in these
scenarios, no edge filtering is used in these models.
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Figure 1. The three cyclical time series yielded by the Edit Cycles DGP.

We also train the Variational Graph autoencoder model, as described in [7]. Apart from
its input, output and hidden dimensionalities, it is also parametrized by the size of its
encoding space, the regularization strength β and a scaling factor for the noise on the
last layer node features σ. It also takes a hyperparametric definition of the used nonlin‐
earity.
The GENmodels used in the experiments, governed by the Peano addition and Boolean
formulae DGPs, are similar to those in the Dynamical graph systems class. The models
here, however, use an author‐defined loss function, with respect to a custom teaching
protocol, with only a single predictive step between graphs. Similarly to before, no edge
filtering is used.
In the experiments on the social network dataset, we train two variations of the GEN
model. The first sets up two binary classifiers for each node to decide whether to con‐
sider changing outgoing/incoming edges or not. This approach is denoted in the results
as flexible edge filtering. The secondmodel limits the number of permitted edge editswith
a fixed upper bound ‐ this is denoted as fixed edge filtering. The models use a simplified
single‐step teaching protocol, over which its loss function is defined. In the protocol, all
edits, except for node insertion, are processed as expected. For insertion, however, the
protocol lets a given node n insert a neighbor n′ when there is at least one edge (n, n’)
found in Gt+1, where n′ is not a node found in Gt. The authors acknowledge potential
shortcomings of this method, but cite the desire of using a single‐step protocol as the
reason for choosing it.

3.2 Data
The paper contains three classes of experiments. The first two use user created DGPs,
whereas the last one works with an external, well established social network. We de‐
scribe the dataset and DGPs in accordance to the class of experiments they correspond
to, in the following subsections.

Dynamical graph systems — The Dynamical graph systems class of DGPs governs the train
and test set generation in Experiments 4.1.1, 4.2.1 and 4.2.2. The class contains three
discrete processes, provided in the supplementary repository in the form of scripts for
the python programming language. During training/testing time, the time series gen‐
erator function is called, always returning a sequence of graphs based on DGP‐specific
function arguments.
The Edit Cycles DGP always yields one of three author specified cyclical time series, the
outputs only differing in length and the starting time index. The edit script δ̄t between
two graphs is always of cardinality |δ̄| ≤ 2 and all possible generated graphs consist of
between two and four nodes. The cyclical series that the DGP yields are visualized in
Figure 1.
The Degree Rules data generating function generates a series of a determined length
using the edit rules, described in Algorithm 1. The generator function accepts param‐
eters, corresponding to the series length and the number of nodes in the initial graph
G0. G0’s adjacency matrix is then randomly initialized. Consequentially, given a fixed
time series length, the returned series is fully dependant on the random initialization
of G0, as the rules are deterministic. In the examples in section 4.1, as per the author’s
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Figure 2. Example time series evolution of a graph, sampled from the Boolean Formulae DGP. The
leftmost graph denotes the logical formula, (x∨(y∧¬y))∨x, whereas each evolution corresponds
to a logical simplification of the previous graph.

source code, the randomization fromNumPy’s random.rand is used, and all series’ ini‐
tial graphs G0 start with exactly 8 nodes. We comment on this choice of randomization
and provide our alternative in Section 4.2.
The third and final DGP in this class is inspired by Conway’s Game of Life [8]. Similarly
to Degree Rules, it takes an input graph and applies a graph‐to‐graph mapping function.
This one is specified by Algorithm 2 and is used to create a time‐series of a specified
length. This function is also deterministic. In the resulting graphs, the nodes consid‐
ered alive in the Game of Life rule set are denoted with the feature value xn = 1. In
contrast to degree rules, Game of Life graphs retain their number of nodes throughout
evolution, as the graph will always denote theD ×D grid with the neighborhood struc‐
turemodeling a nodes’ 8‐neighborhood, and only the nodes’ alive/dead state will change.
In each time series, a number of random Game of Life oscilators (randomly chosen be‐
tween 5 candidates) is chosen and made alive. Afterwards, each still dead cell will be
made alive with a probability Pr(repl0,1(n)) = p. In the experiments in section 4.1,
we report results using the parameters p = 0.1, D = 10, and always placing a single
oscillator on the grid at initialization.

Tree dynamical systems — The Tree dynamical systems class of DGPs governs the train and
test set generation in Experiments 4.1.2 and 4.2.3. It contains two distinct processes.
They are distinguished from the DGP class in the previous section because they both
generate strictly tree‐structured graphs, with no loops. Furthermore, they both include
more complex node attribute encodings in the form of one‐hot vectors.
The initial graph in a series, generated by the Boolean Formulae generator function,
corresponds to a random Boolean formula. The time series following such a G0 rep‐
resents gradual simplifications of the formula, ending with a logic graph that can not
be simplified any longer. An example evolution is given in Figure 2 for the formula
(x ∨ (y ∧ ¬y)) ∨ x. The initial trees are generated via a stochastic regular tree grammar
with a Pr(∧) = Pr(∨) = 0.3 and Pr(x) = Pr(¬x) = Pr(y) = Pr(¬y) = 0.1. The generator
functions also offer a hyperparametric maximal number of applied rules p, where the
authors use p = 3 in the original experiments.

Algorithm 1 The Gt → Gt+1 mapping for the Degree rules DGP. The function shareN
returns true if the nodes share at least one neighbor.
Input: Graph Gt, containing nodes n.
1: for each component C ∈ Gt do
2: for each n ∈ C do
3: d← degree(n)
4: if d ≥ 3 then del(n)
5: else if ∃n′ ∈ C : shareN(n, n′) then
6: for each n′ ∈ C : shareN(n, n′) do
7: eins(n, n′)

8: else ins1(n
∗), eins(n, n∗)
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Algorithm 2 The Gt → Gt+1 mapping for the Game of Life DGP. The AliveDegree
function returns the number of neighboring nodes n′ with the attribute xn′ = 1.
Input: Graph Gt, containing nodes n.
1: for each n ∈ Gt do
2: d← AliveDegree(n)
3: if (xn == 1) and (d < 2 or 4 ≤ d) then
4: repl1,0(n)
5: else if (xn == 0) and (d == 3) then
6: repl0,1(n)

Graph Cycles Degree Rules Game of Life Boolean Formulae Peano Addition

unique graph # 9 12346 2100 10788 34353

Table 1. The number of unique graphs that can appear in the time series, sampled from the DGPs
in sections 3.2.1 and 3.2.2. as reported by the authors.

ThePeano additionDGPmodels Peano’s recursive definition of addition. The operations
are encoded similarly as in the Boolean formulae DGP, where both the operands and the
arguments are represented as nodes in the dynamical tree graph.The initial graph gen‐
erator function receives an argument, specifying the maximal number n of additions.
The authors use n = 3 in their experiments. Peano’s addition rules simplify into four
edit rules, the edit scripts of which are all upper bound as |δ̄| ≤ 3. The node attributes
appearing in the set are the 10 digit values, the summation operation +(m,n) = m+ n
and the successor operation succ(m) = m+ 1.
The author‐reported numbers of possible graphs, appearing in the time series, resultant
from the five described DGPs, is tabulated in Table 1. Note, however, that not all of these
graphs can be sampled as the initial graphs G0 in a given series and that the mappings
ψ : Gt → Gt+1 are deterministic in all DGPs. Hence, the actual number of unique pairs
(Gt, Gt+1) is much lower.

Real-world social network — For the final class of experiments, the arXiv HEP‐Th citation
network data set, first described in [9], is used. It describes a graph, parsed from the
e‐print arXiv and covers all mutual citations within a set of 27,700 papers. In it, a pa‐
per x, that cites paper y is connected with it with an outgoing edge. From this network,
the authors parse sub‐graphs with a rolling window approach ‐ considering only papers
published within τ months of a given time point between January 1993 to April 2003.
The number of nodes naturally grows with τ, so the result is a collection of graphs with
different orders of node‐count magnitude. In the presented experiment, these 1554 dis‐
covered sub‐graphs of node count NG ∈ [100, 2786] are assumed as undirected.

3.3 Hyperparameters
For all the GNN‐based models in the first two classes of experiments, the authors use
two hidden layers with 64 neurons each. As far as the architecture specification is con‐
cerned, the GENs use summation as the aggregation function and concatenation as the
merge function. All networks are trained with the Adam optimizer using the learning
rate of 10−3. The weight decay is set to 10−5 in the graph dynamical systems class of
experiments and to 10−3 in the dynamical tree class of experiments.
The results for the VGAE model are reported using β = 10−3, γ = 10−3. The dimen‐
sionality of its embedding space is always equal to the size of the last hidden layer, so
64. As per the provided code by the authors, all models use the sigmoid nonlinearity
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in the experiment on the Game of Life dataset, whereas we employ ReLU for all other
experiments on synthetic data.
In the experiments reported in section 4.1, both the training and the testing time series
are sampled independently from their corresponding DGP, without special assertions
of training and testing set discrepancy. All models train on 30,000 series, whereas the
testing results are reported for 10 samples. We comment on the authors’ methods of
risk estimation and provide alternatives for these parameters in section 4.2. For the
experiments on the social network dataset, a 3‐hidden layer architecture with the tanh
nonlinearity, and PyTorch’s default learning rate and weight decay are used.

3.4 Experimental setup and code
In our experiments, we use the metrics of precision and recall to evaluate the perfor‐
mance on insertion and deletion tasks. The experiments done on Tree dynamical systems
use the notion of accuracy, which is an indicator function, defined at the value 1 when
the nodes in the two input graphs match in all their features, and their adjacency matri‐
ces are identical. The reported accuracy is the average value of these indicator functions
across all graph pairs in all time‐series in the test set.
The experiments in section 4.1 were run in a loop across an entire class of DGPs, with 5
repetitions being ran for each consideredmodel. In the training phase, a time serieswas
independently generated on each epoch using its corresponding generator function. As
per the original paper, the considered stopping criterion was a rolling 10‐epoch average
stop loss. Upon finishing training, the model was evaluated on time series, generated
by the same generator functions as during training.
We recognized this method of risk estimation as potentially problematic, given that
there is no special care taken to ensure the discrepancy of the tranining and testing sets.
It is for this reason that we change the used approach in some experiments, reported in
section 4.2. In them, we sample our test set of graphs GTest

0 ahead of time, and ensure
that at each sampled training time series, the function ψ : GTest

0 → GTest
1 , ∀ GTest

0 ∈ T
remains hidden from the algorithm.

3.5 Computational requirements
All experimentation was done on a desktop machine, running Windows 11, powered by
an AMD Ryzen 7 2700X processor and 32 GB of RAM. The code was evaluated locally, in
an environment, based on Python 3.8. The code base provided by the authors is depen‐
dant on the NumPy, PyTorch, PyTorch Geometric, Edist [10] and MatPlotLib packages.
One repetition of running all three considered models on all three Graph dynamical
systems (together) takes 90 minutes on average, with the VGAE taking the bulk of time
to train, as the hinge‐loss GEN usually hits the stop loss threshold and stops training
earlier. A single repetition of the experiment on the Peano addition DGP takes approxi‐
mately 15 minutes, whereas one over the Boolean formulae experiment takes 1 minute.
On average, 60 minutes required to compute a full pass over all 12 months on the So‐
cial network experiment, for both edit schemas together. Working only with the largest
graphs, i.e. τ = 12, takes 8 minutes on average.

4 Experiments

Our results confirm the authors’ findings from claims (i) ‐ (iii) when considering the
results of the strict reproduction. We find that the scaling of the backward passes from
claim (iv) is not linear, but remains sub‐quadratic. However, we show that these results
are achieved by an architecture that is not able to optimize its loss function successfully.
Our additional experiments in Subsection 4.2 show that the experimental results are
stable for different choices of the initial graphG0. The results also stand formore robust
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Pass

direction

Edge

filtering

Log‐log

linear fit slope

Forward
Flexible 1.38± 0.02

Constant 1.31± 0.02

Backward
Flexible 1.30± 0.01

Constant 1.69± 0.10

Table 2. Slopes of log‐log linear models on
the Runtime/Graph scale scatter plot. The
uncertainty denotes the standard deviation
of slopes accross 5 repetitions of the experi‐
ment 4.1.3.

Figure 3. The runtime ‐ graph scale dependence
in the experiment 4.1.3, with overlaid fitted loess
models. Each facet corresponds to an individual
experiment, and the grey bands denote the 95%
confidence interval of the fit.

method of risk estimation. From these additional experiments, we derive important
insights about the testing scenarios, presented in Section 5.

4.1 Experiments reproducing original paper

Precision/Recall on Dynamical Graph System DGPs — In this task, we aimed to reproduce the
results, stated in Claim (i) in Section 2. For almost all the metrics, we were able to repro‐
duce the values originally reported in the paper, with the difference δ := (our results−
reported results) within a standard deviation of 0. The only major discrepancy we no‐
ticedwas an increase inmeandeletionprecision and insertion recall for theVGAEmodel
in the edit cycle task, when comparing to the results, reported in the original paper.
However, both GEN models still outperformed the VGAE, which supports Claim (i).

Accuracy on Tree dynamical system DGPs — In this task, we address Claim (ii) from Section
2. In the original paper, the authors reported a 100% accuracy for both Tree dynamical
system scenarios. While our results returned an accuracy of 0.98 ± 0.02 in the Boolean
Formulae task (and a perfect score for Peano addition), we can conclude that these re‐
sults are convincing enough to support Claim (ii).

Scaling of GENs on bigger graphs — This experiment addresss claims (iii) and (iv) from Sec‐
tion 2. In the original paper, the authors claim thatGENswere able to scale sub‐quadratically
in their forward passes and approximately linearly in their backward passes, whenusing
appropriate edge filtering approaches. Figure 3 shows scatter plots of the runtime‐graph
scale dependency on a log‐log scale. Notice, that the runtime duration of the backward
passes with constant edge filtering is very unstable, when compared to other scenar‐
ios. This is likely due to a higher difference in the fraction of considered edges, when
compared to the flexible filtering approach. The scaling coefficients of the fitted linear
models are further tabulated in Table 2. These results support Claim (iii) in that the for‐
ward passes scale sub‐quadratically. However, the lower of the two average coefficients
for computing the gradient (the flexible approach) is still substantially larger than one.
This indicates an exponential, albeit sub‐quadratic scaling of the backward passes. We
conclude that these results do not support Claim (iv).

4.2 Experiments beyond original paper

Established methods of random graph generation — It is a common practice in the social net‐
work analysis (SNA) community to, when initializing random graphs, use specific meth‐
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Figure 4. Diagnostic δ‐boxplot compar‐
ing the initially reported scores to our re‐
sults using the alternative risk estimation
method and a larger test set, performed
on the Game of Life DGP for the hinge‐
loss based GEN.

Figure 5. Distributions of time series lengths, sam‐
pled from the Tree Dynamic Systems DGPs. The
facet rows correspond to the maximal number of
operations (3‐5).

ods of graph generation. Namely, if we want to make general statements about SNA
methods, inferred fromexperiments on randomgraphs, these should be similar to those
that tend to appear in nature. At the very least, it is considered a good practice to use
established randomization methods, to more easily compare to results in other publica‐
tions. In this experiment, we repeat the methods from experiment 4.1.1 on the Degree
rules DGP. However, instead of randomly initializing the adjecency matrix, we use two
established methods of random graph generation: the Erdős–Rényi model [11] and the
Configuration graph model [12]. In our experiment, graphs G0 were always initialized
with 36 nodes in both models. We set the edge creation probability in the Erdős‐Renyi
model p = 0.5 and the degree sequence of the Configuration model follows a random
power‐law sequence with the exponent γ = 3.
Allmetrics on thesenewly generated randomgraphs remained in the 0.05‐neighborhood
of the originally reported results. We conclude that the performed experiments are ro‐
bust to different methods of random graph generation, and that the change in graph
generation does not disprove Claim (i).

Alternative methods of risk estimation - Dynamical graph systems — As established above, no
special care is taken to ensure the discrepancy between the training and testing set of
time‐series in the original results. In this experiment, we re‐run experiments 4.1.1 and
4.1.2 with our changed method of risk assessment, described in Section 3.4. We also
raise the cardinality of testing set to 100, attempting to achieve stable results. We analyze
our results by comparing several repetitions of the new experiment with the reported
values. As a diagnostic tool, we employed the automatic plotting of δ‐boxplots. An exam‐
ple of such a plot ‐ describing the testing scenario where the discrepancy between the
reported results and our experiments was the largest, is provided in 4. Notice that, while
our change in the experimental setup did contribute to slightly worse metric scores,
these changes are still minimal (δ ∈ [−0.1, 0.05] for all observed testing scenarios). Con‐
sequentially, we conclude that the experimental results are robust for ourmethod of risk
estimation. Other diagnostic boxplots are available in the supplementary repository [6].
The insights of Figure 4 should not be interpreted as solely positive, as we discuss in
Section 5.

Alternative methods of risk estimation - Dynamical tree systems — For the Peano addition and
Boolean Formulae DGPs, we attempted to employ a similar sampling restriction for
training series generation, as described above. During sampling, however, we noticed
that our described methodology failed to sample a sufficient amount of training exam‐
ples. Our troubleshooting lead us towards the realization, that these DGPs were very
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prone to generating trees that could not be simplified any further, which meant that no
mapping pairs (G0, G1) could be generated from such a sample. Our diagnostic results
in Figure 5 show the overwhelming majority of samples being part of this group, which
casts doubt on the claims,made in 1. We evaluated the empirical probability of a unique,
simplifyable tree G0, being sampled from a DGP. Our results show that the Boolean ad‐
dition DGP sampled such a treewith probability PrBoolean = 0.13±0.003, while the Peano
addition DGP performed at PrPeano = 0.26±0.002. These results are derived over 300,000
DGP samples with uniformly distributed hyperparametric values of maximal permited
operations p ∈ [3, 5], with 3 repetitions.
In an attempt to evaluate the performance of the GEN on this family of data, we loosen
our restrictions, set in Subsection 3.4. Instead, we run 5 repetitions of training, with
holdout estimation (|Test set| = 100) on the time series, generated by the unique graphs
G0, described in the previous paragraph. In this setup, the results were not perfect, but
remained in the ±0.05 standard‐deviation‐neighborhood of the reported results.

Figure 6. The loss curves for training theGENwith
the authors’ custom defined loss function. The
differently‐colored lines correspond to the values
τ , with respect to which the model’s training set
is generated.

Performance on the social network dataset —
The authors use the social network data
set only to evaluate the scaling capabili‐
ties of the GEN, but do not offer any in‐
formation on themodel’s performance on
the set.2 Since the model’s scaling may
be dependant on specific model param‐
eters (specifically, the used user‐defined
loss function), we examine if the model
is capable of training using gradient de‐
scent in this experiment.
We visualize the loss curves of training
the model over 1554 iterations (one pass
of each available graph in Figure 6, with
all hyper parameters similar to the origi‐
nal experiment, and using the Adam op‐
timizer. We see that the model, imple‐
mented in the scenario, does not optimize
its loss function successfully.

5 Discussion

Our experimental results conclusively show that most of the claims in the original work
hold. It is imperative, however, to discuss the choice of DGPs on which the model was
evaluated to achieve these results. Consider, for example, the Game of Life DGP, used
for evaluating the precision and recall of the test set. While at first glance, a perfect re‐
sult on a relatively involved system might be impressive, we must recall that node/edge
edits and insertions should never appear in an edit script δ̄ between two Game of life
graphs, as the only changes in the systems correspond to replication edits. Consequen‐
tially, the system in the scenario is only asked to output without any addition or inser‐
tion edits. Since experiment 4.2.1 showed that this output does not always appear, this
casts a doubt over the model’s expressive power. Another example of a somewhat poor
test setup is the Edit Cycles DGP, in which the network will always test on transitions
ψ, to which it was already introduce during training, given that the series are cyclical
and Markovian. Adding to this, it is very likely that, due to the nature of the problem

2This concern was also raised to the authors during the paper’s submis‐
sion and review process by AnonReviewer4. See the section Weak points in:
https://openreview.net/forum?id=dlEJsyHGeaL&noteId=Sg922s85khx
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they describe, the mappings ψ, inferred from the Peano addition and Degree formulae
DGPs, are often seen during training. We support this claim with our description of the
sampling problems we encountered in Experiment 4.2.2.
Our experimental results on the arXiv citation network show that the network’s runtimes
are subquadratically dependant on the number of nodes in the given graph. This par‐
tially corroborates the authors’ claims. However, we note that these results are achieved
by an architecture, that is not able to optimize its loss function correctly. Given that the
loss cumulative loss increases with τ (as one would expect), we hypothesize that this
performance is not a result of a simple syntactical error in the author‐defined loss func‐
tion. While this additional insight does not disprove Claim (iii), we note that a different,
better performing loss function, might.
We propose that th weakneseses we higlighted here be considered in future work, We
believe that a more in‐depth and practical experimental evaluation of an otherwise ele‐
gant and interpretable solution could greatly benefit the machine learning community
in the years to come.

5.1 What was easy
All the provided code has extensive and clear documentationwhichmade the paper’s ex‐
periments easy to reproduce. The entire code base is readable, verymodular, adheres to
established practices on code readability, and goes hand‐in‐handwith the nomenclature
of the paper. While the presented implementations do require intermediate familiarity
with common PyTorch constructs, the authors do admirable work in explaining every‐
thing else as‐they‐go, almost always without using unnecessary dependencies or need‐
lessly referencing the reader elsewhere. The authors also provide amoderate amount of
clearly written unit tests for all of their models and have already pre‐implemented sev‐
eral diagnostic measures, such as execution runtime logging, repetition handling and
plotting of training curves, which made our work a lot easier.

5.2 What was difficult
Even with the extensive supplementary material, we believe that it would have been
very difficult to reproduce the exact implementation of GEN and the presented DGPs by
reading the paper alone, as we’ve discovered many important details from the supple‐
mentary documentation.
In the paper, the authors state that all experimentswere run on a consumer‐grade laptop.
While this may be the case, running some of the provided code is prohibitively time
consuming to run on such a machine. For example, we were not able to finish a single
pairwise distance calculation in a day’s worth of computing time (and have thus not
reported on the results of that method here) on the kernel‐based baseline from [13]. The
lack of transparency about the code base’s runtimes made our work here much more
difficult.
The original paper also uses a direct implementation of the [4] as a baseline for exper‐
iments, relating to Claim (i). This model was not provided in the repository at the be‐
ginning of our work. The authors later provided us with the implementation, which
encountered runtime errors. Even though the model now works, the trouble‐shooting
of this part of the code was especially time‐consuming. The author’s repository also
lacks a hierarchical structure of related items. While the purpose of every file is clearly
explained, our reproduction would have been easier with some reorganization.

5.3 Communication with original authors
We contacted Mr. Paaßen, along with his colleagues to inform them about our efforts to
reproduce their work inmid‐January. He was prompt with his responses, welcomed our
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work and made himself available for any questions. Upon our request, he forwarded
the code with which the authors evaluated a baseline, reported in the paper, but not
available in the repository. Upon our discovering of its aforementioned problems, he
was prompt to offer solutions and sent us an adapted file in a couple of days. He let us
know that the authors plan to update the repository with this working file shortly, which
we see as an aditional benefit of our effort reproducing this article.
When asked about their method of risk estimation, the author argued that the combi‐
natorial explosion of possible starting states makes it unlikely that GEN just memorizes
the training data without generalization. For the case of the Edit Cycles dataset, where
this obviously has to happen, since there is no underlying ground‐truth function ψ, he
offered the insight that generalization was not the main aim of the inclusion of this
dataset. Rather, it was intended to test the expresiveness of the edits, as memoriztation
alone does not suffice to solve the task of mapping Gt → Gt+1.
Summing up, we greatly appreciate the authors’ responses and their general attitude
towards their work being reproduced as a part of this challenge.
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