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Reproducibility Summary

The following paper is a reproducibility report for ”Social NCE: Contrastive Learning
of Socially‐aware Motion Representations” [1] published in ICCV 2021 as part of the ML
Reproducibility Challenge 2021. The original code was made available by the author 1.
We attempted to verify the results claimed by the authors and reimplemented their code
in PyTorch Lightning.

Scope of Reproducibility
The central claim of the paper is that the consideration of negative (collision) cases in
trajectory predictionmodels through a socially contrastive loss function Social‐NCEwill
improve the robustness of themodels. We verify their claimon variousmodels, with spe‐
cial focus on improvements in the human trajectory prediction models Social‐STGCNN
and Trajectron++ and on robot navigation through an imitation learning model.

Methodology
We used the codebase made publicly available by the authors for our work. We trained
themodels used in the paper fromscratch and reimplemented the code in PyTorchLight‐
ning. We evaluated both, and compared them with the results in the original paper.
Further, we attempted additional experiments to find suitable hyperparameters in the
Trajectron++ and Social‐STGCNN models.

Results
Wewere able to reproducemajority of the results claimed in the paper except the Social‐
LSTM and Directional‐LSTM models due to lack of time, and got a maximum of 2% de‐
viation from that of the original paper.

What was easy
The publicly available codebases were well documented and easy to follow. The authors
have also mentioned sources for the processed datasets that they have used. The simu‐
lation data generation code for the imitation learning model was also shared.

1https://github.com/vita‐epfl/social‐nce
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What was difficult
The proposed contrastive loss was implemented on different trajectory prediction mod‐
els, the understanding of which was required to reimplement the code from PyTorch
to PyTorch Lightning. Experiments on the entire ETH and UCY dataset on restricted
computational resources took a considerable amount of time and we had to restrict our
ablation study to one model.

Communication with original authors
We contacted the authors with some queries on their implementation and on the im‐
portance of some hyperparameters. They replied promptly and their input was pivotal
while conducting experiments.

1 Introduction

Humans tend to develop a strong intuition towards predicting future motions of other
people, while navigating in crowded spaces. This is essential for carrying out daily
tasks without any discomfort and to maintain a safe distance from others while moving
around. However, building neural models that can replicate similar nature of accurate
predictions is often challenging, even with a large training set.
Multi‐agent problems such as trajectory forecasting and robot navigation, require the
model to learn socially aware motion representations. Previously, several papers have
proposed neural network based models to achieve these tasks. However, these models
still fail to generalize well with different scenarios, often outputting colliding trajecto‐
ries. The original authors aim to tackle this issue by feeding explicit negative examples
into the network, while teaching the model to differentiate between the two using a
newly proposed Social Contrastive Loss.
We exhaustively carry out all the experiments done in the paper and verify all claims
and tables. We then review the results and present an assessment. We further ported
the code to the PyTorch Lightning framework. This allowed us to train the code flexibly
over different platforms and automate the optimization process. We also expect this to
help in future implementation or reproduction of the codebase. Then we proceed to
present a few ablations in the original code, especially hyperparameter tuning.

2 Scope of reproducibility

Existingwork onmulti‐agent trajectory prediction problems sometimes output colliding
trajectorieswhichmakes themunsuitable for deployment. The authors claim that this is
due to the bias in existing datasetswhich only consist of safe trajectories andno collision
scenarios, giving the models no negative cases to train on. The original paper proposes
a modified contrastive loss (Social‐NCE) which incorporates ground truth knowledge to
generate negative cases to reduce collision rates on several benchmarks. The details
of this loss have been discussed later (in Methodology section) in the report. The key
claims that we aim to verify in our reproducibility report are:

1. Addition of the Social‐NCE loss in human trajectory forecasting models signifi‐
cantly decreases collision rate while maintaining similar final displacement error.

2. Addition of the Social‐NCE loss in imitation learning models for robot navigation
in crowded environments significantly decreases the collision rate.

3. Addition of the Social‐NCE loss in reinforcement learning models increases sam‐
ple efficiency, and they obtain a collision‐free policy quickly.
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3 Methodology

The authors have a detailed public repository2 on the addition of Social‐NCE on Tra‐
jectron++ [2], Social‐STGCNN [3], models for human trajectory prediction and on an
existing imitation learning model [4] for robot navigation. Further, we contacted the
authors and they gave us their implementation of Social‐NCE in reinforcement learn‐
ing using Rainbow DQN [5] as the baseline. We reproduced the findings of the paper
based on these repositories. We focused primarily on the human trajectory prediction
models Social‐STGCNN and Trajectron++ and attempted ablations on Social‐NCE hyper‐
parameters in the Trajectron++ model to improve its performance. Lastly we ported the
codebase for Trajectron++, Social‐STGCNN and the imitation learningmodel to PyTorch
Lightning [6].

3.1 Social-NCE Loss and Negative Data Augmentation

Consider M agents with index i ∈ {1...M}, the state of agent i at time t is given by sit =
(xit, y

i
t) which are its position coordinates. State of all agents combined is given by st =

{s1t , s2t ....sMt }. Given s1:t the model predicts st+1:T .
Encoder f(·) :
Gives vector encoding( hit) for agent i at time t given state of all agents till time t and
index of agent:

hit = f(s1:t, i) (1)

Encoder has two sub‐modules: sequential fs(.) and interaction fi(.) modules to make
encoding of one agent dependent on the state of other agents.
Decoder g(·) :
Returns predicted state from vector encoding

sit+1:T = g(hit) (2)

Social-NCE loss — Embedding Models

• Query: Projection head that embeds the vector encoding of the agent i till time t

q = ψ(hit) (3)

• Key: Encoder that embeds the future state of agent i at time t + δt where δt is the
sampling horizon in a given range

k = ϕ(sit+δt, δt) (4)

Both the query and key are 2‐layer MLPs which return 8‐dimensional encoded vectors.
Loss
The InfoNCE Loss [7] is given by:

LNCE = −log exp(sim(q, k+)/τ)∑N
n=0 exp(sim(q, kn)/τ)

(5)

2https://github.com/YuejiangLIU/social‐nce‐trajectron‐plus‐plus
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In standard InfoNCE loss the similarity function sim(q, k) is the cosine similarity be‐
tween the two vectors. In the Social‐NCE variation this similarity function has been
modified to the dot product of the two embedded vectors returned from the encoders.
The Social‐NCE Loss is given by:

LSocial−NCE = −log
exp((ψ(hit)·ϕ(si,+t+δt, δt)/τ)∑

δt∈Λ

∑N
n=0 exp((ψ(h

i
t)·ϕ(si,nt+δt, δt)/τ)

(6)

The three encoders f(·), ψ(·) and ϕ(·) are jointly trained such that the query is encoded
closer to the positive key and further from the negative keys. The keys aremade through
data augmentation as discussed next. The final loss for a specific model would be given
by the weighted sum of the model task loss and the Social‐NCE loss.

Data Augmentation —Negative samples: The state of the agent i at time t + δt cannot be
same as the state of any of the other agents at time t + δt, so the states of the M − 1
elements other than the agent i can be used as negative keys for it.
For each agent j ∈ {1, ...M}−{i}, 8 points are taken uniformly from a circle with radius
of minimum distance of comfort around the agent j as negative keys for agent i

si,n−t+δt = sjt+δt +∆sp + ϵ (7)
∆sp = (ρcosθp, ρsinθp), ρ being minimum distance of comfort and θp = 0.25pπ, p ∈
{0, 1, ..., 7}
ϵ is a normally distributed added noise
Each agent i thus has 8(M − 1) negative keys.
Positive samples: Single positive key is taken from state of agent i at time t + δt after
adding normally distributed noise ϵ

si,+t+δt = sit+δt + ϵ (8)

The data augmentation is made clearer by the following diagram given by the authors
[1]. For an agent i (in blue) the areas of Collision and Discomfort as shown are used as
negative samples.

Figure 1. Social Negative Augmentation

3.2 Datasets
The human trajectory prediction models were run on a processed version of ETH and
UCY datasets. The original dataset is a collection of 5 video segments of pedestrian
trajectories from which the states of each agent per frame id had been stored and the
dataset had been pre‐divided into train, test and validation sets to maintain uniformity
in accuracy comparison. The processed ETH and UCY datasets are are available in the
repository linked3.

3https://github.com/StanfordASL/Trajectron‐plus‐plus/tree/master/experiments/pedestrians/raw
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The imitation and reinforcement learning models used pedestrian data from an open‐
source simulator based on OpenAI gym library The dataset consisted of 5000 simulated
situations in which the position of 5 random agents are stored for each time step. A
validation split of 0.3 was taken.

3.3 Hyperparameters
Apart from the hyperparameters required for regular network training, the Social‐NCE
included three additional hyperparameters, specific to the model. These were: the tem‐
perature hyperparameter τ , the sampling horizon δt and the contrastive weight λ. In
the original paper, there values were set by default. We improvised upon previous work
by performing a thorough random search for these hyperparameters using WandB [8].
We further do a sensitivity analysis, and check whether hyperparameter tuning offers
any significant benefit. The details of the search can be summarised as follows:

Table 1. Search on model hyperparameters

Hyperparameter Original Value Method of Search Range of Search
Temperature τ 0.1 Random 0.1 ‐ 0.5

Sampling Horizon δ t 4 Grid 1, 2, 3, 4, 5
Contrastive Weight λ 2 Random 0 ‐ 50

Details on the loss hyperparameters:

• Temperature(τ ): Part of the Social‐NCE losswhich controls theweight of the penalty
and reward for negative and postive samples respectively.

• Sampling Horizon(δt): The future time step till which the negative samples are
considered for data augmentation

• Contrastive Weight(λ): The weight between the main loss of the model and the
Social‐NCE Loss

A similar search was performed separately for the hyperparameters pertaining to data
augmentation, with the default values for the hyperparameters discussed in the previ‐
ous section. These hyperparameters were: Minimum Separation, MaximumSeparation
and the weight between maximum separation and noise. The details of this search can
be summarised as follows:

Table 2. Search on hyperparameters of data augmentation

Hyperparameter Original Value Method of Search Range of Search
Minimum Separation 0.2 Random 0.1 ‐ 0.5
Maximum Separation 2.5 Random 2.2 ‐ 2.8

Weight between maximum separation and noise 0.2 Random 0 ‐ 0.5

Details on the augmentation hyperparmeters:

• Minimum Separation: Minimum admissible value of ρ in negative augmentation
which is the minimum comfortable distance between two agents

• Maximum Separation: Maximum admissible value of ρ in negative augmentation
which is the maximum distance after which agents can pass each other with colli‐
sion.

• Weight between maximum separation and noise: The weight between the added
normal noise and the position of the augmented sample.
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3.4 Experimental setup and code
The encoder models were trained with Adam Optimizer. For the training of the Tra‐
jectron++, Social‐STGCNN and imitation learning models 300, 500 and 200 epochs were
used respectively. There were two runs of the reinforcement learning model on 2000
and 5000 episodes respectively. As mentioned in the original paper, the models were
evaluated on the following metrics:

• Final displacement error (FDE): the Euclidean distance between the predicted out‐
put and the ground truth at the last time step.

• Collision rate (COL): the percentage of test cases where the predicted trajectories
of agents run into collisions.

A lower FDE is preferred, however the current reproduction mainly aims to see the de‐
crease in collision rate. The code was also integrated with WandB to conduct further
experiments. This process involved constructing a config dictionary, which included
the list of all possible hyperparameters and the values it could potentially take. The
main function was modified with WandB initialisation and the logging function to log
the value of the Loss after training is complete. The function was then passed to the
WandB agent to carry out sweeps. The code can be found in this link 4.

3.5 Computational requirements
The training code for Trajectron++ and Social‐STGCNN was run on Kaggle with GPU
(Tesla P100‐PCIE‐16GB) and CPU (13GB RAM + 2‐core of Intel Xeon).The average training
runtimes are listed in the tables below. It can be seen clearly that porting to lightning
has not caused any increase in training time.

Table 3. Training Runtimes

Codebase Original Codebase Training Time Ported Codebase Training Time
Trajectron++ 4hr 28mins 4hrs 24mins

Social‐STGCNN 8hr 32mins 8hr 30mins
Imitation Learning 53min 50mins

4 Results

The following experiments support the claims made by the authors. We compared
the results from training the model from scratch(Reproduced) and reimplementing the
model in PyTorch Lightning (Ported Code)with the results given by the authors (Original
Paper).

4.1 Results reproducing original paper
A comparison of the FDE (Final Displacement Error) and COL (Collision Rate) for the
addition of Social‐NCE to Trajectron++ and Social‐STGCNN models in original paper,
reproduced and ported code.

4https://anonymous.4open.science/r/social‐nce‐stgcnn‐62D5/README.md
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Table 4. Social‐STGCNN

Dataset Ported Code Reproduced Original Paper
FDE COL FDE COL FDE COL

ETH 1.442 0.53 1.249 1.11 1.224 0.61
Hotel 0.598 3.49 0.681 3.25 0.678 3.35
Univ 0.856 6.39 0.878 6.44 0.879 6.44
Zara1 0.492 1.29 0.515 1.02 0.515 1.02
Zara2 0.453 3.58 0.481 3.26 0.482 3.37

Average 0.768 3.05 0.761 3.02 0.756 2.96

Table 5. Trajectron++

Dataset Ported Code Reproduced Original Paper
FDE COL FDE COL FDE COL

ETH 0.632 0.00 0.791 0.00 0.791 0.00
Hotel 0.193 0.29 0.163 0.32 0.177 0.38
Univ 0.426 2.95 0.442 3.29 0.435 3.08
Zara1 0.439 0.18 0.338 0.14 0.330 0.18
Zara2 0.452 0.95 0.281 1.02 0.255 0.99

Average 0.428 0.88 0.403 0.95 0.398 0.93

A comparison of the collision rate and time taken for the robot to reach destination for
the addition of Social‐NCE in the imitation learningmodel in original paper, reproduced
and ported code.

Table 6. Imitation Learning

Code Time(s) Collision(%)
Original 10.33 3.40

Reproduced 10.49 3.36
Ported 10.28 3.45

A table of reward vs number of episodes trained for the implementation of Social‐NCE
on the reinforcement learning model.

Table 7. Reinforcement Learning

Episodes 0 1000 2000 3000 4000 5000
Reward ‐0.10 0.42 0.61 0.63 0.64 0.64

4.2 Hyperparameter tuning
The performance of anymodel, critically depends on the choice of hyperparameters. In
the original paper, the values of these hyperparameters were set by default. We iden‐
tified critical hyperparameters, specific to the Social‐NCE, and conducted a thorough
hyperparameter search, to find out the best possible combination of hyperparameters.
Due to lack of time, this was done only on the Social STGCNN model and trained over
the ETH dataset. The following table summarises the results of the search:
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Table 8. Hyperparameter Search

Hyperparameter Original Value Best Value
Temperature τ 0.1 0.1412

Sampling Horizon δt 4 1
Contrastive Weight λ 2 16

A similar search was performed separately for the hyperparameters pertaining to Data
Augmentation:

Table 9. Hyperparameter Search

Hyperparameter Default Value Best Value
Minimum Separation 0.2 0.22
Maximum Separation 2.5 3.1

Weight between maximum separation and noise 0.2 0.24

The FDE and collision rate after training the Social‐STGCNN model for 400 epochs on
the original (Original Parameters) and tuned hyperparameters(Tuned Parameters) are:

Table 10. Metrics on Original and Tuned Hypeparameters

Model FDE COL
Tuned Parameters 0.674 3.45
Original Parameters 0.678 3.54

5 Discussion

Our results support the authors’ claim that modelling of social knowledge through the
addition of negative test cases reduce the collision rate of trajectory prediction models.
In both training from scratch in the original code and in the ported code, the results
have remained consistent with that of the original paper.

1. In human trajectory forecasting, the addition of Social‐NCE to the models Trajec‐
tron++ and social‐STGCNN showed a 35.7% and 35.1% decrease in collision rate
on average respectively(Table 4 and Table 5) in our reproduced results. The Final
Displacement Error(FDE) showed deviation of less than 1%, showing that addition
of Social‐NCE adds to the robustness of the models without affecting it’s accuracy.

2. In the imitation learning model the collision rate decreased by 68.9% on average
in our reproduced results with the time taken showing little deviation (Table 6).

3. The Social‐NCEaddition to theRainbow‐DQNbased reinforcement learningmodel,
as in the original paper, achieves a reward of 0.6 in 2000 episodes in comparison
to 4000 episodes of the original Reinforcement Learning model(Table 7).

The hyperparameter tuning conducted was also vastly helpful and lead to an increase of
accuracy by 0.91 %. The loss hyperparameters, determined the sensitivity of the model.
The contrastive weight, determined emphasis of the Social‐NCE loss. The more the em‐
phasis, the better the model learnt to differentiate between a positive and negative sam‐
ple, but at the expense of loss of proximity to the actual training examples. It remains
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difficult to analytically understand the effect of change in the temperature hyperparam‐
eter.
Hyperparameter search, even though tedious, can lead to a great increase in accuracy.
The tuning of hyperparameters involved in the model, lead to an overall increase in ac‐
curacy. In task like trajectory prediction and motion forecasting, it might be crucial to
try and increase the accuracy as much as possible. However, one thing to be noted is
that the Social‐STGCNN had a huge running time, and one sweep took a huge amount
of time.
The effect of the Data Augmentation hyperparameters, seem to be highly variable. It is
natural that results are likely to vary greatly with the choice of dataset, and the nature of
the problem statement. This is because these hyperparameters are physical constraints
put on the model, and hence might lead to different results for different datasets.
Further, it was found that best results were found when the value of the contrastive
weight to be 16, while the default value was 2. The values might differ distinctly, but
this reinforces confidence in the proposed Social‐NCE loss.

5.1 What was easy
The authors have provided a detailed public codebase on the implementation of Social‐
NCEonTrajectron++, Social‐STGCNNand imitation learningmodel. Further, they shared
the codebase for the reinforcement learningmodel. All the codebases have instructions
on how to set up the environment and logs the important metrics, which proved to be
helpful in reproduction.

5.2 What was difficult
Theporting of the implementationof Social‐NCE in theTrajectron++ andSocial‐STGCNN
models from PyTorch to PyTorch Lightning required an understanding of those models
and their original codebase which required additional time. Training of the models
from scratch required large computation power. All the training was done over cloud
GPUs with limited runtimes which often fell short of the time required for training.

5.3 Communication with original authors
We mailed the authors listing down some of the queries we had on their code imple‐
mentation. We also had some queries regarding the important hyperparameters that we
could tune to improvemodel performance. The authors gave a prompt reply to our ques‐
tions. They shared the codebase for the reinforcement learning model as well. Their
contribution has helped us with some crucial points in the report.

6 Future Work

Weoriginally planned to perform the following additional experimentswhichwe couldn’t
finish due to lack of time. They have been listed down below and we believe that future
work on this paper can be done in this direction.

• A best hyperparameter search on Social‐NCE in Trajectron++, the imitation learn‐
ing model and the Rainbow‐DQN based Reinforcement Learning model as well
and comparison of the variation in results for different models.

• Implementation of Social‐NCE on the Social‐LSTM and Directional‐LSTM models
on the Trajnet++ benchmark, the results for which have been given in the original
paper.
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• Implementation of Social‐NCE on state of the art models in other benchmarks
such as on the PGP model [9] for the nuScences dataset.
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