
R E S C I E N C E C
Replication / ML Reproducibility Challenge 2021

[Re] Differentiable Spatial Planning using Transformers

Rohit Ranjan1,2, ID , Himadri Bhakta1,2, ID , Animesh Jha2, ID , and Parv Maheshwari2, ID
1Equal Contributions – 2IIT Kharagpur, India

Edited by
Koustuv Sinha,

Sharath Chandra Raparthy

Reviewed by
Anonymous Reviewers

Received
04 February 2022

Published
23 May 2022

DOI
10.5281/zenodo.6574693

Reproducibility Summary

Scope of Reproducibility
This report covers our reproduction effort of the paper ‘Differentiable Spatial Planning
using Transformers’ by Chaplot et al. [1]. In this paper, the problem of spatial path
planning in a differentiable way is considered. They show that their proposed method
of using Spatial Planning Transformers outperforms prior data‐drivenmodels and lever‐
ages differentiable structures to learn mapping without a ground truth map simultane‐
ously. We verify these claims by reproducing their experiments and testing theirmethod
on new data. We also investigate the stability of planning accuracy with maps with in‐
creased obstacle complexity. Efforts to investigate and verify the learnings of the Map‐
per module were met with failure stemming from a paucity of computational resources
and unreachable authors.

Methodology
The authors’ source code and datasets are not open‐source yet. Hence, we reproduce the
original experiments using source code written from scratch. We generate all synthetic
datasets ourselves following similar parameters as described in the paper. Training the
mapper module required loading our synthetic dataset over 1.6 TB in size, which could
not be completed.

Results
We reproduced the accuracy for the SPT planner module to within 14.7% of reported
value, which, while outperforming the baselines [2] [3] in select cases, fails to support
the paper’s conclusion that it outperforms the baselines. However, we achieve a similar
drop‐off in accuracy in percentage points over different model settings. We suspect that
the vagueness in the accuracy metric leads to the absolute difference of 14.7% despite
the paper being reproducible. We further improve the reproduced figures by increasing
model complexity. The Mapper module’s accuracy could not be tested.

What was easy
Model architecture and training details were enough to easily reproduce.

Copyright © 2022 R. Ranjan et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Rohit Ranjan (ranjanmail.rohit@gmail.com)
The authors have declared that no competing interests exist.
Code is available at https://github.com/sirmisscriesalot/Differentiable-Spatial-Planning-using-Transformers – DOI 10.5281/zenodo.6475614. – SWH
swh:1:dir:6aa6080e642126b1166661d245a4f594a777889b.
Open peer review is available at https://openreview.net/forum?id=HFUI1pfQnCF.

ReScience C 8.2 (#34) – Ranjan et al. 2022 1

https://orcid.org/0000-0001-7447-2498
https://orcid.org/0000-0001-8623-4761
https://orcid.org/0000-0001-6953-3823
https://orcid.org/0000-0002-5330-3027
mailto:ranjanmail.rohit@gmail.com
https://github.com/sirmisscriesalot/Differentiable-Spatial-Planning-using-Transformers
http://oadoi.org/10.5281/zenodo.6475614
https://archive.softwareheritage.org/swh:1:dir:6aa6080e642126b1166661d245a4f594a777889b/
https://openreview.net/forum?id=HFUI1pfQnCF
https://rescience.github.io/


[Re] Differentiable Spatial Planning using Transformers

What was difficult
We lost significant time in generating all synthetic datasets, especially the dataset for
the Mapper module that required us to set up the Habitat Simulator and API [4]. The
ImageExtractor API was broken, and workarounds had to be implemented. The final
dataset approached 1.6 TB in size, and we could not arrange enough computational re‐
sources and expertise to handle the GPU training. Furthermore, the description of the
action prediction accuracymetric used is vague and could be one of the possible reasons
behind the non‐reproducibility of the results.

Communication with original authors
The authors of the paper could not be reached even after multiple attempts.

ReScience C 8.2 (#34) – Ranjan et al. 2022 2

https://rescience.github.io/


[Re] Differentiable Spatial Planning using Transformers

1 Introduction

In the original paper [1], the problem of spatial path planning in a differentiable way
is considered. The authors show that their proposed method of using Spatial Planning
Transformers outperforms prior data‐driven models that propagate information locally
via convolutional structure in an iterative manner. Their proposed model also allows
seamless generalisation to out‐of‐distributionmaps and goals and simultaneously lever‐
ages differentiable structures to learn mapping without a ground truth map.

2 Scope of reproducibility

We seek to investigate the following major claims made in the paper:

• Claim 1:
Their proposed SPT planner module provides a definite improvement of 7‐19%
over state‐of‐the‐art CNN based planning baselines in average action prediction
accuracy.

• Claim 2:
Their proposed SPT planner module maintains stability in accuracy as complexity
increases and the number of obstacles increases.

• Claim 3:
Their proposed SPT module outperforms classical mapping and planning base‐
lines under an end‐to‐end mapping and planning setting.

3 Methodology

The entire codebase iswritten fromscratch for the SPTmodules and the synthetic dataset
generation in Python 3.6. Pytorch Lightning was used for the SPT modules. For dataset
generation, similar parameters were used, as mentioned in the paper, to the maximum
extent. The vagueness of parameters in terms of obstacle size allowed us to test out a
range of obstacle sizes and the accuracy of the model on them. All runs were logged on
the WandB platform. The training was done using NVIDIA Tesla T4 and P10 GPUs on
Google Colaboratory Pro.

3.1 Model descriptions
Our implementation of the model follows the description provided in the paper taking
liberties where details are vague.
The input map and the goal map are stacked vertically and then fed into a CNN Encoder.
The Encoder has 2 fully connected layers with a kernel size=1 and ReLU activation func‐
tion. The first layer increases the number of channels from 2 to 64, while the second
layer maintains the number of channels and outputs a 64 channel encoded input.
As described in the original paper, Positional encoding is added to the encoded input,
which is then reshaped and fed into the Encoder part. Their are five encoder layers,
each with nheads = 8, dmodel = 512 and dropout = 0.1. This output is fed into a Decoder
made of a fully connected layer. The Decoder gives one output for each cell. The output
is then reshaped to regain its original map shape.
We carry further investigations on how the number of layers in the CNNEncoder, nheads

and layers in the Encoder and embedding size affect the SPT Planner Module. Improve‐
ments were gained and are detailed in the Results section.

ReScience C 8.2 (#34) – Ranjan et al. 2022 3

https://rescience.github.io/


[Re] Differentiable Spatial Planning using Transformers

Figure 1. Code‐flow diagram for our implementation.

3.2 Datasets

The SPT Planner Module —We create 3 datasets for the SPT planner module, each with a
map size = {15 30 50} and up to 5 randomly generated obstacles. The position of the goal
is randomly chosen from a free‐space cell. 2 different datasets are generated at map size
= 15 with up to 10 and 15 obstacles, respectively. Each of these datasets has 100,000maps
for training, 5,000 for validation and 5,000 for testing.

The End-to-End Mapper and Planner Module —We further used the Habitat Simulator, and
Habitat API [4] to generate 36000 maps for training the end‐to‐end model. Seventy‐two
scenes from the Gibson dataset [5] from Stanford is loaded onto the simulator, and 500
maps with a grid cell dimension of 0.5 meters and map size of 15, are rendered from
each scene. Ground truths for all datasets were generated using the classical Dijkstra’s
algorithm. This dataset is over 1.6 TB andmade it difficult to hand‐engineer training on
limited GPU resources.
All datasets generated and used have been released for open‐source and can be found
on the project’s github page.

3.3 Hyperparameters
An extensive hyperparameter grid search led us back to the same hyperparameters cited
in the paper. The model is trained for 40 epochs with a learning rate decay of 0.9 per
epoch, a starting learning rate of 1.0 and a batch size of 20. The model is separately
trained for each of the map distributions using mean squared error loss and stochastic
gradient descent [6].

ReScience C 8.2 (#34) – Ranjan et al. 2022 4

https://anonymous.4open.science/r/Differentiable-Spatial-Planning-using-Transformers-7107
https://rescience.github.io/


[Re] Differentiable Spatial Planning using Transformers

Navigation Manipulation Overall
Method M=15 M=30 M=50 M=18 M=36

VIN (Paper) 86.19 83.62 80.84 75.06 74.27 80.00
GPPN (Paper) 97.10 96.17 91.97 89.06 87.23 92.31
SPT (Paper) 99.07 99.56 99.42 99.24 99.78 99.41
SPT (Ours) 84.40 84.83 * 86.49 * 84.74

Table 1. Reproducibility Results.

4 Reproducibility Results

We reproduced the accuracy for the SPT planner module to within 14.7% of reported
value, which, while outperforming the baselines [2] [3] in select cases, fails to support
the paper’s conclusion that it outperforms the baselines. However, we achieve a similar
drop‐off in accuracy in percentage points over different model settings. We suspect that
the vagueness in the accuracy metric leads to the absolute difference of 14.7% despite
the paper being reproducible. The Mapper module’s accuracy could not be tested.

Figure 2. Accuracy : 86.71 Figure 3. Accuracy : 83.95

Figure 4. Sample output for Navigation Task (left) and Manipulation Task (right) visualised.
∗ Could not be trained due to lack of enough computational resources.

5 Further Investigation Results and Discussion

The CNN Encoder — The CNN Encoder takes the map and the goal location as the input
and encodes the information into an embedding of size dmodel. This is achieved by a

ReScience C 8.2 (#34) – Ranjan et al. 2022 5

https://rescience.github.io/


[Re] Differentiable Spatial Planning using Transformers

M=15
Accuracy Validation Loss Accuracy Validation Loss

layers = 2 84.40 1.537 d_model = 32 84.76 1.201
layers = 4 84.88 1.166 d_model = 64 84.40 1.537
layers = 8 84.90 1.033 d_model = 128 85.00 0.79

Table 2. Investigation Results on CNN Encoder parameters.

M=15
Accuracy Validation Loss

obstacles = N (0,5) 84.40 1.537
obstacles = N (0,10) 84.31 2.327
obstacles = N (0,15) 84.67 1.614

Table 3. Investigation Results on increasing obstacle complexity and number.

multi‐layer, fully connected convolutional neural network. The kernel size for the con‐
volutions is fixed at 1 to have the Encoder generate the same embedding for all input
map cells. The CNN Encoder plays a vital role in distilling the input map and represent‐
ing it in the best way possible for the Transformer to act on. Table 2 lists all investigation
results on the CNN Encoder parameters.
Our experiments reveal that while embedding sizes in a reasonable domain have similar
accuracies, a higher embedding size provides more expressive power to the model and
provides the best accuracy beating the original SPT parameters.
We also see an increase in accuracy with increasing CNN Encoder layers. layers = 8
achieves the best accuracy as well as the best validation loss which shows the increase
in expressive power of the encodings.

Obstacle Complexity — Obstacle complexity refers to the distribution of obstacles in the in‐
put map. The paper only cites results on input maps with a normal distribution of up
to 5 obstacles. We found it crucial to test the SPT’s spatial awareness and learning capa‐
bilities as this complexity is heightened. For this purpose, we created two new datasets
with a higher distribution of obstacles. Table 3 lists our investigation results on these
datasets.
We achieved the best accuracy on the distribution with up to 15 obstacles. However, the
best validation loss is achieved with the lowest obstacles setting. This leads us to con‐
clude that only looking at accuracy figures might be misleading because an increase in
obstacles decreases the number of free spaces and consequently the number of predic‐
tions the SPT model has to generate.

The Transformer Encoder — The Transformer Encoder takes input that has been encoded
into higher embedding space and has been appended with positional encoding. It is fol‐
lowed by a Decoder, a fully connected layer that decodes the embeddings finally given
out by the Encoder. The number of multi‐attention heads and encoder layers affects
the expressive power of the Transformer. We conduct investigations by changing these
parameters. Table 4 lists these results.
The best accuracy is achieved with nheads = 4 and nlayers = 8. A severe drop in accu‐
racy is found with nlayers = 12. This leads us to conclude that while increasing nlayers

increases learning capabilities of the SPT Planner module, excessive parameters might
not be learnt properly from our dataset of size 100,000. The same reason suffices for an
increase in nheads.

ReScience C 8.2 (#34) – Ranjan et al. 2022 6

https://rescience.github.io/


[Re] Differentiable Spatial Planning using Transformers

Figure 5. Accuracy : 83.49 Figure 6. Accuracy : 78.37

Figure 7. Sample output for lower obstacle distribution(left) and higher obstacle distribution (right)
visualised.

M=15
Accuracy Validation Loss Accuracy Validation Loss

n_heads = 4 84.65 1.471 n_layers = 5 84.40 1.537
n_heads = 8 84.40 1.537 n_layers = 8 84.96 1.009
n_heads = 16 84.24 1.762 n_layers = 12 52.33 40.469

Table 4. Investigation Results on Transformer Encoder parameters.

The Best Model — The prior discussion points out that increasing the expressive power
of the CNN Encoder and increasing the complexity of the Transformer Encoder helps
increase the accuracy of the model. We combine all these changes to train our best
model.
The parameters used are: nlayers = 8, dmodel = 128, nheads = 4 andnlayers = 8. The accuracy
achieved is 85.14 with a validation loss of 0.651. These figures beat the reproduced SPT
Planner Module by 0.87% and 57.64% respectively.

6 Discussion

6.1 What was easy
The easiest part of the reproduction effort was getting the Spatial Planning Transformer
model up and ready from scratch. The authors’ instructions regarding the layer param‐
eters and encoder‐decoder structure were abundantly clear. Furthermore, although ini‐
tialisation information was missing, the model was robust enough to learn under vari‐

ReScience C 8.2 (#34) – Ranjan et al. 2022 7

https://rescience.github.io/


[Re] Differentiable Spatial Planning using Transformers

ous settings.

6.2 What was difficult
We lost significant time generating all synthetic datasets, especially the dataset for the
mapper module that required us to set up the Habitat Simulator and API. The Image‐
Extractor API was broken, and workarounds had to be implemented. The final dataset
approached 1.6 TB in size, and we could not arrange enough compute resources and
expertise to handle the GPU training. The SPT Planner Module could not be trained on
the M=50 dataset following the same issue.

6.3 Reproducibility of results of SPT Planner Module
Our results lag thosementioned in the paper by amargin of over 14.7%, whichmakes us
believe that the paper is not reproducible in its exact form. However, we achieve a sim‐
ilar drop‐off in accuracy in percentage points over different model settings. We suspect
that the paper is indeed reproducible, but the datasets’ vagueness and accuracy met‐
ric lead to the exaggerated absolute difference. The lack of openly available standard
datasets in the domain presents a challenge. Different papers have to report results on
datasets of their choice using a metric they design themselves. The original paper’s au‐
thors also did this with their synthetic datasets and a novel action prediction accuracy
metric. Furthermore, these datasets are not open‐sourced, and generation parameters
in the paper are vague in terms of obstacle complexity and size. Our reproductionwould
have led to higher accuracies if the authors had provided the accuracy metric code and
datasets.
Our experiments with maps of increasing obstacle complexity result in a slight increase
in validation loss. This points to a plausible explanation for non‐reproducibility. The
non‐uniformity of dataset‐generation guidelines couldhave resulted in obstacles of greater
size in our synthetic dataset.

6.4 Stability of the SPT Planner Module
Our results show comprehensively that the SPT Planner Module is stable concerning av‐
erage action prediction accuracy for slight changes in obstacle complexity andmodel pa‐
rameters ranging from CNN Encoder to the Transformer Encoder. This lays the ground
for further research that can apply SPTs tomazes and increasingly complex scenes with‐
out considerable loss of accuracy.

6.5 Communication with original authors
The authors of the paper could not be reached even after multiple attempts.

7 Conclusion

Wehave tried to reproduce the paper to the best of our abilities, following the textual de‐
scriptions for source code and dataset generation to themaximum extent. Wewere able
to improve the reproduced accuracy and loss of the SPT Planner Module by 0.87% and
57.64%, respectively, by increasing the CNN Encoder depth, embedding size and Trans‐
former Encoder complexity. This provides ground for further research into increased
complexities models that might draw deeper insights and plan more accurately.
We could not train the End‐to‐EndMapper and Planner Module due to a paucity of com‐
putational resources. The results that could not be reproduced are so prohibitively ex‐
pensive that only very few can afford it, hence it would be better for the community if
subsequent authors to this topic make their code and dataset public.

ReScience C 8.2 (#34) – Ranjan et al. 2022 8

https://rescience.github.io/


[Re] Differentiable Spatial Planning using Transformers

References

1. D. S. Chaplot, D. Pathak, and J. Malik. “Differentiable spatial planning using transformers.” In: International
Conference on Machine Learning. PMLR. 2021, pp. 1484–1495.

2. L. Lee, E. Parisotto, D. S. Chaplot, E. Xing, and R. Salakhutdinov. “Gated path planning networks.” In: International
Conference on Machine Learning. PMLR. 2018, pp. 2947–2955.

3. A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel. “Value iteration networks.” In: arXiv preprint
arXiv:1602.02867 (2016).

4. M. Savva, A. Kadian, O.Maksymets, Y. Zhao, E.Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun, J. Malik, et al. “Habitat:
A platform for embodied ai research.” In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019, pp. 9339–9347.

5. F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese. “Gibson env: Real-world perception for embod-
ied agents.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 9068–9079.

6. N. Ketkar. “Stochastic gradient descent.” In: Deep learning with Python. Springer, 2017, pp. 113–132.

ReScience C 8.2 (#34) – Ranjan et al. 2022 9

https://rescience.github.io/

	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Datasets
	The SPT Planner Module
	The End-to-End Mapper and Planner Module

	Hyperparameters

	Reproducibility Results
	Further Investigation Results and Discussion
	The CNN Encoder
	Obstacle Complexity
	The Transformer Encoder
	The Best Model


	Discussion
	What was easy
	What was difficult
	Reproducibility of results of SPT Planner Module
	Stability of the SPT Planner Module
	Communication with original authors

	Conclusion

